Rainbow restrained domination numbers in
graphs

J. Amjadi and S.M. Sheikholeslami* f
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
j—amjadi;s.m.sheikholeslami@azaruniv.edu

L. Volkmann
Lehrstuhl II fiir Mathematik
RWTH Aachen University
52056 Aachen, Germany
volkm@math?2.rwth-aachen.de

Abstract

A 2-rainbow dominating function (2RDF) of a graph G is a func-
tion f from the vertex set V(G) to the set of all subsets of the set
{1,2} such that for any vertex v € V(G) with f(v) = @ the condition
Uuenw) f() = {1,2} is fulfilled, where N(v) is the open neighbor-
hood of v. A rainbow dominating function f is said to be a rainbow
restrained domination function if the induced subgraph of G by the
vertices with label §, has no isolated vertex. The weight of a rainbow
restrained dominating function is the value w(f) = Ywevig) @)
The minimum weight of a rainbow restrained dominating function
of G is called the rainbow restrained domination number of G. In
this paper we initiate the study of the rainbow restrained domination
number and we present some bounds for this parameter.
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1 Introduction

For terminology and notation on graph theory not given here, the reader
is referred to [12]. In this paper, G is a simple graph with vertex set
V = V(G) and edge set £ = E(G). The order |V| of G is denoted by
n = n(G). For every vertex v € V, the open neighborhood N(v) is the
set {u € V(G) | ww € E(G)} and the closed neighborhood of v is the set
Nv] = N(v) U {v}. The degree of a vertex v € V is d(v) = |[N(v)|. The
minimum and mazimum degree of a graph G are denoted by § = §(G) and
A = A(G), respectively. A graph G is k-regular if d(v) = k for each vertex
v of G. The open neighborhood of a set S C V is the set N(S) = J,cs N(v),
and the closed neighborhood of S is the set N[S] = N(S)U S. A treeis an
acyclic connected graph. For r,s > 1, a double star S(r, s) is a tree with
exactly two vertices that are not leaves, with one adjacent to r leaves and
the other to s leaves. If A C V(G), then G[A] is the subgraph induced by
A. If A, B C V(G), then E(A, B) is the set of edges between A and B. The
complement of a graph G is denoted by G. We write K,, for the complete
graph of order n, P, for a path of order n and C,, for a cycle of length n.

A set S C V is a restrained dominating set if every vertex not in S is
adjacent to a vertex in S and to a vertex in V —S. The restrained domina-
tion number v,(G) is the minimum cardinality of a restrained dominating
set of G. The restrained domination number was introduced by Domke et
al. [7] and has been studied by several author (see for example [5, 6]).

For a positive integer k, a k-rainbow dominating function (kRDF) of a
graph G is a function f from the vertex set V(G) to the set of all subsets
of the set {1,2,...,k} such that for any vertex v € V(G) with f(v) =0
the condition UueN(u) f(u) = {1,2,...,k} is fulfilled. The weight of a
kRDF f is the value w(f) = 3 ¢y |f()l. The k-rainbow domination
number of a graph G, denoted by 7, (G), is the minimum weight of a kRDF
of G. A ~.x(G)-function is a k-rainbow dominating function of G with
weight v,£(G). Note that 7,1 (G) is the classical domination number y(G).
The k-rainbow domination number was introduced by Bresar, Henning,
and Rall [1] and has been studied by several authors (see for example
(2, 3, 4, 9, 10, 13, 14)).

A 2-rainbow dominating function f : V — P({1,2}) can be repre-
sented by the ordered partition (Vp, V1, V2, V1 2) (or (V;,f ,Vlf ,sz ,VI{ 2) to
refer f) of V, where Vo = {v e V| f(v) =0}, Vi = {v e V| f(v) = {1}},
Vo={veV]| fv)={2}}, Vie={ve V]| fv)={12}}. In this
representation, its weight is w(f) = |Vi| + |Va| + 2|V} 2|.

A 2-rainbow dominating function f = (Vp, V4, V2, V) 2) is called a rain-
bow restrained dominating function (RRDF) if the induced subgraph G[Vo)
has no isolated vertices. This definition is parallel to the definition of re-
strained dominating set of a graph defined in [7]. The rainbow restrained



domination number of G, denoted by v,(G), is the minimum weight of an
RRDF on G. A %,+(G)-function is an RRDF of G with w(f) = 7 (G).
If f = (Vo, V1, V2, V1,2) is a 7,(G)-function, then since Vi UVoUVi2is a
restrained dominating set, and since placing weight {1,2} at the vertices
of a restrained dominating set yields an RRDF, we observe that

max{')’r'Z(G)v 'Yr(G)} < 'Yrr(G) < 277‘(G) (1)

If G1,Gz,- -+ , G, are the components of G, then 7.+(G) = Y i_; 1r+(Gi).
Hence, it is sufficient to study +,.(G) for connected graphs.

Rainbow restrained domination number differs significantly from rain-
bow domination number. For example, for n > 2, v,2(Ki1,n) = 2 and

'YTT(Kl.n) =n.

The purpose of this paper is to initiate the study of the rainbow re-
strained domination numbers in graphs. We first study basic properties
of the rainbow restrained domination number and then we present some
sharp bounds on the rainbow restrained domination number.

We make use of the following results in this paper.

Theorem A. ([7]) If G is a connected graph of order n > 2, then v, (G) =n
if and only if G is a star.

Observation 1. Let G be a graph of order n. Then
(a) v++(G) =1 if and only if G = K.

(b) ¥~(G) =2 if and only if A(G) =n—1and §(G) > 2o0r A(G) =n-2,
8(G) = 3 and there exists two vertices u,v such that N(u) N N(v) =
V(G) — {u,v}.

Observation 2. If H is a subgraph of G, then v,.+(G) < y-.(H)+|V(G)| -
|V (H)|.

Example 3. (a) ¥rr(Kin-1)=nforn > 2.

() Yer(Pp) =nfor 1 <n<6and vr(Pn) = [2BHE] +1forn>7.

(c) ¥rr(Cn) = 2[%] when n # 2 (mod 3) and ¥,~(Cp) = 2[2] + 1 other-
wise.

(d) 7r(Kpg) =4for2<p<gq.

The next theorem shows that for every pair a,b of integers, with 1 <
a < b < 2a, there exists a simple connected graph G such that v,.(G) = a
and v, (G) = b.

Theorem 4. For every two positive integers a and b, with 1 < a < b and
b < 2a, there exists a simple connected graph G such that v.(G) = a and
Yor(G) = b.



Proof. fa=b=1,thenlet G =K; and ifa =1,b =2, then let G = K,
for n > 3.

Ifa=b=2let G=Kp, ifa=2and b =4 then let G = P4, and if
a = 2 and b = 3 then let G be the graph obtained from K, (n > 3) by
adding a new vertex and joining it to one of the vertices of K, .

Ifa=b=3thenlet G = Ps,ifa=3and b =5 then let G = P, if
a=3and b=6thenlet G = P, ifa =3 and b = 4 then let G be the
graph obtained from K, (n > 3) with V(K,,) = {v,v2,...,v,} by adding
two new vertices u;,u2 and joining u; to v; for i =1,2.

Finally, let a > 4. If b = 2a, then let G = P3,_3, and if b = 2a — 1, then
let G = P3,_4. Thus we may assume that b < 2a — 2. Then let G be the
graph obtained from the double star S(p,q) withp>¢>2and p+¢q =a,
by subdividing b — a pendant edges such that at least one pendant edge at
each central vertex is not subdivided. O

2 Basic properties of the rainbow restrained
domination number

Proposition 5. Let G be a connected graph of order n. Then v.(G) =
vr+(G) if and only if G is a star or G has a «,.(G)-set S that partitions into
two nonempty subsets S; and S, such that N(S;) = V(G) — (51 U S2) and
N(52) =V(G) — (51U 52).

Proof. Assume that 7.(G) = ¥+(G) and let f = (Vo, V1, V2, Vi 2) be a vpr-
function of G. If ¥.(G) = ¥4r-(G) = n, then G is a star by Theorem A.
Let 7+(G) = 7-r(G) < n. Then we have v,.(G) < |Vi| + |Va| + [Vi2] <
Vil + {Va| + 2{V1 2] = ¥-r(G). This implies that |V} 2] = 0 and hence
each vertex in V; has at least one neighbor in Vi and one neighbor in V5.
Therefore, V(G) — (V1 UV2) C N(V1) and V(G) — (V1 U V2) C N(V2).

We claim that Vy UV5 is independent. Assume to the contrary that uv €
G[ViuV,} and let H be the component of G[V]UV;] containing uv. Since G
is connected, H has a vertex x with a neighbor in V5. Then ViUV, — {z} is
a restrained dominating set of G of weight less than v,.(G), a contradiction.
Thus V; UV, is independent. This implies that V(G) — (V; uW,) = N(V})
and V(G) — (ViU V) = N(W,).

Conversely, assume that G is a star or G has a minimum restrained
dominating set S that partitions into two nonempty subsets S; and S
such that N(S;) = V(G) - (S1US;) and N(S) =V(G) — (S US:). If G
is a star then clearly v.(G) = 7r~(G) = n. Assume that G has a minimum
restrained dominating set S that partitions into two nonempty subsets S;
and S» such that N(S;) = V(G)—(S1US;) and N(S2) = V(G)—(5,US>).
It is straightforward to verify that the function (V(G) — (51U S2), Si1, S2,0)



is a rainbow restrained dominating function of G of weight +,(G) and hence
¥ (G) = ¥r+(G). This completes the proof. a

Proposition 6. Let G be a connected graph of order n and clique number
w(G) > 3. Then v,(G) £ n—w(G)+2. This bound is sharp for the corona
graph K,,0K; when m > 3.

Proof. Let S be a maximum clique of G and let v € S. Then f = (S —
{v},V(G)-S5,0, {v}) is an RRDF of G and hence v,,.(G) < n—w(G)+2. O

Next we characterize the graphs G with «,.(G) = n. We start with the
following lemma.

Lemma 7. Let T be a tree of order n with diam(T") > 3. If T # P,, then
Yr(T) < n.

Proof. Let v be a vertex of maximum degree of the tree T, and let N(v) =
{v1,v2,...,ux}. Since T # P,, we have k > 3. Root T in v. Since
diam(T') > 3, we may assume, without loss of generality, that deg(vx) > 2.
Let u € N(vx) — {v}. Then the function

f = ({'Uk,'U}, V(T) - {’LL, v, Uk, vz}‘l {02}’ {u})

is a rainbow restrained dominating function of T of weight n — 1. Thus
Yrr(T) < w(f) < n and the proof is complete. ]

Theorem 8. Let G be a connected graph of order n > 2. Then v,..(G) =n
if and only if G ~ K1 ,,-1,C4,Cs or G = P, for n = 2,3,4,5,6.

Proof. If G ~ K ,—1,C4,C5 or G = P, for n = 2,3,4,5,6, then v..(G) =
n by Example 3. ,

Conversely, let v,+(G) = n. If G is a tree, then it follows from Lemma
7 that diam(G) < 2 or A(T') < 2. This implies that T is star or T = P,.
By Example 3, T = K,y or T = P, for n = 2,3,4,5,6. So let G have a
cycle. If G has a triangle (v,vov3), then the function f : V(G) — P({1,2})
defined by f(v)) = f(v2) = 0, f(vs) = {1,2} and f(z) = {1} otherwise,
is an RRDF of G with weight less than n which is a contradiction. Thus
G is triangle-free. It follows from Example 3 and Observation 2 that the
length of a longest cycle in G is at most 5. Let C = (vjv2...v;) be a
longest cycle in G. First let » = 4. If n > 5, then we may assume, without
loss of generality, that there is a vertex w such that vy;w € E(G). Then
the function f : V(G) — P({1,2}) defined by f(v1) = f(v2) = f(v4) =
0, f(w) = f(v3) = {1,2} and f(z) = {1} otherwise, is an RRDF of G with
weight less than n which is a contradiction. Hence n = 4 and G = C4. Now
let »r = 5. If n > 6, then we may assume, without loss of generality, that
there is a vertex w such that v;w € E(G). Then the function f: V(G) —



P({1,2}) defined by f(v1) = f(v2) = 0, f(vs) = {2}, f(va) = {1,2} and
f(z) = {1} otherwise, is an RRDF of G of weight less than n which is a
contradiction. Hence n = 5 implying that G = C5. This completes the
proof. a

Next we establish a lower bound for the rainbow restrained domination
number of a graph G in terms of order and size of G.

Observation 9. If for each v,.(G)-function f = (Vo, V4, V2, Vi 2) of a con-
nected graph G, Vo =0, then G ~ K, K; or K5, s > 2.

Theorem 10. Let G be a connected graph of order n > 2 and size m.
Then

Hel(G) 2 5 = m
with equality if and only if G = K3 or G = 5(2,2).

Proof. The result is immediate for n = 2,3, 4 with equality if and only if
G = K;. Let now n > 5. If we have Vp = @ for each v,.(G)-function
f = (Vo,"1, V2, V1 2) of G, then by Observation 9, G ~ K 5, s > 4. Then
Yrr(G)=n> sTn - m.

Now let f = (Vo, V1, V3, V12) be a v,(G)-function so that V5 # 0. Let
m; = |E(G[1/1])| for i = 0,1,2, m3 = |E(%1 V'l)lvmll = |E(%|‘/2)|)m5 =
|E(Vo, V1,2)|, me = |E(V1, V2)|,m7 = |E(V1,V1,2)|, ms = |E(Va, V1,2)| and
mg = |E(G[Vi,2])|. Since G[Vp] has no isolated vertex, we have 2my =
2 veve de8gw) (v) = [Vo| = n — V1| — |Vo| — [V,2|. Since G is connected,
we must have m; + m3 + mg + mz > |V1| and my + mg + mg + mg > |V,|.
On the other hand, since V; is dominated by V; UV; 2 and Vo U V)2 we
have m3 + ms > |Vp| and mg + ms > |Vo|. Thus

2m = 2mg + 2my + 2my + 2mg3 + 2my + 2mg + 2mg

+ 2m7 4+ 2mg + 2my

2 3(n— Vil = V2| = [Vo2|) + VAl + [Va] + my + mg

+ m7+mg+ 2mg
3n - 2{Wy| - 2|V,| = 3|V12| + m1 + ma + my + mg + 2mg
3n — (2AVil + 20Va] + 4lVial) + Vil + my +m

+ my+mg +2mg

= 3n —27+(G) + V12| + m1 + m2 + m7 + mg + 2mg

> 3n—2v.(G).

This implies that v,-(G) > 3¢ — m.
If G = K, or G = 5(2,2), then obviously 7+(G) =2 = 32 —m or
Yr(G)=4=3 —m.



Conversely, let v,.(G) = %’1 —m and let f be a v..(G)-function. If
2 < n < 4, then it is easy to see that G = K,. Suppose next that n >
5. Since G is connected, we have 7(G) < n and hence V5 # @. Then
all inequalities occurring in the proof become equalities. In particular,
[Vi2]l = my = mg = m7 = mg = mg =0, 2mg = |V|, mz + mg = |V},
mg + mg = |Va|, mag + ms = |Vo| and mg + mg = |Vp|. It follows from
[Vi,2] = 0 that ms = 0 and hence m3z = |Vp| and my4 = |Vp|. This implies
that each vertex in V} is adjacent to exactly one vertex in V; and one vertex
in V5. Hence

(a') ‘/1,2 = 0:

(b) for i = 1,2, V;'is an independent dominating set of G[Vo U Vi];

(¢) G[Vo) is a l-regular graph;

(d) every vertex in Vj is adjacent to exactly one vertex in V; and one
vertex in V5.
We claim that mg = 0. Assume to the contrary that m¢ > 1 and wv €
E(G), where v € V] and v € V.

If G — uv is connected, then f is also a rainbow restrained dominating
function on G — uv, and we obtain the contradiction

= %r(G) = () 2 %er(G — ) 2 5 (m 1),

If G — uv is disconnected, then let G; and G, be the components of G -
uv. Obviously, the function f restricted to G; is a rainbow restrained
dominating function on G; for i = 1,2. If |V(G;)] > 2 for i = 1, 2, then we

have
¥r(G) = w(f)
= w(flcl) +w(f|Gz)
> WG _|E(Gy)| + APl — |E(G,)|

%’-‘—(m—l)>§2’l—m

which is a contradiction. If |V (G;)| =1 for some i, say ¢ = 1, then

Yrr(G) = w(fla,) + w(flcz)
2 14350 - (m 1)

3n _ 1l 3n _
7 —M+53>5—m

a contradiction again. Thus mg = 0 implying that |Vp| = |[V4| = |V3| and
V1 UV, is independent. Furthermore, by connectedness of G we deduce
that each vertex of V] and V; has a neighbor in V4. It follows from (c) and
connectedness of G that G = S(2,2). O

Corollary 11. Let T be a tree of order n > 2. Then
n
Yrr (T) Z 5’ +1

with equality if and only if T = P, or T = S(2,2).



3 Nordhaus-Gaddum type results

Many problems in extremal graph theory seek the extreme values of graph
parameters on families of graphs. Results of Nordhaus-Gaddum type study
the extreme values of the sum (or product) of a parameter on a graph and
its complement, following the classic paper of Nordhaus and Gaddum [11]
solving these problems for the chromatic number on n-vertex graphs. In
this section, we study such problems for the rainbow restrained domination
number.
The next result is an immediate consequence of Theorem 8.

Corollary 12. If G is a connected graph of order n > 4, different from
Cs, with v,.-(G) = n, then v,..(G) < 4.

The Dutch-windmill graph, K. ém), is a graph which consists of m copies

of K3 with a vertex in common. Obviously, Kém) =K,U K2, 2 Itis
N —

m times

easy to see that 'yr,(K(m)) =2 and 'y,,.(Kém)) = 3 for m > 3.

Theorem 13. For any connected graph G of order n > 4,
Yr(G) + 7:+(G) > 5.

The bound is sharp for K. (m), where m > 3.

Proof. Without loss of generality, we may assume that v,-(G) < v,.r(G).
If v+(G) 2 3, then v-(G) + 'yr,.(G) > 6. Let v,(G) = 2. It follows from
Observation 1 that A(G) =n—1and §(G) > 20r A(G) =n-2,46(G) >3
and G has two vertices u, v such that N(u) N N(v) = V(G) — {u,v}.

First let A(G) =n —1 and 6(G) > 2. Then G = K; + H, where H is
a graph without isolated vertices. Let v € V(G) be a vertex of maximum
degree A(G) =n—1. Then G = {v} UH and 50 %+(G) = 1 +y,.~(H) > 3.
Hence vr+(G) + 7+(G) > 5.

Now let A(G) = n — 2, 6(G) > 3 and G has two vertices u,v such
that N(u) " N(v) = V(G) - {u,v}. Then G = K; + H where His a a graph
without isolated vertices. Then G = KoUH and 50 v+ (G) = 24+,-(H) > 4
and thus v,+(G) + 7r-(G) > 6. Since v,-(G) =1 is not possible, the proof
is complete. O

Lemma 14. If G is a connected graph with diam(G) > 5, then v.(G) +
Yr(G) £ n + 4.



Proof. Let P = v v;...vx be a diametral path in G. Define f : V(G) —
P({1,2}) by f(v1) = vk) {1,2} and f(z) = 0 for z € V(G) — {v1, vk}
It is easy to see that f is an RRDF of G of weight 4 and so 7,(G) < 4.
Thus %r(G) + 7-+(G) < n +4. O

Lemma 15. If G is a connected graph of order n with diam(G) = 4, then
Yrr(G) + 1 (G) Sn+ 4.

Proof. Let P = v vavusvqvs be a diametral path in G. If n = 5, then
G = P; and clearly v,+(P5) = 4 and hence v.+(G) + 7(G) < n + 4.
Let n > 6. It follows from Theorem 8 that v,..(G) < n — 1. Define
£ V(@) — P({1,2}) by f(v1) = f(va) = {1,2}, f(vs) = {1} and f(z) =

for z € V(G) — {v1,v3,v4}. It is easy to see that f is an RRDF of G of
weight 5. Thus v,(G) +7r+(G) <n +4. O

Lemma 16. If G is a connected graph of order n with diam(G) = 3, then
Yer(G) + 77+ (G) S n + 4.

Proof. Let P = vjvyvavy be a diametral path in G. If n = 4, then clearly
Yrr(G)+7rr(G) = n+4. Let n > 5. If G[V —{v1,v4}] has no isolated vertex,
then the function f : V(G) = P({1,2}) defined by f(v;) = f(vq) = {1,2}
and f(z) = 0 for z € V(G) — {v1,v4}, is an RRDF of G of weight 4 and so
'Yrr(G) i7rr(G) <n+4.

Let GV — {v1,v4}] have an isolated vertex, say w. If G[V — {v;, v4, w}]
has no isolated vertex, then the function f : V(G) — P({1,2}) defined
by f(v1) = F(va) = {1}, f(w) = {1,2} and f(z) = 0 for = € V(G) —
{v1,v4,w}, is an RRDF of G of weight 4 and again v,-(G) +7-r(G) < n+4.
Suppose that G[V — {v;,v4, w}] has an isolated vertex. Then the function
f: V(G) - P({1,2}) defined by f(v1) = f(va) = {1,2}, f(w) = {1} and
f(z) =0 for z € V(G)—{v1, v4, w}, is an RRDF of G of weight 5. It follows
from Theorem 8 that v,+(G) < n — 1 and hence 7,(G) + 7-(G) < n + 4.
This completes the proof. O

Theorem 17. For any connected graph G of order n > 4 and different
from Cs, _
Yrr(G) + ¥+ (G) Sn+ 4.

The bound is sharp for C4, P; and Ps.

Proof. We may assume that G is connected because the complement of a
disconnected graph is connected. Suppose that u,v € V(G) are adjacent
vertices in G such that |[N(u) N N(v)| is maximum. For convenience, let
N = Nu)N N(v). Let X = V(G) — (NU {u,v}) and let I = {w |
w is an isolated vertex in G[X]}. We consider three cases.

Case 1. |I| > 2.

Assume w;,wy € I. Then w; is adjacent to all vertices of X — {w;} in G

11



for i =1,2. If N = 0, then by the choice of © and v we must have |I| = 2
and so n = 4. Then clearly 7,(G) +7+(G) < n+4. Assume N 3 0. Since
G is connected, we may choose an edge zy such that £ € N U {u,v} and
y € X. Assume that v; € {u,v} — {z} and v2 € {wy, w2} — {y}. Then
the function f: V(G) — P({1,2}) defined by f(v1) = f(v2) = {1,2} and
f(z) =0 for z € V(G) — {v1,v2}, is an RRDF of G of weight 4. It follows
that vrr(G) + 7 (G) < n+ 4.

Case 2. |[I|<land N =9.

If I = 9, then the function f : V(G) — P({1,2}) defined by f(u) = f(v) =
{1,2} and f(z) = 0 for € V(G) —{u, v}, is an RRDF of G of weight 4 and
the result follows. Now let |I| = 1 and suppose that ] = {w}. Then the
function f : V(G) — P({1,2}) defined by f(u) = f(v) = {1,2}, f(w) = {1}
and f(z) = @ for € V(G) — {u,v,w}, is an RRDF of G of weight 5. It
follows from Corollary 12 and the fact that G # Cs that v,.~(G) < 4 or
¥rr(G) £ n — 1. Hence 7,-(G) + 71'7'(@-) <n+4.

Case 3. |I|<1and N #0.

First let I = . It is easy to see that the function f : V(G) —» P({1,2})
defined by f(u) = {1,2} and f(z) = {1} for z € X and f(z) = 0 otherwise
is an RRDF of G of weight n — |N| and the function g : V(G) — P({1,2})
defined by f(u) = f(v) = {1,2} and f(z) = {1} for z € N and f(z) =0
otherwise is an RRDF of G of weight |N| + 4. Thus

¥r(G) +¥er(G) < (n =~ IN|) + (4 + |N]) =n + 4.

Now let |I| = 1 and suppose I = {w}. By Lemmas 14, 15 and 16, we
may assume that diam(G) < 2. Since X # 0, we deduce that diam(G) =
2. If v+(G[X]) < |X|, then let g be a v,(G[X])-function and define
f:V(G) = P({1,2}) by f(u) = {1,2} and f(z) = g(z) for z € X and
f(z) = 0 otherwise. It is clear that f is an RRDF of G of weight at most
n —|N|—1. On the other hand, (X — {w}, NU {w}, 0, {u,v}) is an RRDF
of G and hence

Yr(G) +¥r(G) < (n = |N| =1) + (5+ |N|) =n + 4.

Now let v,~(G[X]) = | X|. It follows from Theorem 8 and the fact |I| =1
that G[X] = K, x|—1 with the central vertex w. Since w ¢ N, we may
assume that v and w are not adjacent in G. Consider two subcases.

Subcase 3.1. |X|>3.
If N(w)N(NU{v}) # 0 (the case N(w)N(NU{u}) # 0 is similar), then let
wy € X — {w} and define f: V(G) — P({1,2}) by f(u) = {1,2}, f(w1) =
{1}, and f(z) = {2} for z € X — {w, w1} and f(z) = O otherwise. It is
clear that f is an RRDF of G of weight n—|N|—1 and the result follows as
above. Thus we may assume N(w)N (N U {u,v}) = 0. Since diam(G) = 2,
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u must have a neighbor in X — {w} such as w’. Let w"” € X — {w,w'}
and define f : V(G) — P({1,2}) by f(u) = {1,2}, f(»") = {1,2}, and
f(z) = {1} for z € X — {w,w',w"} and f(z) = O otherwise. Obviously,
f is an RRDF of G of weight n — |[N| — 1 and the result follows as above
again.

Subcase 3.2. [X|<2.
Then the function (NU{v}, X, 0, {u}) is an RRDF of G and hence 7,,(G) <
4. Thus ¥+(G) + 1+(G) <4 +n.

Hence we have ¥,(G) + 7+(G) < n + 4 in all cases, and the proof is
complete. (]

If the graph G has order n > 6, then we can improve Lemmas 14, 15
and 16 and thus Theorem 17 when diam(G) > 3.

Theorem 18. If G is a connected graph of order n > 6 with diam(G) > 3,

then _
Yrr(G) + ¥rr(G) S n + 3.

The bound is sharp for Ps.

Proof. Let P = v1v,...v; be a diametral path in G.

Assume first that k > 6. If n = 6, then G = P;. Define f : V(G) —
P({1,2}) by f(v1) = {1,2}, f(v2) = {1} and f(z) = @ for x € V(G) -
{v1,v2}. It is easy to see that f is an RRDF of G of weight 3. Thus
Yre(G) + 7 (G) S n +3.

If n > 7, then it follows from Theorem 8 that «,-.(G) < n — 1. Define
f:V(G) - P({1,2}) by f(v1) = f(v) = {1,2} and f(z) = @ for z €
V(G) — {v1,vk}. It is easy to see that f is an RRDF of G of weight 4.
Thus 7rr(G) + 'Yrr(a) <n+3.

Now assume that & = 5. Sigce n 2 6, it follows from Theorem 8 that
7er(G) < n — 1. Define f : V(G) = P({1,2}) by f(v1) = f(vs) = {1,2}
and f(z) =0 for z € V(G) — {v1,v4}. It is easy to see that f is an RRDF
of G of weight 4. Thus 7,+(G) +7r+(GC) < n + 3.

Finally, assume that k = 4.

Case 1. Assume that G[V — {v1,v4}] has no isolated vertex. Then
the function f : V(G) = P({1,2}) defined by f(v;) = f(vq) = {1,2} and
f(z) =0 for z € V(G) — {v1,v4}, is an RRDF of G of weight 4. It follows
from Theorem 8 that 7,(G) < n—1 and 50 ¥+(G) + 7-+(G) < n + 3.

Case 2. Assume that G[V — {v1,v4}] has an isolated vertex, say w.
Let, without loss of generality, wv, € E(G).

Subcase 2.1. Assume that G[V — {v;, v, w}] has no isolated vertex.
If wuy € E(G), then the function f: V(G) - P({1,2}) defined by f(v,) =
{1}, f(w) = {1,2} and f(z) = O for z € V(G) — {v1,w}, is an RRDF of
G of weight 3, and this leads to the desired bound. If wuy € E(G), then



the function f : V(G) — P({1,2}) defined by f(v1) = f(v4) = {1}, f(w) =
{1,2} and f(z) = @ for z € V(G) — {v1, v4, w}, is an RRDF of G of weight
4. Since G is connected and different from the star KX 1,n—1, it follows from
Theorem 8 that 7,(G) < n —1 and thus +(G) + 7-r(G) < n + 3.

Subcase 2.2. Assume that G[V — {v;,v4, w}] has an isolated vertex,
say z.

If wuy € E(G), then the function f : V(G) — P({1,2}) defined by
f(va) = f(ug) = F(vg) = 8, f(w) = {1,2} and f(z) = 1 for z € V(G) —
{v2,v3,v4,w}, is an RRDF of G of weight n — 2, and therefore v,..(G) <
n — 2. In addition, the function g : V(G) — P({1,2}) defined by g(v;) =

g(va) = {1,2},9(w) = {1} and g(z) = 0 for z € V(G) — {v1,v4,w}, is an
RRDF of G of weight 5. Consequently, ¥r-(G) + ¥r+(G) < n + 3.

Finally, assume that wvy € E(G). If G[V — {v1,v4,w}] has an edge
different from vpvs, then we obtain 4,(G) < n — 2 and hence v,-(G) +
Yr+(G) € n+ 3 as above. If G[V — {v;,v4, w}] only contains the edge vzvs,
then the function f : V(G) — P({1,2}) defined by f(w) = f(z) = {1,2}
and f(z) = 0 for z € V(G) — {w, 2}, is an RRDF of G of weight 4. It
follows from Theorem 8 that ~..(G) + 'y,.,.(G) <n+3. O

4 Ladders

In this section we find the rainbow restrained domination number of lad-
ders. Throughout this section we assume the vertices of the i-th copy of
P, in ladders P, x P, are u;,v; fori=1,2,...,n.

Theorem 19. For n > 1,

n+2 if niseven

7rr(P2xPn)=
n+1l if nisodd.

Proof. First let n be even. Define f : V(P x P,) — P({1,2}) by f(u,) =
f(on) = (1}, fluair1) = f(vair1) = {1} for 0 <4 <[] =1, flugiya) =
F(vaip3) = {2} for 0 < i < | 3] —1 and f(z) = @ otherwise. It is easy to see
that f is an RRDF of P, x P, of weight n+2 and hence v,.(P2x P,) < n+2.
To prove vr(P2 X P,) > n + 2, we proceed by induction on n. If
n = 2, then P, x P, = C; and we have 7..(P; X P;) = 4. Let n > 4 and
Py x Py_o = Py X P, — {tn,Un—1,Un,Vn—1}. Suppose f is a v, (P2 X Pp)-
function. We consider the following cases.
Case 1. f(un) =0 (the case f(v,) = 0 is similar).
Since f is an RRDF of P, x P,, we must have f(un,—1) =0 or f(v,) =0.
Consider two subcases.



Subcase 1.1 f(v,) = 0.

To rainbowly dominate u, and v,, we must have f(u,—1) = f(va-1) =
{1,2}. If f(un-2) # 0 and f(vn-2) # 0, then the function f, restricted to
P, x P,_5 is an RRDF and by the induction hypothesis we have v,.( P2 x
P =w(f) = 4+ (P2 x P,—3) 2 4 + n. We assume, without loss of
generality, that f(up—2) = 0. Since f is an RRDF of P; x P,, we must
have f(un—3) =0 or f(va-2) =0.

If either f(tn_3) = f(n_2) = f(Uns) = B or f(tn_3) = f(Un_) =
f(un—g) = B or f(vp—3) = f(vn-2) = f(vn-4) = 0, then the function
g : V(Py x Po_2) = P({1,2}) defined by g(un—2) = g(vn—2) = {1} and
g(z) = f(z) for x € V(P2 X Pp—2) — {tn-2,vn—2} is an RRDF of P, x P,,_2
of weight w(f) —2 and by the induction hypothesis we have y..(P2 x P,) =
w(f)=2+w(@) 22+ (P2 x Pa3) 2n+2.

If f(un—3) = @ and f(vn-2) # @ or f(un-3) = f(vn-2) = @ and
f(vn-3) # 0, then the function g : V(P x P,—2) = P({1,2}) defined
by g(vn—2) = {1,2} and g(z) = f(z) for z € V(P x P,_3) — {vn-2}, is an
RRDF of P; x P,_; of weight at most w(f) — 2 and the results follows by
the induction hypothesis.

If f(vp-3) = f(vp-2) = @ and f(un—3) # O, then the function g :
V(P % Pp—2) = P({1,2}) defined by g(un—2) = {1,2} and g(z) = f(z) for
z € V(Py X Pp_9) — {un—2}, is an RRDF of P, x P,_; of weight at most
w(f) — 2 and the results follows by the induction hypothesis.

If f(un—3) # 0, f(vn-3) # 0 and f(vn—2) = O, then the function g :
V(Py x Pa3) — P({1,2}) defined by g(tn_3) = g(tn_2) = {1} and g(z) =
f(z) for x € V(Py x Pp_g) — {tn—2,Vn—2}, is an RRDF of P> x P,_3 of
weight w(f) — 2 and the results follows as above.

Subcase 1.2 f(u,—1) =0.
To rainbowly dominate u,, this condition leads to f(v,) = {1,2}. If
f(tun—2) = f(un—3) = 0, then to rainbowly dominate u,,_1,un_2, We must
have f(vn—1) = f(va—2) = {1,2} and clearly the function f, restricted to
P, x P,_5 is an RRDF of P, x P,_s. And by the induction hypothesis we
obtain ¥ (Pa x P,) = w(f) = 44w(f|p,xP._;) = 4+Yrr(Pa X Pr_2) 2 n+4.

If f(upn—2) = f(vn—2) = f(vn—3) = 0, then to rainbowly dominate
Un—1,Un—2, We must have f(vn_1) = f(un—3) = {1,2}. Then the function
g: V(P2 x Po_2) = P({1,2}) defined by g(u,—2) = {1,2} and g(z) = f(z)
for x € V(P2 X Py_g) = {n—2} is an RRDF of P x P,_ of weight w(f) -2
and by the induction hypothesis we have v,..(Pa X P,) = w(f) = 2+w(g) =
2+7rr(P2 X Pp_2)>2n+2.

If f(un—2) = f(vn—2) = 0 and f(v,—3) # O, then to rainbowly dominate
Un—1,Un—2, Wwe must have f(v,_1) = f(un—3) = {1,2}. Then the function
g : V(P2 x P,_2) = P({1,2}) defined by g(vn_3) = {1,2} and g(z) = f(z)
for z € V(P2 x Pp_3) — {vn—3} is an RRDF of P, x P,,_, of weight at most



w(f) — 3 and the result follows as above.

If f(un—2) = f(vp—3) = 0 and f(vn-2) # 0, then to rainbowly dominate
Un-1, we must have f(v,-1) = {1,2}. Then the function g : V(P x
Pa_3) = P({1,2}) defined by g(un-2) = {1} and g(z) = f(z) for z €
V(Py x Pp_3) — {ttn—2} is an RRDF of P, x P,_5 of weight w(f) — 3 and
the result follows as above.

Thus we may assume f(un—2) # 0.

If f(un—2) # 0@ and f(vn—1) # 0, then the function g : V(P x P,_3) =
P({1,2}) defined by g{un_3) = f(tn2) U f(v1) and g(z) = f(z) for
z € V(P x Po_3) — {un—2} is an RRDF of P, x P,_; of weight w(f) — 2
and the result follows by the induction hypothesis.

If f(un—2) # 0 and f(va-1) = f(vn-2) = f(vn-3) =0, then f(un_2) =
{1,2} and the function f, restricted to P» x P,_; is an RRDF and by the
induction hypothesis the result follows.

If f(un—2) # @ and f(vn—2) # O, then the function f, restricted to
P, x P,_ is an RRDF and by the induction hypothesis the result follows.

Hence we may assume f(vn—_1) = f(vn-2) = 0 and f(vn_3) # 0. Then
to rainbowly dominate u,_;, we must have f(un,_3) = {1,2}.

If f(un-3) # 0, then the function g : V(P x P,_2) = P({1,2}) defined
by g(un—2) = {1}, 9(vn-2) = {2} and g(z) = f(z) for z € V(P; x P,_3) —
{¢n-2,vn-2} is an RRDF of P, x P,,_; of weight w(f) — 2 and the result
follows by the induction hypothesis.

Let f(up—3) = @. Since f is an RRDF of P, x P,, we must have
fun-4) = 0.

If f(vn-4) # O then the function g : V(P2 x Ph_2) — P({1,2}) defined
by g(un—2) = {1},9(vn-2) = g(vn-3) = {2} and g(z) = f(z) for z €
V(P2 x Pa—2) — {4n—2,Yn—2,9n—3} is an RRDF of P, x P,_; of weight
w(f) — 2 and the result follows by the induction hypothesis.

If f(vn—q) = 0 and f(vn,_3) = {1,2}, then the function g : V(P x
P, _3) = P({1,2}) defined by g(un—2) = g(vn-2) = {1} and g(z) = f(z)
for x € V(P2 X Pp—2) — {tin—2,Un_2} is an RRDF of P, x P,_5 of weight
w(f) — 2 and the result follows by the induction hypothesis.

Finally, if f(vn—4) =0 and |f(vn—3)| = 1, then the function g: V(P x
P,_2) — 'P({I,Z}) defined by g(un—Q) = {192} - f('vn—3):g(vn—2) = {1}
and g(z) = f(z) for € V(P x Po_3) — {tn—2,vn—2} is an RRDF of P; x
P, _; of weight w(f) —2 and the result follows by the induction hypothesis.
Case 2. f(un) # 0 and f(v,) #0.

Consider the following subcases.

Subcase 2.1. f(un—1) = f(Un-1) = 0.

If f(un2) = f(vno2) = O of f(una) = f(tun-z) = O o f(vn-z) =
f(vn=3) = 0 or f(up—2) # 0 and f(vn—2) # 0, then the function f, re-
stricted to P, X P,_5 is an RRDF and it follows from the induction hy-



pothesis that (P2 X Pp) = w(f) 2 ¥rr(P2 X Pa—2) +22>2n+2.

If f(un—2) = 0, f(un—g) # O and f(v_s) # O (the case f(va_s) =
0, f(vn-3) # 0 and f(un—2) # 9 is similar), then f(u,) = {1,2} and the
function g : V(P x P,—2) — P({1,2}) defined by g(un—2) = {1} and
9(z) = f(z) for z € V(P; x P,_3) — {tn—2} is an RRDF of P x P,_; of
weight w(f) — 2 and the result follows by the induction hypothesis.

Subcase 2.2. f(un-1) =0 and f(vn—1) # 0 (the case f(un-1) # @ and

f(vn—1) = 0 is similar).
Since f is an RRDF, we must have f(un-2) = 0. If f(un-3) = 0, then the
function f, restricted to P, x P,..5 is an RRDF and the result follows by the
induction hypothesis. Let f(un—3) # 0. If f(vp_2) # @, then the function
g : V(P2 x Po_3) = P({1,2}) defined by g(un—2) = {1} and g(z) = f(z)
for x € V(P2 X Pp_32) — {un—2} is an RRDF of P, x P,,_, of weight at most
w(f) — 2 and the result follows as above.

If f(vn—2) =0 and f(vp—3) # 0, then the function g : V(P x P,—3) =
P({1,2}) defined by g(vn—3) = {1,2} and g(z) = f(z) for z € V(P x
P, _3) — {vn-3} is an RRDF of P, x P,_3 of weight at most w(f) — 2 and
the result follows by the induction hypothesis.

If f(vn—2) = f(vn-3) = 0, then the function g : V(P2 x P,—3) —
P({1,2}) defined by g(un-2) = {1,2} and g(z) = f(z) for z € V(P2 x
Pn_3) — {un—2} is an RRDF of P, x P,_2 of weight at most w(f) — 2 and
the result follows by the induction hypothesis.

Subcase 2.3. f(un—1) # 0 and f(vn-1) # 0.
If f(un—2) # 0 and f(vn—2) # 0, then the function f, restricted to P, x P,_2
is an RRDF of weight at most w(f) — 4 and the result follows by the
induction hypothesis. Thus we may assume, without loss of generality,
that f(un-3) = 0. If f(un-3) = f(¥n=3) = f(tn_s) = B or f(vn_2) =
0, f(un—3) # 0, f(va-3) # 0, then the function g : V(P x P,_3) —
P({1,2}) defined by g(tn—2) = f(tn-1),9(vn_2) = f(vn1) and g(z) =
f(z) for z € V(P2 X P,_3) — {tn—2,vn—2} is an RRDF of P, x P,_3 of
weight at most w(f) — 2 and the result follows by the induction hypothesis.

If f(un-3) =0 and f(vn_2) # 0, then the function g : V(P; x P,_2) —
P({1,2}) defined by g(vn-2) = {1,2} and g(z) = f(z) for z € V(P; x
P,_3) — {vn_2} is an RRDF of P, x P,_, of weight at most w(f) — 3 and
the result follows as above.

If f(vp—3) = f(vn—2) = 0 and f(un-3) # O, then the function g :
V(P2 x P,_3) — P({1,2}) defined by g(un-2) = {1,2} and g(z) = f(z)
for £ € V(P2 X Pn_2) — {tn—2} is an RRDF of P, x P,,_5 of weight at most
w(f) — 2 and the result follows as above.

Since we discuss all possible cases, we have v,.(P; X P,) > n + 2 when
n is even. Thus v,(P2 X P,) = n + 2 when n is even.

Now let n be odd. Define f : V(P x P,) = P({1,2}) by f(u4it+1) =
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f(vaig1) = {1} for 0 < i < [8] — 1 and f(ugiya) = f(vais) = {2} for
0<¢<[2]-1and f(x) = 0 otherwise. It is easy to see that f is an RRDF
of P, x P, of weight n+1 and hence y,(P2x P,) < n+1. Using an argument
similar to that described above we can see that v.-(Pz x P,) > n+1. Thus
Yrr(P2 X P,) =n+1 when n is odd and the proof is complete. (u]
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