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Abstract

The Merrifield-Simmons index o(G) of a graph G is defined as the number
of subsets of the vertex set, in which any two vertices are non-adjacent,
i.e., the number of independent vertex sets of G. A tree is called r-leave
tree if it contains r vertices with degree one. In this paper, we obtain
the smallest Merrifield-Simmons index among all trees with n vertices and
exactly six leaves, and characterize the corresponding extremal graph.
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1 Introduction

Let G = (V(G),E(G)) be a graph with vertex set V(G) and edge set
E(G). We denote the number of vertices of G by n(G). For any vertex
u € V(G), we denote the neighborhood and the degree of u of G by Ng(u)
and dg(u), respectively. When no confusion occurs, we will denote Ng(u)
and dg(u) by N(u) and d(u), respectively. Denote the path and the star
with n vertices by P, and S,, respectively. Denote the maximum degree
of G by A(G). All graphs considered here are finite and simple. Undefined
notations and terminology will conform to those in [1].

The Merrifield-Simmons index or o-index o(G) of a graph G, is defined
as the number of subsets of V(G), in which no two vertices are adjacent, i.e.,
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the total number of the independent vertex sets of the graph G, including
the empty set. For example, for the cycle Cy = v v5v3v4, all this kind of
subsets of V(Cj) are as follow: @, {v1}, {v2}, {vs}, {va}, {v1,v3}, {v2,vs},
and then 0(C4) = 7. As for the path P,, ¢(P,) is exactly equal to the
Fibonacci number f,;2. This is perhaps why some researchers call the o-
index the "Fibonacci number” of the graph. The concept of the Merrifield-
Simmons index was introduced by Prodinger and Tichy in 1982 [8], this
index is one of the most important topological index in chemistry, which
was extensively studied in a monograph [6]. Now there are many results
about the Merrifield-Simmons indices of graphs. In 8] the authors proved
that the path P, has the smallest o-index and the star S,, has the largest
o-index among all trees with n vertices. In [7] Pedersen and Vestergaard
obtained the smallest o-index among all unicyclic graphs with n vertices.
In [10] B. Wang et al. obtained the first, second and third smallest o-index
among all unicyclic graphs with n vertices and girth k. In [14] Yu and
Lv characterized the largest o-index among all trees with n vertices and
k pendent vertices. In (5] Zhao and Li characterized the second and third
smallest o-index among all trees with n vertices. In [9] Wanger showed that
a tree T with o(T) < 18f,-5 4+ 21 f,_¢ has at most three leaves. In [11]
M.L.Wang et al. obtained the first and second largest o-index among all
trees with n vertices and k pendent vertices. In [12] Yan investigated the
o-index of a special class of tree with four leaves, and obtained the o-index
orderings of this class of trees. In [2] Gao and Wei obtained the smallest
o-index among all trees with n vertices and five leaves, and characterize
the extremal graph. In [13] Ye characterized trees with the second and
third minimal Merrifield-Simmons index in the set of 5-leaf-trees of order
n. In this paper, we obtained the smallest o-index among all trees with n
vertices and six leaves, and characterize the corresponding extremal graph.

For a graph G, a leaf is a vertex of degree one of G, it is also called
pendent vertex. The distance between u and v denote by d(u,v). We denote
the simple path with two end-vertices u and v by P,,. If W C V(G), we
denote by G — W the subgraph of G obtained by deleting the vertices of
W and the edges incident with them. Similarly, if E' C E(G), we denote
by G — E' the subgraph of G obtained by deleting the edges of E'. If
W = {v} and E' = {zy}, we write G — {v} and G — {xy}, respectively. Let
(G1,v1) and (G2, v;) be two graphs rooted at v; and v,, respectively, then
G = (G}, v1) ¢ (G2,v2) denote the graph obtained by identifying v, with v,
as one common vertex.

Let f, and I, denote the n-th Fibonacci number and n-th Lucas number,
respectively. It is well known that f,, and [, satisfy the following recursive
relations:

fa = fa—1+ fa-2, i = f2 = 1,n > 3, where f, = %(d’n —(=®)™)
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and ¢ = 145 And l, = lp_y +lac2,li = 1,1 = 3,n > 3, where I, =
(¢™ + (—¢)~™). So from the definition we can conclude that

fafm = gltntm = (~1)"lmon)m 2 1. 1

It is easy to see that 0(P,) = fas2 and 0(Sp) =2""1+1,forn > 1.

2 Preliminaries

In this section, we introduce some known lemmas and definitions, which
will be helpful to the proofs of our main results.

Lemma 1. ({3, 4, 8]) For any graph G with any u € V(G), we have
0(G) = 0(G — u) + o(G — [u]), where [u] = Ng(u) U {u}.

Lemma 2. ( /3, 4, 8]) Let G be a graph withm components G,,Ga,...,Gm.
Then

o(G) = [ o(Gy).
i=1

Lemma 3. ( /3, 4, 8/) Let Gy = (V(G1), E(G)1)) and G2 = (V(G2), E(G2))
be two graphs. If V(G1) = V(G2) and E(G)) C E(Gy), then o(Gi) >
O'(Gz).

Lemma 4. ({9]) Let G % P; be a connected graph and choose v € V(G).
Let P(n,k,G,v) denote the graph obtained by identifying v with the vertex
vr of a simple path vy,--- ,v,. Letn = dm + 4,7 € 1,2,3,4,m > 0.
Then o(P(n,2,G,v)) > o(P(n,4,G,v)) > --- > o(P(n,2m + 21,G,v)) >
a(P(n,12m+ 1,G,v)) > -+ > o(P(n,3,G,v)) > o(P(n,1,G, v)), where
I= |55,

Definition 5. (/9]) We call a tree with only one vertez v of degree d(v) > 2
a d-pode. In particular, we use the term tripode of 3-podes. v is called
the center. To each partition (c1,--- ,cd4) of n—1, there is ezactly one
corresponding d-pode, which we denote by R(cy,--- ,cq). Here, ¢; is the
length of the i-th "ray” going out from the center.

Lemma 6. ([9]) For all positive integers c; we have

d d
o(R(er, ez, yea)) =[] ferz + ][ feirn-
i=1

i=1
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Definition 7. (/9]) Let a, b;; be positive integers with a + byy + byp +
ba1 + b2 = n. Then, the n-vertez tree that is shown in Figure 1 (a) is
denoted by H(a;b11,b12;b1,b22), where d(vy,u3) = by, d(vy,uq) = bya,
d(ve, w2) = b1 and d(va,ws) = bga. Note that d(vy,vs) = a — 1. Here,
a = 1 means that v; and v, coincide.

Lemma 8. (f9]) For all positive integers a, bij, we have
o(H(a; b1, b12; b21, b22)) = fa H fb,,+2 + fa-1( TI fb.,+z

1<€i,5< 1<ig<

+ I fb.,+3—:)+fa— I1 fb.,+1
1<i,j<2

1€4,j<

Lemma 9. ([9/) Let T be a tree, v € V(T), let S be one of the subtrees at
v in T that contains more than one leaf. S can be replaced in such a way
that the resulting tree T' has exractly one leaf less than T and the tree T'
preserves the number of vertices of the tree T. Then the o-index of the tree
T’ is smaller.

Lemma 10. (/9]) For a given number n of vertices and given marimal
degree d, the tree T with minimal o-indez is
R(2,"')2’11"'y1) 1fd2""'2_—l,
N e’ N e’

n—1-d 2d-n+l
R@,---,2,n—-2d+1) ifd< 5L,
[

d—1
The o-index of these trees is (3)"~ (%)d + 2n=d-1 gnd 39-1f 4.3 +

2471 fr_gd42, Tespectively.

Lemma 11. ({2]) Let G and H be two connected graphs, u € V(H), let
Py m(n,n,G,v) denote the graph obtained by joining the verter v,, of the
simple path vy,ve--- ,v, of the graph P(n,n,G,v) and v with a new edge
uvy,. Ifn>4,2<m<n-1, then

0(Py,m(n,n,G,v)) > 6(Py a(n,n,G,v)).

Lemma 12. (/2]) Let G be a connected graph, H = P;, let PH m(n,n,G,v)
denote the graph obtained by identifying vy, of the simple path vy, vy --- ,v,
of the graph P(n,n,G,v) with the centeru of H=Ps. If n >m > 4 then

a(P},'m(n,n, G,v)) > a(P}{,z,(n,n, G,v)).
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Corollary 13. (/2]) Let G be a connected tree. Let H = (G, u)e(R(3, j, k), v)
be the graph obtained by identifying any vertez u of G with any pendent ver-
tex v of the tree R(i,j, k). Ifi+j+ k=35, then

o(H) > o(H'),
where H' = (G,u) o (R(1,2,2),v), v is the pendent vertex of the tree
R(1,2,2) and v is adjacent to the center of the tree R(1,2,2).
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Figurc 1

Definition 14. Let b;;, r be positive integers with by + b1z + b1z + b2y +
boo + boz + 7 + 1 = n. Then, the n-vertex tree that is shown in Figure
1 (b) is denoted by H(r;by1,b12,b13; ba1,bag, bog), where d(vy,u2) = b1,
d(vi,uq) = bia, d(v1,ug) = b13, d(Vry1,w2) = bay, d(vr41,ws) = by and
d(vr41,we) = boz. Note that d(vy,vrsy) =7

Definition 15. Let bij, v be positive integers with byy + by2 + b2y + baz +
baz + bag + 7 + 1 = n. Then, the n-verter tree that is shown in Figure
1 (c) is denoted by H(r;b11,b12;ba1, baa, bas, bag), where d(vy,uz) = by,
d(vy,ug) = bra, d(vr41,w2) = bay, d(Vri1,wa) = ba2, d(vrs1,we) = bo3
and d(vr4), ws) = bay. Note that d(vy,vr41) = 7.
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Definition 16. Let a;, b;j, r; be positive integers with a; +ag + byy +byz +
by + be2 + 71 + 72 + 73+ 1 = n. Then the n-vertezx tree that is shown in
Figure 1 (d) is denoted by H.,(a,);r 4+r2(a2)(T1 + T2 + 735 b11, b12; b2y, b22),
where d(u,uz) = by, d(u,us) = big, d(z,w2) = bay, d(z,wq) = boy,
d(v,v2) = a1 and d(w,v4) = az. Note that d(u,v) = r, d(v,w) = rq,
d(w,z) = rs.

Definition 17. Let a;, bij, r; be positive integers with a; + by + by + bay +
baa + b3 + 71+ 12+ 1 =n. Then the n-vertex tree that is shown in Figure
I (e) is denoted by H,.l(a‘)('l‘l + 72; b1, b12; b21, bas, bas), where d(u,uz) =
biy, d(u,ug) = bi2, d(w,w2) = by, d(w,ws) = b2, d(w, ws) = bz and
d(v,v2) = a,. Note that d(u,v) =7y, d(v,w) =ro.

Definition 18. Let a;, bij, r; be positive integers with a; + a + by +
bio + by +bog+71 +70+1 = n. Then the n-vertex tree that is shown
in Figure 1 (f) is denoted by Hy (a, a,)(71+72;b11, b12;bay,b22), where
d(u,u2) = by, d(u, uq) = b1z, d(v, wz) = ba1, d(v,w4) = bzy, d(w,v2) = a;
and d(w,v4) = az. Note that d(u,w) =ry, d(w,v) = ry.

3 Main results

In this section, we investigate the smallest Merrifield-Simmons index (or
o-index) among all trees with n vertices and exactly six leaves, and char-
acterize the extremal graph.

Lemma 19. Let G be a given connected graph, H be a d-pode tree with n
vertices and let u and v be the center of H and any vertex of G, respectively.
Then the graph G’ = (G,v) e (H,u) attains the minimal o-indez only if the
form of H is one of the following two cases.

R(21"'a2111"'11) ZdeLl;—la
n—1-d 2d-n+l

R, ,2n-2d+1) ifd<25l,
d-1

Proof. We prove the result by induction on n. Because the d-pode tree
has only one vertex u satisfying d(u) > 2, we will complete the proof by
distinguishing the two cases.

Case 1. d > 231

When n =5 and d = 3, H must be the tree R(1,1,2). Hence the result
holds.
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Assume that the result holds for any d-pode tree with n — 1 vertices,
that is, when n(H) =n -1 and H = R(2,---,2,1,---,1), then the graph
N e’ s’
n-2-d 2d—n+2
G’ = (G,v) e (H,u) attains the minimal o-index.
Suppose that n(H) = n, then H must be one of the three trees: H =
R(3,2,---,2,1,---,1) (= Hy), H= R(2,---,2, 1, ,1)(= Hy) or H &
P N e’ N e’

n—3-d 2d-n+2 n-1-d 2d-n+l
R(21"' ,2511"' ’1)("_‘ H3)
e’ N’

n—2-d 2d-n+43
Let o(G —v) = A, 0(G — [v]) = B. Then A > B.
By Lemmas 1 and 6, we get that

o((Crv) o (Hyyu) = 5 x 3743 x 226742 x 4 43 x 24=3 x B,
O'((G, ’U) [ (Hg, u)) = 3n_d—l X 22d""+1 X A+ 2n—d—l % B

and o((G,v) ¢ (H3,u)) = gn—d-2 y 92d—n+3 y g 4 on-d-2 y B

Hence, we have that

o((G,v) e (Hz,u)) — o((G,v) e (Hy,u)) = A x (3n~9-1 x 22d—n+l _5 x
3n—d—3 X 22d—n+2) +B X (2n—d-1 —3x 2n—d—3).

o((G,v) e (H3,u)) — o((G,v) o (Ha,u)) = A x (3792 x 22d-n+3 _
3n~—d—l X 22d—n+1) +B x(2n—d—2 _ 2n—d—1)‘

Because

(3n—d—l x 92d-n+l _ 5 3n-d—3 x 22d-n+2) = _(3n—d—3 x 22d—n+l),

and 2"~94-1_3x2n~4-3 = 2n—d=3 Therefore o((G,v)e(Hz,u)) < o((G,v)e
(Hl’u))-
Similarly, we have that o((G,v) ¢ (Hz,u)) < o((G,v) ¢ (H3,u)).
Hence, when n{H) = n and H & R(2,--.,2,1,.-.,1), then the graph
e e’ N e’
n—d-1 2d-n+1
G' = (G,v) e (H,u) attains the minimal o-index.
Case 2. 3<d< 1‘;—1
In this case, the smallest number of vertices of H must be n(H) = 7
and let A(H) = d(v) = 3. Then H must be one of the three possible trees:
H = R(1,1,4)(= H,),H = R(1,2,3)(= H2) or H = R(2,2,2)(= H3). Let
0(G —v) = A, 0(G — [v]) = B. Then A> B.
By Lemmas 1 and 6, we get that

o((G,v) e (Hy,u)) =324+ 5B,
o((G,v) e (Hz,u)) = 304 + 6B
and o((G,v) e (Hz,u)) = 27A + 8B. Hence
o((G,v) e (Hs,u)) —o((G,v)e{Ha,u)) =2B—-3A<0
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and
o((G,v) e (H3,u)) — o((G,v) e (Hy,u)) =3B - 5A < 0.

Therefore, when H = R(2,2,2), then G = (G,v) e (H,u) attains the
minimal o-index. Hence, the result holds.
Assume that the result holds for any d-pode tree with n — 1 vertices,
that is, when n(H) =n—1 and H & R(2,---,2,n — 2d), then the graph
d-1
G’ = (G,v) o (H,u) attains the minimal o-index.
Suppose that n(H) = n, then H will be one of the following three trees:
H=R(2,- - ,2,n-2d+1)(= H), H= R(2,--+,2,n—2d —1)(= H;) and
d—1 d
H = R(3,2,--,2,n— 2d)(= Hs).
d-2
By Lemmas 1 and 6, we get that

o((G,v) e (H1,u)) = 3% fro_na43A+ 2% fo_0442B,

o((G,v) ® (Ha,u)) = 39 fn_2a41A + 2 f_24B

and o((G,v)  (H3,u)) =5 x 3972f, 244,204+ 3 x 2¢=2f, _04+1B.

Hence, o((G,v) o (Hy,u)) — o((G,v) ® (H3,u)) = A(B* ! fn_2443 —
5 X 3d_2fn_.2d+2) + B(?d_lfn_.gd.*.g -3 x 2d_2fn_2d+1) < 0. So a((G,v) )
(Hl:u)) < O'((G, ‘U) b (H31 u))

Similarly we have o((G,v) o (H1,u)) < 0((G,v) ¢ (Ha, u)).

Thus when n(H) =n and H 2 R(2,--- ,2,n — 2d + 1), then the graph

, d—1
G’ = (G,v) o (H,u) attains the minimal o-index.
This completes the proof. O

Theorem 20. If T is a tree with n > 19 vertices and exactly siz leaves,
then
o(T) > 291 fn_11 + 372 fn_14,

where the equality holds if and only if the tree T = Hy(3)(4;2,n—16;2,2,2).

Proof. Because T is a tree with n > 19 vertices and exactly six leaves,
the tree T has the following five possible cases: There is only one vertex
with degree 6 and all other vertices have degree less than 3; There are two
vertices with degree 4 and all other vertices have degree less than 3; There
are one vertex with degree 3, one vertex with degree 5 and all other vertices
have degree less than 3; There are two vertices with degree 3, one vertex
with degree 4 and all other vertices have degree less than 3; There are four
vertices with degree 3 and all other vertices have degree less than 3. Next
we will discuss these cases respectively.
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Case 1. When the tree T has only one vertex with degree 6 and
all other vertices have degree less than 3. From Lemma 10, we get that
o(T) > o(Ty), where T1 = R(2,2,2,2,2,n—11). By Lemma 6, we get that
o(T1) = 243 fn_9 + 32fa_10.

Case 2. When the tree T has two vertices with degree 4 and all other
vertices have degree less than 3. Let u,v € V(T), d(u) = 4,d(v) = 4. Then
T can be regarded as the tree obtained by identifying two end-vertices u and
v of a simple path P,, with two centers of two 3-pode trees respectively,
the corresponding two 3-pode trees are denoted by T, and T,. Suppose
that n(T,) = 4,n(T,) > 4, we will discuss the following four cases.

Case 2.1. If n(Ty) + n(Pyy) = 6, then d(u,v) = 1. From Lemma 19
we get that o(T) > o(T»), T2 = (G, wy) e (H,w2) = H(1;1,1,1;2,2,n-9),
where G = S5, H = R(2,2,n — 9) and w,,w; are an end-vertex of G = Sg
and the center of R(2,2,n — 9) respectively. By Lemma 1, we get that
U(T2) =81fn_7+32fn-s.

Case 2.2. If n(Ty,) + n(Pyy) = 7, then 1 < d(u,v) < 2. If d(u,v) =1,
then T, =2 R(1,1,2). From Lemma 19, we know that there exists the tree
T? = H(1;1,1,2;2,2,n — 10) such that o(T) > o(T}). If d(u,v) = 2
then T, = S;. From Lemma 19, we know that there exists the tree 77 &
H(2;1,1,1;2,2,n — 10) such that o(T) > o(T2). By Lemma 1, we get
that o(T3) = 126f,_s + 48f,—9 and o(T}) = 153f,_s + 36 fn—9, Thus
o(T}) < o(T2). Let T3 = T} = H(1;1,1,1;2,2,n — 10). Hence we get that
o(T) > o(T3) and o(T3) = 126, + 48 fn—o.

Case 2.3. If n(T,) + n(Pyy) = 8, then 1 < d(u,v) < 3. If d(u,v) =1,
then T, & R(1,2,2). From Lemma 19, we know that there exists the tree
T} = H(1;1,2,2;2,2,n — 11) such that o(T) > o(T}). If d(u,v) = 2,
then T, = R(1,1,2). From Lemma 19, we know that there exists the
tree T2 = H(2;1,1,2;2,2,n — 11) such that o(T) > o(T?). If d(u,v) =
3, then T, = S4. From Lemma 19, we know that there exists the tree
T = H(3;1,1,1;2,2,n — 11) such that o(T) > ¢(T}). By Lemma 1, we
get that U(le) = 198fn_9 + 72fn—10, U(T42 = 234fn-9 + 56f,_10 and
o(T3) = 234fn_9 + 68fn_10. Thus o(T}) < 0(T?) < o(T3). Let Ty = T}.
Hence o(T) > o(Ty) and o(Ty) = 198 fn—9 + 72fn—10-

Case 2.4. If n(T,) + n(Py») > 8, because n(T) > 19, thus n(T,) > 10.
Then we discuss the following two cases.

Case 2.4.1. If n(T,) = 10, by Lemmas 10 and 19, the o-index of T is
minimal when T, & R(2,2,5).

Case 2.4.1.1. If d(u,v) = 1, then T, is a tree with n — 10 vertices
and maximum degree 3. By Lemmas 10 and 19, we know that the tree
T attains the minimal o-index only if T,, = R(2,2,n—15). Hence we have
o(T) > o(Ts), where Ty = H(1;2,2,n—-15;2,2,5). By Lemmas 1 and 6, we
get o(Ts) = 1341 fr—13 + 468 fr—14.

Case 2.4.1.2. If d(u,v) > 1, then by Lemmas 12 and 19, we have
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o(T) > o(Ts), where Tg = H(n-16;2,2,2;2,2,5). By Lemma 1, we get
that o(Ts) = 3159f,—15 + 1800 fn_16 + 256 f—_17.

Case 2.4.2. If n(T,) = m(m > 10), by Lemma 10 and 19, then we get
that the tree T attains the minimal o-index only if T, & R(2,2,7), where
r>6, m=r+5.

Case 2.4.2.1. If d(u,v) =1 and n—7r—5 > 7, then by Lemmas 10 and
19, the tree T attains the minimal o-index only if T, & R(2,2,n —r — 10).
Hence we have o(T') > o(T%), where T7 = H(1;2,2,n — r — 10;2,2,7). By
Lemma 1, we get 0(T7) = 81f,r42fn—r-8 + 36fr42fn—r_9 + 36fri1 fr_r_s.

If r < 251, by the formula (1.1), then

1 1
o(T7) = g(slln-6+721n-7)—g(—l) (81ln—2r—10+36lp—2r—11 — 36l _2r—9).

Since 81!y,_2r—10 + 36l,_2r—11 — 36ln_2,—_9 > 0, and [,, is monotonically in-
creasing on the natural number n, hence, when r = 6, let T = H(1;2,2,n—
16;2,2,6) = T}, the tree T attains the minimal o-index and o(T}) =
2169f, 14 + 756 fr_15.

If r > 252, by the formula (1.1), then

o(T7) = £(8ln—g + 72n_7) — $(-1)"""(81lzr—ns10 — 36l2r—ns11 +
36l2r—n+9)-

Since 81lg;—n+10 — 36l2r—nt11 + 36l2,—n+g > 0, and {,, is monotonically
increasing on the natural number n, hence, when n —r = 12, let T =
H(1;2,2,2;2,2,n — 12) = T?, the tree T attains the minimal o-index and
o(T?) = 315fn_10 + 108fr_11.

Case 2.4.2.2. If d(u,v) =1 and n—r—-5< 6, then the tree T will have
following three possible cases that H(1;2,2,n — 11;2,2,1), H(1;2,2,n —
10;2,1,1) and H(1;2,2,n—-9;1,1,1). By Lemma 1, we get that o(H(1;2,2,
n—11;2,2,1)) = 198f,_og+72fn—10, 0(H(1;2,2,n-10;2,1,1)) = 48 f,_o+
126 fn—10 and o(H(1;2,2,7n — 9;1,1,1)) = 81f,_7 + 32fn_s.

Comparing all the o-indices of the these trees in Case 2.4.2.1 and Case
2.4.2.2, we conclude that the minimal o-index among the three trees in
Case 2.4.2.2 is larger than the minimal o-index of the tree T in Case 2.4.2.1.
Therefore, when d(u,v) = 1, the tree T attains the minimal o-index only
fn—r—5>T7butnotn—r—-5<6.

Case 2.4.2.3. If d(u,v) > 1 and n—r—5> 9. From Lemma 12, we
know that there exists the tree T3 = H(n —r — 11;2,2,2;2,2,7) such
that o(T) > o(T3). By Lemma 1, we get o(T3) = 243f,42fn-r-10 +
108fr+lfn—r—11 + 72fr+2fn-—r—ll + 32fr+lfn—r—l2-

If r < 2313 by the formula (1.1), we have

U(Ts) = '5'(243ln—8+1081n_10+72ln_9+321n_11)—é(—l)r(243 ln—2r—l2'_
108l,_2-—12 + T2ln—2r—13 — 32ln_2r—13).

Since 243!, _or_12 — 10819712 + 720, 2,13 —32l,—27~13 > 0, and I,
is monotonically increasing on the natural number n, hence, when r = 6, let
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T =H(n-17;2,2,2;2,2,6) = T, the tree T attains the minimal o-index
and o(T3) = 5103 fn—16 + 2916 fn_17 + 416 fr_15.

If r > 2312, by the formula (1 1), we have o(Ts) = £(243l,_s +
108ln—10 + 72 ln—9 + 32ln_11) — 3(—1)"""(243l3r_n412 —108l2r_rs12 —
7237 —n413 + 322y _n413). Since 243l2r—n+12 —108l2r—n+12 — 72l2r—ny13 +
32lor—n413 > 0, and I, is monotonically increasing on the natural number
n, hence, when n —r = 14, let T = H(3;2,2,2;2,2,n — 14) = T2, the tree
T attains the minimal o-index and o(T3%) = 873 f,-12 + 248 fn—13.

Case 2.4.2.4. If d(u,v) > 1 and n—r—5 < 8, then the tree T will have
following three possible cases: H(2;2,2,1;2,2,n-12), H(3;2,1,1;2,2,n—
12) and H(4;1,1,1;2,2,n—12). By Lemma 1, we get 0(H(2;2,2,1;2,2,n—
12)) = 360fn—10 + 88fn-11, 0(H(3;2,1,1;2,2,n — 12)) = 360fn_10 +
104fn—11 and U(H(4 1 1 1 2 2,1’1 - 12)) = 387fn_10 + 104fn_11.

Comparing all the o-indices of these trees in Case 2.4.2.3. and Case
2.4.2.4., we conclude that the minimal o-index among the three trees in
Case 2.4.2.4. is larger than the minimal o-index of the tree T in Case
2.4.2.3. Therefore when d(u,v) > 1, the tree T attains the minimal o-
indexonlyifn—r—-5>9but notn—r—-5<8.

Hence we can conclude that the mlmmal o-index of the tree T in Case
2.4 must be attained in the case d < " 2=L but not in the case d > 2 ‘1
where n’ = n — n(T}).

Therefore, the minimal o-index of T in Case 2 is o(T") = 315fp—10 +
108f,_11, where T = H(1;2,2,2;2, 2, n — 12) = T#.

Case 3. When the tree T has one vertex with degree 3 and one vertex
with degree 5 and all other vertices have degree less than 3. Let v,v € V(T),
d(u) = 3,d(v) = 5. Then T can be regarded as the tree obtained by
identifying two end-vertices u and v of a simple path P,, with any vertex
of degree 2 of a path P’ and the center of a 4-pode tree respectively. The
corresponding path P’ and the 4-pode tree are denoted by T, and T,
respectively.

Case 3.1. If n(T,,) + n(Py») = 5, then d(u,v) = 1. From Lemma 19,
we know that there exists the tree Ty = H(1;1,1;2,2,2,n — 10) such that
o(T) 2 0(Ty). By Lemma 1, we get that o(Ty) = 135f,_8 + 32 fn—o.

Case 3.2. If n(T,) + n(P,.) = 6, then 1 < d(u,v) < 2.

If d(u, v) =1, then T,, & P;. From Lemma 19, we have that there exist
the tree T}, = H(1;1,2;2,2,2, \n —11) such that o(T) > o(T)-

If d(u v) = 2, then T, & P;. Similarly we have o(T) > o(T3),
where TZ = H(2;1,1;2,2, 2,n — 11). By Lemma 1, we get that o(T};) =
216 f,_9+48fn—10 and 0 (T%) = 243fn-9+40fn_10. Thus o(T},) < o(TH).

Let T}y = Ti0. Hence we have o(T') > o(Tio) and o(T10) = 216fn_o +
48 fn—10-

Case 3.3. If n(T,) + n(Pyy) > 6, because n(T) > 19, thus n(T,) > 12.
Then we will discuss the distinguishing two cases.
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Case 3.3.1. If n(T,) = 12, by Lemmas 10 and 19, then the o-index of
the tree T is minimal when T, 2 R(2,2,2,5).

If d(u,v) = 1, by Lemma 4, then we have o(T) > (T};), where T}; =
H(1;2,n —15;2,2,2,5). By Lemma 1, we get that o(T};) = 1245f,_13 +
702fn—14-

If d(u,v) > 1, by Corollary 13 and Lemma. 19, then we have o(T) >
o(T12), where T2 = H(n — 16;2,2;2,2,2,5) and o(T12) = 3159f,_15 +
1980 f—16 + 256 fr,—17.

Case 3.3.2. If n(T,) > 12, by Lemmas 10 and 19, then the o-index of
the tree T is minimal when T, & R(2,2,2,7), where r > 6.

Snmla.rly to Case 2.4.2, we only discuss the tree T in the case d > Z "1
where n’ = n — n(T,).

Case 3.3.2.1. If d(u,v) = 1, then by Lemmas 4 and 19, we have
o(T) > o(Tia), where T\3 = H(1;2,n — r — 10;2,2,2,7) and o(T}3) =
27 fn—r-sfre2 +24frs1fn-r-s.

Ifr< "—2‘—9, by the formula (1.1), then

1 1
o(Ti3) = '5'(27ln—3 +24l,_7) - 5(_1)r(27ln—2r~7 — 241, _2,_9).

Since 27!, _2r—7 —24ln_2,_9 > 0, and I, is monotonically increasing on the
natural number n, hence, when r = 6, let T = H(1;2,n — 16;2,2,2,6) =
T{;, the tree T attains the minimal o-index and o(T}%) = 567fa_11 +

312fn—14.
If r > 237, by the formula (1.1), then

1 1
o(Ti3) = g(27ln-3 +24l,_7) - 5(-1)n (—27l2r—nt7 + 24l2r_pny9).

Since —27la,_pny7+24l2r_pn4o > 0, and [, is monotonically increasing on the
natural number n, hence, when n—r = 14, let T = H(1;2,4;2,2,2,n—14) =
T}, the tree T attains the minimal o-index and o(T%) = 918f,_;2 +
1gz.fn—l.'i-

Case 3.3.2.2. If d(u,v) > 1, by Corollary 13 and Lemma 19, we have

o(T) = o(T1a), where Ty = H(n —r — 11;2,2;2,2,2,7) and o(Ty,) =

243fry2fn—r—10 + 108fr 2 fnr—11 + T2frs1fa—r-n1 + 32frr1fnar-12.

Ifr< "'213 by the formula (1.1), then o(T14) = £(243L,—g + 72ln_10 +
108ln_9 + 32ln_11) — $(=1)"(243ln-2r—12 —72ln-2r—12 + 108ln_2,—13 —
32l,,—2,_13). Since 2431n—2r—12 =72 _2r—124+ 108, 5, 13 =32 _9r_13 >
0, and I, is monotonically increasing on the natural number n, hence, when
r=6letT = H(n—17; 2,2;2,2,2,6) = T}, the tree T attains the minimal
o-index and ¢(T},) = 5103f,_16 + 3204 f,_17 + 416f,,_18

Ifr > "‘12 , by the formula (1.1), then o(T14) = $(243l,_5 + T2lp—10 +
108l,_9 + 321n-11) = 3(-1)"""(243 l3r—ns12 _72l2r—n+l2 —108l3,_n413 +
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32l5,_n413). Since 243 lyr_n412 =727 _n412— 10812413+ 32027 —ny13 >
0, and l,, is monotonically increasing on the natural number n, hence, when
n—r=14,let T = H(3;2,2;2,2,2,n — 14) = TZ,, the tree T attains the
minimal o-index and a(Tﬁ,) =945f_12 + 176 fn_13.

As the above discussion in Case 3, we get the minimal o-index of T is
o(T) = 567 fn—11 + 312fn_14, where T = H(1;2,n — 16;2,2,2,6) = Ti.

Case 4. When the tree T has four vertices with degree 3 and all
other vertices have degree less than 3. According to Lemmas 4, 12 and
Corollary 13, we can get that the tree T attains the minimal o-index when
T = Ho2prip2)(n — 13;2,2;2,2). Let u,v,w,z € V(T) and d(u) = d(v) =
d(w) = d(z) = 3. The tree is shown in Figure 1 (d). Let d(u,v) =7 =1,
d(v,w) =19 =p.

Case 4.1. Let p be a fixed positive integer, we will discuss for r in the
following two cases.

Case4.1.1. Ifr > 1, p = 1and n—r—14 > 1, by the formula (1.1), then
U(Tl5) = 243fr+lfn—r—10+108fr+1fn—r—-11+108frfn—r—10+48frfn—r—11+
4386 ‘frfn—r—ls +216frfn-r—14 + 216fr—lfn—r— 13+ 96fr-1fn-r—l4-

If r < 2514, by the formula (1.1), since —2431,_3,_1; — 108lp—2r—12 +
108ln—2r—10 + 48ln—2r—11 + 486ln_2r-13 + 216l,_2r_14 — 216ln_2r—12 —
96l,,_s,—13 < 0, and [, is monotonically increasing on the natural num-
ber n, hence, when r = 1, let T = Hy(g).92)(n — 13;2,2;2,2) = T}, the
tree T' attains the minimal o-index and ¢(T}) = 351 fn_11 + 156 fn_12 +
486 fpn—14 + 216 f,_15.

Ifr > "'zﬁ, by the formula (1.1), since 243lor—p+11 — 1082y —nt12 +
108l2r—nt10 — 48lor—n411 — 486l2r_ny13 +216l2r_py14 —216l2r_ny12 + 96
dor_nt13 < 0, and {,, is monotonically increasing on the natural number n,
hence, when n —r = 15, let T = H,_1502)in—14(2)(n — 13;2,2;2,2) = TZ,
the tree attains the minimal o-index and o(T%) = 351 fa—11 + 156 fn_12 +
486 fn_14 + 216 f,_15.

Therefore, when » > 1,p = 1, the minimal o-index of the tree T in
Case 4.1 is 0/(T) = 351 fn—_11 +156fn_12 + 486 fr— 14+ 216fn_15 = o(Tk) =
o(Tf).

Case 4.1.2. If r>1,p>1,n—r—p—-13 > 1, by Lemmas 1 and 8§,
we have o(H,(2);r4p(2)(n — 13;2,2;2,2) = f4o(R(2,2,7 — 1))o(H(n — 7 —
p—13;2,p—-1;2,2)) + f30(R(2,2,r - 2))o(H(n~r - p—13;2,p - 2;2,2)).

We get that o (H,11(2);r+p+1(2)(n 13,2, 2;2,2) = fyo(R(2,2,7))o(H(n—
7—p—14;2,p~1;2,2)) + f30(R(2,2,7—1))o(H(n—7—p—14;2,p—2;2,2)),
and

o(Hr2)r4p2) (1 = 13;2,2;2,2)) < o(Hrp102)r4+p+1(2) (7 — 13; 2,2; 2, 2)),
if r is odd,
o(Hr@2)ir4p2) (7 — 13, 2,2;2,2)) > o(Hry102)r+p+1(2) (7 — 13,2, 2 2,2)),
if r is even.
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and

U(Hr+2(2);r+p+2(2) (‘I’l —-13; 2, 2; 2, 2)) > O'(Hr(g);r+p(2) (n — 13; 2,2:2, 2)),
if r is odd,
O'(H,.+g(2);,-+p+2(2) (n -13;2,2;2, 2)) < O’(Hr(g);,-.,,p(z) (n - 13; 2,2;2, 2)),
if r is even.

Therefore, when d(v,w) = rg = p, d(u,v) = r) = 1, the tree T attains
the minimal o-index.

Because the tree T' has the symmetrical property in Case 4, the tree T
attains the minimal o-index only if d(w, z) = 1. Therefore, when d(v, w) =
p, let T = Hyg)n_142)(n — 13;2,2;2,2) = Ty, the tree T attains the
minimal o-index, and o(T) = 2223 f,, .15 + 2547 fr—16 + 702 fn—17.

Case 4.2. Let d(v,w) = p (p > 1), we will discuss for p. By Lemmas
10 and 19, we have o(T") > o(T17), where T17 = Hy(3);p+1(2)(n—13;2,2;2,2)
and U(Tl7) = 81fp+3fn-?-'10+36fp+3fn—p—ll+108fpfn—P—10+48fpfn—p-—ll
+243 fp12fn—p-13+108fpr2fn—p-14+324fp_1 * fra-p—13+144fp—1 fn—p-1a-

Ifp < 2588, since ~2251n_2p—13—324ln—2p—12—36n_2p—14 +108ln_2p_10
+48l,_2p—11 +24310_2p-15
+108l,, 2,16 < 0, and [,, is monotonically increasing on the natural num-
ber n, hence, when p = 3, let T = H(g)42)(n — 13;2,2;2,2) = T}, the
tree T attains the minimal o-index and o(T},) = 864f,_13 + 384 f,_14 +
1539f,—16 + 684 fn_17.

Ifp > 2518 since 225l5p_n413—36l2p—n+14+108lop_nt10—48l2p_ 11—
243l3p_ny15 + 108l2p_n416 — 324l2p—nt12 < 0, and [, is monotonically
increasing on the natural number n, hence, when n —p = 15, let T =
Hyg)n-1402)(n — 13;2,2;2,2) = T%, the tree T attains the minimal o-
index and o(T%) = 513fn—12 + 351 fn_13 + 684 fn_15 + 468 n—16.

Therefore the minimal o-index of the tree T in Case 4.2 is o(T) =
o(TY) = 513fn_12 + 351 fn_13 + 684 fn_15 + 468f4_16.

Case 4.3. The tree T ia shown in Figure 1 (d). Let d(v,v2) = a; = gq.
By Lemma 19, we have o(T) > Tis, where s = H q)in—g—12(2) (M —
g —11;2,2;2,2) and o0(Ti8) = 741 fg12fn-g-13 + 513 fq41fn—g—14 + 507
'fq+2fn—q—l4 + 351fq+1fn—q—15-

If g < 2518 since 741, _2q—15—513ln—_2g—15+507ln_2—16—351ln_24-16
> 0, and !, is monotonically increasing on the natural number n, hence,
when g = 2, let T = Hy(3)in—14(2)(n — 13;2,2;2,2) = T}g, the tree T attains
the minimal o-index and o(T}y) = 2223 f,_15 + 2547 f_16 + 702 fpn_17.

Ifq > 2515, since —741l3g—_n415+5132g—n+15+507l2g—n+16—3512g—n+16
> 0, and !, is monotonically increasing on the natural number n, hence,
whenn—q = 16, let T = Hy(5_16)4(2)(5; 2, 2;2,2) = TZ, the tree T attains
the minimal o-index and o(T%) = 1984 f,—14 + 864 fn-15.

142



Because the tree T has the symmetrical property in Case 4, all possible
cases of the tree T have been considered. Therefore the minimal o-index
of T in Case 4 is o(T) = 2223f,_15 + 2547 f,_16 + 702fn_17, where T =
Hyg)m-14(2)(n — 13;2,2;2,2) = Tfg.

Case 5. When the tree T' has two vertices with degree 3 and one
vertex with degree 4 and all other vertices have degree less than 3. Let
u,v,w € V(T), and let d(u) = d(v) = 3, d(w) = 4. Then there are two
cases for the tree T: 1) v is between » and w, T is shown in Figure 1 (e);
2) w is between u and v, T is shown in Figure 1 (f).

Case 5.1. Let v be between u and w. The tree T can be regarded
as the tree obtained by identifying two end-vertices u,v and any vertex w
of degree 2 of a simple (u,v,w)-path P, with any vertex of degree 2 of
a path P/, the center of a 3-pode tree and one end-vertex of a path P”
respectively, the corresponding path P’, 3-pode tree and the path P” are
denoted by T, T, and T, respectively. The tree T is shown in Figure 1
(e). Let d(v,v2) =a; =7.

Case 5.1.1. n(T,) + n(P,,) = 5.

Case 5.1.1.1. If n(T,) +n(P,,) =5, d(v,w) =land n—r—4 > 7. By
Lemma 19, we have o(T) > o(Ta), where Tyo = Hy((2;1,1;2,2,n—7-9)
and U(TZO) = 45fr+2fn—r—7 + 20fr+2fn—r—8 + 36fr+1f'n—r—7-

If r < 2580 since Yln-2r-9 + Un_2r—10 — Llpn_2,—8 < 0, and I, is
monotonically increasing on the natural number n, hence, when r =1, let
T =Hy1)(2;1,1;2,2,n-10) = T, the tree T attains the minimal o-index
and o(T3y) = 126 fn_g + 40 fn_g.

If 228 < r < n—11, since —%r_n49 + dlar—nt10 — Llor_ns < 0,
and [,, is monotonically increasing on the natural number n, hence, when
n—r=111let T = Hyn_11)(2;1,1;2,2,2) = TZ), the tree T attains the
minimal o-index and ¢(7T%) = 175 fn—9 + 108fn_10.

When d{v,w) = 1 and n —r — 7 £ 6, the tree will be one of the
three possible cases: Hll(n_m)(2;1,1;1,2, 2), Hf(n_g)(Q; 1,1;1,1,2) and
H f(n_s)(2; 1,1;1,1,1). We can get the minima o-index of the three trees is
O'(Hll(n_m)(Z; 1,1;1,2,2)) = 72fn—-7 + 38fn_s. So the minimal o-index of
the tree T in Case 5.1.1.1. is ¢(T') = a(T220) =175fn_9 + 108 f,,_10, Where
T3 = Hy(n-11)(2;1,1;2,2,2).

That means the minimal o-index of T in Case 5.1.1.1. will occur in the
case n—r —4 > 7. Hence, similarly to Case 5.1.1.1., we only discuss in the
case n — 7 — 4 > 9 in the following Case 5.1.1.2.

Case 5.1.1.2. If d(v,w) > 1 and n—r—4 > 9. By Lemmas 10 and 19,
then o(T) > 0(T21), where Tpy & Hy(ny(n—7-91,1;2,2,2) and o(T21) =
135fr42fn—r—9 +40frs2fn—r—10 + 108fr i1 fa—r—10 + 32fr 41 fr—r-11-

Ifr< "'le, since 81, _or_)2 + 27lp—2r~11 > 0, and !, is monotonically
increasing on the natural number n, hence, when r =2, let T = Hy(g)(n —
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11;1,1;2,2,2) = T3,, the tree T attains the minimal o-index and o(T},) =
405fn—11 + 336 fn—12 + 64 fn_13.

Ifr> ""T“, since —27l3r_p411+5l2r—nt12 < 0, and I, is monotonically
increasing on the natural number n, hence, when n — 7 = 13, let T =
Hl(n—la) (4;1,1;2,2,2) = T2, the tree T attains the minimal o-index and

0(TE) = 485fn—11 + 248fn_15.

Therefore the minimal o-index of T'in Case 5.1.1.2. is 0(T%;) = 405f,_11
+336fn—12 + 64f,_13, where T = Hl(g)(’n -11;1,1;2,2,2).

Case 5.1.2. If n(T,) + n(Puy) = 6, then 1 < d(u,v) < 2. By Lemma
19, when d(u,v) = 1, the g-index of the tree T is smaller.

Case 5.1.2.1. If d(v,w) =1and n~r -5 > 7, by Lemma 19, then
we have 0(T) = o(T22), where To2 = H;(;)(2;1,2;2,2,n — r — 10) and
0(T22) = 72 fry2fn-r—8 + 32fry2fnr—o + 54 fri1 fa-r—s-

If r < 251 since 720n_2r_10 + 32n_2r—11 — 54ln_2r—9 > 0, and I, is
monotonically increasing on the natural number n, hence, when r = 2, let
T= Hl(z)(2 1,2;2,2,n—12) = T),, the tree T attains the minimal o-index
and U(Tzz) = 324fn— 10 + 96fn_11

If n— <r <n-—12, since T2, _ny10 — 329, pnyn1 + 54l5, _n4o > 0,
and [, 1s monotonically increasing on the natural number n, hence, when
n—-r=12,let T = Hy(n_12)(2;1,2;2,2,2) = T3, the tree T attains the
minimal o-index and 0(T%) = 280fn—10 + 162fn_11.

Hence the minimal o-index of the tree T in Case 5.1.2.1. is o(T) =
280 fn—10 + 162fn-11 = o(TH).

Case 5.1.2.2. Ifd(v,w) =1 and n—r—5 < 6, when T attains the mini-
mal o-index, T will have two possible cases: T = T23 = Hyy(2;1,2;1,1,n—
r—8)and T = Thy Hy(»(2;1,2;1,2,n — 7 — 9), respectively.

By Lemma 1, we have a'(T23) =32frs2fnr-6+8frtofnor_7+24fr 41 -
Jn—r—g. If 7 < 232, since 32, _9r_g + 8ln_2r—9 —24l_2r—7 < 0, and I, is
monotonically i mcreasmg on the natural number n, hence, when r = 1, let
T = Hy1y(2;1,2;1,1,n — 9) = T,3, the tree T attains the minimal o-index
and o(Tp3) = 88fn—7 + 16fn_s.

If ";7 < r < n—11, since 32lyr—n4s — 8lor—n+9 + 24lor_ny7 > 0,
and [, is monotonically increasing on the natural number n, hence, when
n—r=10,let T = Hl(n—lo)(2 1,2;1,1,2) = T32, the tree T attains the
minimal o-index and o(T53) = 112fn_g + 72fn_g. So the minimal o-index
of tree T is a(TQ;,) =112f,_s + 72 f 9.

Because 0(T53) > 280fn—10 + 162f,_11, so the minimal o-index of T
will be found in the casen —r -5 > 7.

Similarly we can get that o(Th3) > 280fn_10 + 162fn_11.

Case 5.1.2.3. If d(v,w) >1 and n -7 -5 > 9, by Lemmas 12 and 19,
then we have o(T') > 0(T24), where T4 = Hy(y(n—r—10;1,2;2,2,2) and
0(T24) = 216 fr42fn-r—10+64frs2 frr_11+162fr 11 frr—11+48fr i1 frmro12.
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Ifr < 2513, since 821, _or_12 + %&in_2r_13 > 0, and I, is monotonically
increasing on the natural number n, hence, when r = 2, let T = Hy(3)(n —
12;1,2;2,2,2) = T},, the tree T attains the minimal o-index and o(T3,;) =
648fn_12 + 516 fn—-13 + 96 fr—14.

Ifr> "‘212, since 54lgr—p412 — 16127 _nt+11 > 0, and [, is monotonically
increasing on the natural number n, hence, when n —r = 14, let T =
Hin-14)(4;1,2;2,2,2) = T4, the tree T attains the minimal o-index and
o(T%) = 776 fn—11 + 372fn_12.

Therefore the minimal o-index of T in Case 5.1.2.3. is o(T') = 776 fr-12+
372fn..13 = G'(T224)

Case 5.1.2.4. If d(v,w) > 1and n—r —~ 5 < 8, then o(T) = o(T2s),
where T25 = Hl(,.)(n -7 =812 1, 1,2) and O'(Tzs) = 96fr+2fn—-r—-8 +
16fr+2fn—r—9 + 72fr+1fn—r—-9 + 12fr+lfn—r—10'

Ifr< ""T“, since 24l _or_10 + 4n—2-—11 > 0, and [,, is monotonically
increasing on the natural number =, hence, when r = 2, let T = Hy(3)(n —
10;1,2;1,1,2) = TJ;, the tree T attains the minimal o-index and o(T);) =
288fn—10 + 192fn_11 + 24 fn—12.

Ifr > 2310 since 96l3r—n+10—16l2r—nt11~72l2r—n410+1202r—ns11 > 0,
and !, is monotonically increasing on the natural number n, hence, when
n—r =12, let T = Hyn_-12(41,2;1,1,2) = T, the tree T attains the
minimal o-index and o(T%) = 320 fn—10 + 156 fo_11.

Comparing all the o-index of these tree, the smaller o-index of T' will
be found in the case n —r -5 > 7 and div,w) =lorn—r-52>9
and d(v,w) > 1, Therefore the minimal o-index of T in Case 5.1.2. is
O'(T) = 280fn—10 + 162fn_11, where T = Hl(n-l2)(2; 1,2;2, 2, 2) = T222

Case 5.1.3. n(T,) +n(Py,) =7, by Corollary 13, Lemma 19, we know
when d(u,v) = 1 and u is the center of T,, = P;, then the o-index of T is
smaller.

Case 5.1.3.1. Ifd(v,w)=1and n—r—6 > 7 then T, & R(2,2,n—r-11),
so 0(T) > o(T2), where Tog = Hy(+)(2;2,2;2,2,n — 7 — 11) and o(Ths) =
117fr+2fn—r—9 + 52fr+2fn—r—10 + 81fr+1fn—r—9-

Ifr< n_212, since 1171, _or_11 + 520712 — 81l 9,10 > 0, and [,, is
monotonically increasing on the natural number n, hence when r = 2, let
T = Hy(9)(2;2,2;2,2,n—13) = T}, the tree T attains the minimal o-index
and o(Tg) = 513 fn_11 + 156 fn—12.

If 2219 <r < n-13, since —117lar—n411+52lor—nt12—8llzr—n410 < 0,
and [,, is monotonically increasing on the natural number n, hence, when
n—r=13,let T = Hy(n_13)(2;2,2;2,2,2) = %, the tree T attains the
minimal o-index and o (T%) = 455 fn-11 + 243 fr_12.

Case 5.1.3.2. Ifd(v,w) > 1and n~-7r —6 > 9, by the Corol-
lary 13 and Lemma 19, we have o(T) > o(Ta7), where Ty = Hjy(n —
r—11;2,2;2,2,2), and o(T27) = 351frsofn—r-11 + 104frio2fn—r—12 +
243 fri1fn—r—12 + 72 fr+1fn—r-13
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Ifr < 2314 since 3511y _or—13+104ln—2r—14—243Ln_2r_ 13— 720 _0r_14 >
0, and [, is monotonically increasing on the natural number n, hence, when
r=2,let T = Hyp)(n — 13;2,2;2,2,2) = T}, the tree T attains the mini-
mal o-index and 0’(T27) = 1053 fn—13 + 798 fn—14 + 144f, 5.

If ”'Tm <7 <n-15, since —351lp,_n413+104l2,_nt14+243l0rpny13—
72l2r—n+14 < 0, and [, is monotonically increasing on the natural number
n, hence, whenn —r = 15,let T = Hl(n—15)(4 2,2;2,2,2) = T, the tree
T attains the minimal o-index and o(T%;) = 1261f,_13 + 558 fn_14.

Hence the minimal o-index of T in Case 5.1.3. is o(T) = 455fn—11 +
243fn—121 where T = Hl(n—l3)(2;21 2;2,2, 2) = T226‘

We know the minimal o-index of T in the case n — r — 6 < 7 is larger
than the minimal o-index of T in the case n —r — 6 > 7. Therefore we only
discuss the tree T in the case n—r—6 > 7 but not in the case n—r—6 < 7.

Case 5.1.4. If n(Ty) + n(Puy) = m(m > 8), then 1 < d(u,v) < m —4,
because d(u) = 3, by Lemma 7 and the path is the minimal o-index of trees
with m vertices. Hence, when d(u,v)=1,n—m —7 > 7, and d(v,w) =1,
we have 0(T') > o(T2s), where Tog = Hy()(2;2,m—5;2,2,n—m—r—4) and
U(TZS) = 9fr+2fmfn-m—r—2 + 4fr+2fmfn—m—-r—3 + 27fr+l fm-3fn-m—-r-2.

Next, we will discuss for the positive integer .

Case 5.1.4.1. If r = 1 then o(Tk) = 18fmfo—m-3 + 8fmfn—m—a +
27fm—3fn—m—3

If m < 258, since 18l,_2m-3 + 8ln—2m—-4 — 27ln_om < 0, and 1, is
monotonically increasing on the natural number n, hence, when m = 9,
let T = Hy(1)(2;2,4;2,2,n — 14) = T3], the tree T attains the minimal
o-index and o(T3g) = 828 fn_12 + 272fn_13.

If m > %, since —18lpm-n43 + 8lom—ntd — 27l2m—n < 0, and [, is
monotonically increasing on the natural number n, hence, when n—m =9,
let T = Hy(1)(2;2,n — 14;2,2,4) = Tj2, the tree T attains the minimal
o-index and o (T34 ) =184f,_g + 216f,_12.

Case 5.1.4.2. If r = 2 then o(T%) = 27fm faem—a + 12fm facm-s +
54fm—3fn—m—4

Ifm< "T‘E’, since 271, om—4 + 12l _opm—5 — 54l _om—_1 <0, and [, is
monotonically increasing on the natural number n, hence, when m = 9,
let T = Hl(g)(2 2,4;2,2,n — 15) = T2}, the tree T attains the minimal
o-index and a( 1) = 1350 fn—13 + 408 fr_14.

If m > 252, since 2Tlom—nt4 — 12l0m—n4s + 54lom_ny1 > 0, and 1, is
monotomcally mcreasmg on the natural number 7, hence, when n—m = 10,
let T = Hy() (2 2,n — 15;2,2,4) = T22, the tree T attains the minimal o-
index and o(T2%) = 276 fn_10 + 432fn_13.

Case 5.1. 4 3. If r > 3 then o(T5) = O'(P,-_3)0'(T228) + 0(Pr-4)o(Ths)-

If m < 238, when m = 9, both o(T}) and o(T%!) attain the mini-
mal o-index at the same time. So the mlmmal a-mdex of T is o(T5) =
306fr+2fn—r—ll + 136fr+2fn—r—-12 + 216fr+lfn r—11-
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Ifr < n—214' then O’(T233) = %(3061,._9 +136l,_10+216,_10) — %(—l)r .
(306ln—2r—l3+136ln—2r—14—2161n—2r—12)~ Since 306l,,_2,_13+136l,_2,_14—
2161, _9r—12 > 0, and [,, is monotonically increasing on the natural number
n, hence, when r = 4, let T = Hy(4)(2;2,4;2,2,n — 17) = T3y, the tree T
attains the minimal o-index and o (T34 ) = 3528 f~15 + 1088 f,_16.

Ifr > -’l:éﬂ, then o(T5;) = %(3061,,..94‘136ln_1o+2161n_10)——-51-(—1)"-7"
(—306[2r_n+13 +136l3r—nt14 — 21612,-_,;4.12). Since —306l3,_n+13 + 136 -
lor—ny1a — 21615, 112 < 0, and [,, is monotonically increasing on the nat-
ural number n, hence, when n —r =15, let T = Hy(,_15)(2;2,4;2,2,2) =
T32, the tree T attains the minimal o-index and o(T5) = 1190f,_13 +
648 fr—14.

If m > 2, when both ¢(T32) and o(T3?) attain the minimal o-index
at the same time, then the minimal o-index of T is o(T) = o(T5) =
92fr+2fn-—r—8 + 216fr+1fn-r—ll-

If r < 2512, then o(T5) = §(92ln—6+216l,_10) — 2 (—1)"(92ln_2r 10—
216lp,_2,—12). Since 92/,,_9,_10 — 216l_2,—32 > 0, and [, is monotoni-
cally increasing on the natural number 7, hence, when » = 4, let T' =
Hy4)(2;2,n — 13;2,2,4) = T33, the tree T attains the minimal o-index
and 0(T33) = 736 fn_12 + 1080 fp_15.

Ifr > 2319 then o(T5) = 3(92ln_6+216L,_10)—2(—1)"""(92l2r—n4+10—
216lp,—n+12). Since 92 - lor_nt10 — 216l2;—ny12 < 0, and [, is monoton-
ically increasing on the natural number n, hence, when n — » = 17, let
T = Hn17(2;2,n — 13;2,2,4) = T34, the tree T attains the minimal o-
index and o (T3¢) = 3128fn_15 + 1728 fn—16.

We compare all the o-indices of these trees, we get that the minimal
o-index of the tree T is ¢(T) = 1190f,—13 + 648,14 = o(T52).

If d(w,v) > 1 and n — m —r > 8, from Lemma 19, we have o(T) >
o(T29), where Tog & Hy(ry(n —m —r —5;2,m — 5;2,2,2) and o(T) =
27fr+2fmfn—m—r—5 +8fr+2fmfn—m—r—6 +81fr+lfm-3fn—m—r—6 +24fr+l ‘
fm—3fn—m—r—7-

Next, we will discuss for the positive integer .

Case 5.1.4.4. If 7 = 1 then 0(T)y) = 54fm fa—m—6 + 16 fm fa—m—7 +
81fm—3fn—m—7 + 24fm—3.fn—m—8-

Ifm< -712;7, since 541, _om—_g+ 160, _2m—7—81l_om_4—24ln_om_5 < 0,
and [, is monotonically increasing on the natural number n, hence, when
m =9, let T = Hyqy(n — 15;2,4;2,2,2) = T13, the tree T attains the
minimal o-index and o(T4d) = 1836 fn—_15 + 1192f,_16 + 192 f,_;7.

Iim > "2;4, since 54lom—nt+6—16lom—n+7—8llom—nta+24lom_nts > 0,
and !, is monotonically increasing on the natural number n, hence, when
n—m =10, let T = Hy(;y(4;2,n — 15;2,2,2) = T2, the tree T attains the
minimal o-index and ¢(7}¢) = 194f,_10 + 186f,_13.

Case 5.1.4.5. If r = 2 then o(T%) = 81fmfa—m-7 + 24fmfn-m-8 +
162fm—3fn—m—8 + 48fm—3fn—m—9-
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If m < 258, since 81/n_om-—7+24in—2m—8 — 162ln_2m—5 — 48ln_2m—_g <
0, and !, is monotonically increasing on the natural number n, hence,
when m =9, let T = Hl(g)(n —16;2,4;2,2,2) = T2}, the tree T attains
the minimal o-index and o(T%) = 2754 fn—16 + 2112fn_17 + 384 fn_1s.

Ifm > 232, since —8112m_,,+7+2412,,._,,+8+16212m_n+5—4812,,,_,,+6 <
0, and [,, is monotonically increasing on the natural number n, hence, when
n—-m=11,let T = Hl(z)(4 2,n—16;2,2,2) = T22, the tree T attains the
minimal o-index and o(T%) = 291fn-ll +372fn-14.

Case 5.1.4.6. If r > 3 then o(T5) = 0(Pr-3)0(T%) + 0(Pr_a)o(T5).

If m < 252, when m = 9, both U(Tzlgl) and o(T4}) attain the minimal o-
index at the same time. Then the minimal o-index of the tree T is o(T5) =
918fr+2fn—r—14 + 272fr+2fn-r—15 + 648fr+1fn—r—15 + 192fr+lfn-—r— 16-

Ifr < 2517 then o(T5) = £(918ln_12+2720,_13+648,_14+1920,_15)—
1( 1)’(918 lp—or—16 + 272111-21-—-]7 — 648l,_2r_16 — 1921,,_ 27_17) Since
918l —9r—16 + 2721, _9p17 — 648, _o,_16 — 192l,_2,—17 > 0, and [, is
monotonically increasing on the natura.l number n, hence, when r = 4,
let¢ T = Hy 4)(n — 18;2,4;2,2,2) = T3}, the tree T attains the minimal
o-index and o(T§}) = 7344 18 + 5416 fr,_19 + 960 fr,_20.

Ifr > 23517 then o(T5) = & (918112 + 2720513 + 6481,_14 + 192 -
ln_15)—$(=1)""7(918 lor_n416—272l3r—n1+17—648lor _n116+192 lgr—ny17).
Since 91812,-_n+16 - 272l2r-n+17 —64812r-n+16 +192i5,_ n+17 > 0, and [, is
monotonically increasing on the natural number n, hence, when n—r = 18,
let T = Hl(4)(4 2,4;2,2,2) = T32, the tree T attains the minimal o-index
and 0'( ) = 3298fn_16 + 1488f,1 17-

Ifm > , when both ¢(T32) and o(T'Z) attain the minimal o-index
at the same tlme so the minimal o-index of T is 0(T5y) = 97 fryafn-s—r+
186 fr41fn—r—11, where T = Ty = Hy(1(4;2,n — 7 — 13;2,2,2).

Ifr< "‘2‘2, then o (T5,) = $(97ln_6+186ln_10) — -é(—l)'(97ln_2,_10 -
186l,—2,—12). Since 971, 9,10 — 186l,-2r—12 > 0, and [/, is monotoni-
cally increasing on the natural number n, hence, when r = 4, let T =
Hy4)(4;2,n — 17;2,2,2) = T3, the tree T attains the minimal o-index
and U(T ) = 776fn-12 + g30fn—15

Ifr > "-210 then o(T5) = 2(97L,_6+186l,_10)— 1 (—1)"""(97l2r—n10—
186l2r—n+12). Since 97!2,-,1.,.10 — 186l3r—n+12 < 0, and [, is monotoni-
cally increasing on the natural number n, hence, when n — r = 17, let
T= H 14)(4:2,4;2,2,2) = T3¢, the tree T attains the minimal o-index and

o(T58) = 3298fn_15 + 1488fn_s6.

Hence the minimal o-index of T in Case 5.1 is o(T) = 291f,_1; +
372fn_14, where T = Hy(3)(4;2,n - 16;2,2,2) = TZ.

Case 5.2. Let u,v,w € V(T), let d(u) = d(v) = 3 and d(w) = 4,
and all other vertices have degree less than 3. Let w be between u and v.
Then T can be regarded as the tree obtained by identifying two end-vertices




u,v and any vertex w of degree 2 of a simple (u,w,v)-path P,, with any
three vertices of degree 2 of three path P/, P” and P'" respectively, the
corresponding three path P/, P” and P"' are denoted by Ty, T, and T,
respectively. The tree T is shown in Figure 1 (f).

Case 5.2.1. If n(T,) + n(Puw) = 5, by Lemmas 12 and 19, when
d(w,v) = 1, then o(T) > o(T30), where T30 = Hy(29)(2;1,1;2,n —11) and
o(T30) = 45fn—6 + 48 fn—9.

If d(w,v) > 1, by Lemma 19, then o(T) > o(T3;), where T3; =
Hl(g’z)(‘n -11;1,1;2,2), and o(T3;) = 405 fn-11 + 324 fpn_12 + 64 fn_13.

Case 5.2.2. If n(T,) + n(Pyw) = 6 then 1 < d(u,w) < 2. It easily
find that the o-index of T when d(u,w) = 1 is smaller than the o-index
of T when d(u,w) = 2. If d(w,v) = 1, by Lemma 4, then there exits the
tree T3z = Hy(22)(2;1,2;2,n — 12) such that o(T) > o(T32) and o(T32) =
72fn-7 + 72fn-10- If d(w,v) > 1, by Lemma 12 and Corollary 13, we
have o(T) > o(Ts3), where T3z = Hy(22y(n — 12;1,2;2,2) and o(T33) =
648fn_12 + 504 fn—13 + 96 frn—14.

Case 5.2.3. If n(T,) +n(Pyw) = 7, similarly to Case 5.2.2., the o-index
of T when d(u,w) = 1 is minimal. If d(w,v) = 1 we have o(T) > o(T34),
where T34 & Hy(21(2;2,2;2,n — 7 — 11) and 0(T34) = 39fr+2fn—r-6 +
54fr+1fn—r—-9~

If r < 2519 then o(T34) = $(3%n—4 + 54ln_sg) — $(—1)"(3%n-2r-58 —
54l,,_2—-10). Since 39, _o,_g —54l,_2r_10 > 0, and ,, is monotonically in-
creasing on the natural number n, hence, whenr = 2, let T = H (2 9)(2; 2, 2;
2,n — 13) = T, the tree T attains the minimal o-index and o(TY,) =
117fn—g + 108f,_11.

If r > 258, then o(T34) = $(3%n—_q + 54ln_s) — $(—1)"""(3902r—nss —
54lor_n410). Since 39la,_n48 — 54lor—n+10 < 0, and [, is monotonically
increasing on the natural number n, hence, when n —r = 13, let T =
Hi2,n-13)(2;2,2;2,2) = T4, the tree T attains the minimal o-index and
0(T3;) = 507 fn_11 + 162fn_12.

If d(w,v) > 1, by Lemma 4 and Corollary 13, we have o(T) > o(T35),
where T35 = H](z’z)('n -13;2,2;2,2) and U(T35) =1053fn_13+792fn_14+
144 fn—15.

Case 5.2.4. If n(T,) +n(P, ) = m(m > 7), without loss of generality,
let n(Ty) + n(Puw) > n(Ty) + n(Pyy). If d(u,w) = 1 and d(w,v) = 1,
then o(T) > o(T36), where T3 = Hj(2,2)(2;2,m — 5;2,n — m ~ 6) and
U(TSG) =9fmfn-m-1+36fm-3fn-m-4.

Ifm< 2-2‘-1 then o(T3¢) = %(9[,,-1 +36l,—7) — -é—(—l)m(—-27l,,_2m_1),
and [, is monotonically increasing on the natural number n, hence, when
m =09, let T = Hy29(2:2,4;2,n — 15) = T}, the tree T attains the
minimal o-index and o(TJg) = 306 fr—10 + 288f_13.

If m> l;—l, then o(Ts6) = %(gln_l + 36l,-7) — %(—1)"_"'2712",_"4.1,
and [,, is monotonically increasing on the natural number n, hence, when
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n—m =38, let T = Hy52)(2;2,n - 13;2,2) = TZ, the tree T attains the
minimal o-index and o(T%) = 117f,_s + 108f,_11.

If d(u,w) > 1,d(w,v) = 1, by Lemma 12, then o(T") > o(T37), where
T57 = Hpg(2,2(m — 5;2,2;2,n — m — 6) and 0(T37) = 81fm—5faem-1 +
36fm an—m—]. + 108fm—6fn—m—4 + 48fm—7fn-m—4

If m < 242, then o(Ty7) = 2(81ln_g + 36ln_7 + 108l,_10 + 48l _11) ~
-1)™(- 81 ln—2m+4 +361n—2m+5+1081n-2m+2 — 481, 2m43), since —81-
ln—omya + 36ln_0mys + 108l _omyo — 48, _omy3 < 0, and [, is mono-
tonically increasing on the natural number n, hence, when m = 8, let
T= H2(2 2)(3;2,2;2,n —14) = T};, the tree T attains the minimal o-index
and o(T3;) = 315fn 10 + 264 fn-13.

Ifm> —*—- then o(T37) = 5(81!,, 5+ 36l,_¢ + 108l,_9 + 48l,,_10) —

( 1Hn-m(— 81 lamen-4 —36lom_n_s5 + 108lom—p_2 + 48l2;n_pn—3), since
—Sllgm_n_ ~36lam—n-5+108 -loy_n—2 +48l2;n—n—3 > 0, and {,, is mono-
tonically increasing on the natural number n, hence, when n — m = 8,
let T = H,_j4, 2)(n —13;2,2;2,2) = T%, the tree T attains the minimal
o-index and 0(T%) = 1053 fn_13 + 792fn_14 + 144 fn_15.

If d(u,w) > 1,d(w,v) > 1, by Lemma 11, then we have o(T") > o(T3g),
where T3s = H,,_g(2,2)(n — 13;2,2;2,2) and 0(T38) = 729fm_5fn—m—6 +
324fm—5fn—m—7 +324fm—ﬁfn—m-—6+468fm—6 fn—m—7+144fm—6fn—m—8+
144fm—7fn-—m—7 + 64fm-7fn—rn—8-

Ifm < 232, since —729n_am—1—324ln—2m_2+324ln_ 2, +468, g, —
1441, _om +144lp—om_2 — 64l _o;m—) < 0, and !,, is monotonically increas-
ing on the natural number n, hence, when m =9, let T = Hy(, 2)(n -
13;2,2;2,2) = T}g, the tree T attains the minimal o-index and o(T}) =
2835 fn—15 + 2052 fn-16 + 352 fn_17.

Ifm> -'23, since 72905, —ny1 — 324[2,-,-,..,,,4.2 + 3245, — 468l _py1 —
144l3,_n+144l2m _n42+64l2m—n41 > 0, so by the monotonically of the Lu-
cas number, hence, when n—m =10, let T = H,,_q(2, 2)(n 13;2,2;2,2) =
TZ, the tree T attains the minimal o-index and o(T%) = 2835f,_15 +
2052 fn-16 + 352 fn—17.

Therefore the minimal o-index of T in Case 5.2. is o(T) = 117f,_g +
108fn_11, where T = Hy(59)(2;2,n - 13;2,2) = TZ.

Thus we have considered all the cases for all trees with n (= 19) vertices
and exactly six leaves, by comparing all the minimal o-indices of the trees
in all the cases, we obtain the smallest o-index of T is o(T") = 291f,_11 +
372fn—14 and T = H,(5)(4;2,n - 15;2,2,2). O
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