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ABSTRACT. We construct explicity the automorphism group of the
folded hypercube FQ, of dimension n > 3, as a semidirect product
of N by M, where N is isomorphic to the Abelian group Z} , and M
is isomorphic to Sym(n + 1), the symmetric group of degree n + 1,
then we will show that the folded hypercube FQ, is a symmetric
graph.
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1. Introduction and Preliminaries

A folded hypercube is an edge transitive graph, this fact is the main
result that has been shown in [8). In this note, we construct explicity
the automorphism group of a folded hypercube, then we will show that a
folded hypercube is not only an edge transitive graph, but also a symmet-
ric graph. In this paper, a graph G = (V, E) is considered as an undi-
rected graph where V = V(G) is the vertex-set and E = E(G) is the
edge-set. For all the terminology and notation not defined here, we follow
[2,3,5]. The hypercube Q, of dimension n is the graph with vertex-set
{(z1, 72, ..., zn)|z: € {0,1}}, two vertices (z1,x2,...,Z) and (y1,Y2,--1Yn)
are adjacent if and only if z; = y; for all but one i. The folded hypercube
FQ, of dimension n, proposed first in [1], is a graph obtained from the
hypercube Q,, by adding an edge, called a complementary edge, between
any two vertices z = (z),%2,...,Zn), ¥ = (£1,%2,..., %5 ), where 1 = 0 and
0 = 1. The graphs shown in Fig. 1, are the folded hypercubes F'Q3 and
FQ4. The graphs 'y = (V4, E;) and 'y = (V,, E») are called isomorphic,
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if there is a bijection o : Vi — V; such that, {a,b} € E; if and only if
{a(a),a(b)} € E; for all a,b € V). In such a case the bijection « is called an
isomorphism. An automorphism of a graph I is an isomorphism of I" with
itself. The set of automorphisms of I, with the operation of composition of
functions, is a group, called the automorphism group of I" and denoted by
Aut(I"). A permutation of a set is a bijection of it with itself. The group of
all permutations of a set V is denoted by Sym(V), or just Sym(n) when
|V |=n. A permutation group G on V is a subgroup of Sym(V). In this
case we say that G acts on V. If T is a graph with vertex-set V, then we
can view each automorphism as a permutation of V, so Aut(T') is a per-
mutation group. Let G acts on V, we say that G is transitive ( or G acts
transitively on V' ) if there is just one orbit. This means that given any
two elements u and v of V, there is an element 3 of G such that 8(u) = v.
The graph T' is called vertex transitive if Auf(T') acts transitively on
V(T). For v € V(I') and G = Aut(T'), the stabilizer subgroup G, is the
subgroup of G containing all automorphisms which fix v. In the vertex
transitive case all stabilizer subgroups G, are conjugate in G, and con-
sequently isomorphic, in this case, the index of G, in G is given by the
equation, |G : G,| = IJ‘-%T = |V(T')]. If each stabilizer G, is the identity
group, then every element of G, except the identity, does not fix any vertex,
and we say that G acts semiregularly on V. We say that G acts regularly on
V if and only if G acts transitively and semiregularly on V and in this case
we have | V |=| G |. The action of Aut(T") on V(T') induces an action on
E(T) by the rule 8{z,y} = {8(z), B(¥)},8 € Aut(T'), and T is called edge
transitive if this action is transitive.The graph I is called symmetric, if for
all vertices u,v,z,y, of T such that u and v are adjacent, and z and y are
adjacent, there is an automorphism a such that a(u) = z,and, a(v) = y.
It is clear that a symmetric graph is vertex transitive and edge transitive.
Let G be any abstract finite group with identity 1, and suppose that Q
is a set of generators of G, with the properties :
NzeQ=z"1eQ;(H)1¢N;
The Cayley graph I' = I'(G, 2) is the graph whose vertex-set and edge-
set defined as follows : V(') = G; E(T') = {{g,h} | g7 1h € Q}.
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It can be shown that the hypercube @, is the Cayley graph I'(Z%, B),
where B = {e;, 3, ..., €}, €; is the element of Z7' with 1 in the i—th position
and 0 in the other positions for, 1 < i < n. Also, the folded hypercube FQ,
is the Cayley graph I'(Z}, S), where S = BU{u = e; +e2+...+e,}. Hence
the hypercube @, and the folded hypercube F'Q, are vertex transitive
graphs. Since @, is Hamiltonian [6] and a spanning subgraph of F'Qy, so
FQ, is Hamiltonian. Some properties of the folded hypercube FQ, are
discussed in [6,7,8].

The group G is called a semidirect product of N by Q, denoted by
G = N x Q, if G contains subgroups N and @ such that, (i)N 4G (N is a
normal subgroup of G ); (ii)) NQ = G; (iii)) NN Q =00{11}
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Fig. 1. The folded hypercubes FQ3 and FQy.

2. Main results

Lemma 2.1. Ifn # 3, then every 2-path in FQ,, is contained in a unique
4-cycle.

Proof. If n =2, then it is trivial that the assertion of the Lemma is true,
soletn > 3. Let P: uvw bea 2-pathin FQn. If u = (x1,..., Tiy ..y Tn), ¥ =
(Z1y ooy Tiy ooy Tn )y W = (T1,y 00y £jy ey Tnn), then only vertex z = (zy, ..., Zi-y,
£iy.ory Tj—1, Ly -, Tn) and v are adjacent to both vertices u and w. Hence
the 4-cycle C : uvwz is the unique 4-cycle that contains the 2-path P. Ifu =
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(fl,fg,...,:r_n), v o= (.’L‘l,...,zl:i,...,:l:n), w = (:cl,...,xj_l,fj,xj.,.l,...,a:,,),
then only vertices z = (471, ...,2;_1, %}, Tj}1,..., £n) and v are adjacent to
both vertices u and w.

a

In the hypercube F'Q3 any 2-path is contained in 3 4-cycles, hence the
assertion of Lemma 2.1 is not true in FQ3.

Remark 2.2. For a graph I" and v € V(T'), let N(v) be the set of vertices
w of T such that w is adjacent to v. Let G = Aut(T'), then G, acts on
N(v), if we restrict the domains of the permutations g € G, to N(v). Let
L, be the set of all elements g of G, such that g fixes each element of
N(v). Let Y = N(v) and ® : G, — Sym(Y) be defined by the rule,
®(g) = g)y for any element g in G, , where gy is the restriction of g to
Y. In fact ¢ is a group homomorphism and ker(®) = L,, thus G, /L, and
the subgroup ¢(G,) of Sym(Y’) are isomorphic. If | Y |= deg(v) = k, then
|G|/ | Ly <KL

Lemma 2.3. Ifn > 3 and G = Aut(FQy), then |G| < (n +1)12®

Proof. Let v € V(FQ,) and L, be the subgroup which is defined in the
above, we show that L, = {1}. Let g € L, and w be an arbitrary vertex of
FQ,. If the distance of w from v is 1, then w is in N(v), so g(w) = w. Let
the distance of w from v be 2. Then there is a vertex u such that P : vuw is
a 2-path, hence by Lemma 2.1. there is a 4-cycle that contains this 2-path,
thus there is a vertex ¢ such that C : tvuw is a 4-cycle. Since t € L, then
g(t) = t, so g(C) : tvug(w) is a 4-cycle. By Lemma 2.1 the 2-path P, : tvu
is contained in a unique 4-cycle, thus g(C) = C, therefore g(w) = w. The
set § is a generating set for the Abelian group Z7, so the Cayley graph
FQ, =T(Z%,5) is a connected graph. Now, by induction on the distance
w from v, it follows that g(w) = w, so g =1 and L, = {1}. Now, by the
Remark 2.2. , |G| < |Ly|(n+ 1) < (n + 1)
The folded hypercube FQ, is a vertex transitive graph, hence |G| =
IGIV(FQq)| < (n+ )12,
(]
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Theorem 2.4. Ifn >3, then Aut(FQ,) is a semidirect product of N by
M, where N is isomorphic to the Abelian group Z3 and M is isomorphic
to the group Sym(n +1).

Proof. Let Aut(FQ,) = G, v € Z§ = V(FQ,) and p, be the mapping
pv : 2% —> Z% defined by p,(z) = v + z. Since F'Q, is the Cayley graph
I'(Z3,S), then p, is an automorphism of FQ, and N = {p,jv € Z3} is a
subgroup of G isomorphic to Z3. Note that the Abelian group Z7 is also a
vector space over the field F = {0,1} and B = {ey, ez, ...,e,} is a basis of
this vector space and any subset of the set S=BuU{u=-¢e;+ez+..+en}
with n elements is linearly independent over F and is a basis of the vector
space Z%. Let A be a subset of § with n elements and f : B — A be a
one to one function. We can extend f over Z7 linearly. Let ¢ be the linear
extension of f over Z7, thus ¢ is a linear mapping of the vector space Z3
into itself such that ¢;g = f. Since B and A are bases of the vector space
Z3, hence ¢ is a permutation of Z3. In fact ¢ is an automorphism of FQ,.
If A= B, then ¢(u) = ¢(e1) + dlea) +... + plen) =e; +ea+ ... + ep = u.
If A # B, then u € A and for some i,j € {1,2,...,n} we have ¢(e;) = u
and e; ¢ A. Then ¢(u) = ¢(e;) + d(e2) + ... + dlen) = €y +ea + ... +
ej-1+ejp1+..+e,+u=u—e;j+u=e; €S. Now, it follows that ¢
maps S into S. If [v,w] € E(FQy), then w = v + s for some s € S, hence
d(w) = ¢(v) + ¢(s), now since @(s) € S we have [p(v), p(w)] € E(FQ,).
For a fixed n-subset A of S there are n! distinct one to one functions such
as f, thus there are n! automorphisms of the folded hypercube FQ,, such
as ¢. The set S has n + 1 elements, so there are n + 1 n-subset of S such
as A, hence there are (n + 1)! one to one functions f : B — S. Let
M= {¢:23 — Z} | ¢ is a linear extension of a one to one function
f: B — S}. Then M has (n + 1)! elements and any element of M is
an automorphism of FQ,. If « € M, then « maps S onto S, hence ¢s,
the restriction of a to S, is a2 permutation of S. Now it is an easy task to
show that M is isomorphic to the group Sym(S). Every element of M fixes
the element 0, thus NN M = {1}, hence |MN| = %% = (2")(n + 1),
therefore |Aut(FQn)| = (2™)(n + 1)I. Now, by the Lemma 2.3. it follows
that |Aut(FQn)| = (n + 1)!2", therefore Aut(FQ,) = MN.
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We show that the subgroup N is a normal subgroup of Aut(FQ,) =
G=MN = NM. It is enough to show that for any f € M and g € N, we
have f~1gf € N. There is an element y € Z} such that g = p,. Let b be
an arbitrary vertex of FQ,, then f~1gf(b) = f~1p, f(b) = f~ (y+ (b)) =

f_l(y) +b= pf-x(y)(b), hence f_lgf = pr-1(y) € N.
g

It is an easy task to show that the folded hypercube F'Q3 is isomorphic to
K, 4, the complete bipartite graph of order 8, so Aut(FQ,) is a group with
2(4!)2 = 1152 elements [2], therefore Theorem 2.3 is not true for n = 3.

If n > 1, then the assertion of Lemma 2.1 is also true for the hypercube
Q. and by a similar method that has been seen in the proof of Theorem
2.4. we can show that Aut(Q,) & Z7 x Sym(n), the result which has been
discussed in [4] by a different method.

Theorem 2.5. Ifn > 2, then the folded hypercube FQ, is a symmetric
graph.

Proof. The folded hypercube FQ, is isomorphic to K4, the complete graph
of order 4, and the folded hypercube FQ3 is isomorphic to Ky 4, the com-
plete bipartite graph of order 8, both of these are clearly symmetric. Let
n > 4. Since The folded hypercube FQ, is a Cayley graph, then it is vertex
transitive, now it is sufficient to show that for a fixed vertex v of V(FQ,,),
G, acts transitively on N(v), where G = Aut(FQ,). As we can see in the
proof of Theorem 2.3, since each element of M is a linear mapping of the
vector space Z;" over F = {0,1}, then for the vertex v = 0 the stabilizer
group of G, is M. The restriction of each element of M to N(0) = Sis a
permutation of S. If f € M fixes each element of S, then f is the identity
mapping of the vector space Z,". Since |S| = n + 1, then Sym(S) has
(n+ 1)! elements. On the other hand M = {fis |f € M} has (n + 1)! ele-
ments, hence M = Sym(S) = Go. We know that Sym(X) acts transitively
on X, where X is a set, so Gy acts transitively on N(0).

O

Corollary 2.6. The connectivity of the folded hypercube FQ, is mazimum,
sayn+ 1.
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Proof. Since the folded hypercube FQ, is a symmetric graph, then it is
edge transitive, on the other hand this graph is a regular graph of valency
n 4 1. We know that the connectivity of a connected edge transitive graph

is equal to its minimum valency [3, pp. 55).
O

The above fact has been rephrased in [1] and has been found in a different

manner.
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