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ABSTRACT. For a finite group G let P(m,n, G) denote the
probability that two m-subset and n-subset of G commute
elementwise and let P(n,G) = P(1,n,G) be the probabil-
ity that an element commutes with an n-subset of G. Some
lower and upper bounds are given for P(m,n, G) and it is
shown that {P(m,n,G)}m n is decreasing with respect to
m and n. Also P(m,n,G) is computed for some classes of
finite groups, including groups with central factor of order
p? and P(n,G) is computed for groups with central factor
of order p® and wreath products of finite abelian groups.

1. INTRODUCTION

If G is a finite group, then the commutativity degree of G
denoted by d(G), is the probability that two randomly chosen
elements of G commute. The commutativity degree first studied
by Gustafson [4] and it is shown that d(G) < £ for every non-
abelian finite group. Also there have given several lower and
upper bounds for the commutativity degree in the case of p-
groups, solvable groups and simple groups and it is computed for
various classes of groups those of most important are semidirect
products and wreath products of finite abelian groups. We refer
the reader to [1, 3, 6, 7, 8] for more details.
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Our aim is to generalize the commutativity degree to the case
where two subsets of given sizes commute elementwise and ob-
tain several results including lower and upper bounds. More-
over, the probability will be computed for some classes of finite
groups including finite groups with central factors as p-groups of
order at most p® and wreath products of finite abelian groups.

2. LOWER AND UPPER BOUNDS

We begin with the following definition.

Definition. Let G be a finite group and m,n < |G|. Then the
probability that two m-subset (subset of size m) and n-subset
of G commute elementwise is

{(X,Y) € Pn(G) X P(G) : [X, Y] =1}

(IGI) (lGI) ’
where Pi(G) is a set of all k-subsets of G. We denote P(1,n,G)
by P(n,G) and as usual P(1,1,G) by d(G).

P(m,n,G) =

Clearly P(m,n,G) =1 if and only if G is an abelian group.
If |G|/p < m < |G|, then P(m,n,G) = (#N)/(19), where p
is the least prime divisor of |G|. Hence we always assume that
m,n < |G|/p. Let G, denote the class of all finite groups with p
as the smallest prime divisor of |G| for convenience.

Theorem 2.1. Let G € G, and m,n < |G|/p. Then

12(G)] ey _ (% &
oy = < g (57) «

Proof. If X € Z(G), then |Ce(X)| < 3|G|. Now we have

P(m,1,G) =z 3 (lCcng )I)

(D) xeFrio)

166



" | xom | o)

X € Pu(2(G))
< (") (- )
and :he rr;sult follows. O

Theorem 2.2. Let G be a finite group. Then the sequence
{P(m,n,G)}n>1 is decreasing.

Proof. Utilizing the fact that

(zfl)zf;f(’:)

for each positive integers 7 and k with ¢ < k, we get

1 1Co(X)
P(m,n+1,G) = __(I,Gn') ) XG%;(G) ( nG+ ; )
1 |Ce(X)| —n (|Ce(X)]
> S ()

n

(h (< xeme [Gl-n

1 |Ce(X)I
< _
— (EH xgn:(a)( n )
= P(m,n,G),

as required. a

Corollary 2.3. Let G be a finite group. Then P(m,n,G) <
P(n,G) < d(G) for each m,n > 1.

In the sequel we will obtain an upper bound for P(m,n,G) in
terms of d(G) and the index of Z(G) in G. The following simple
lemma will be used in the next theorem.
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Lemma 2.4. Let m, n and k be positive integers such that 2 <

T

Proof. The result follows by observing the fact that

m+1—1 n+1—z’<mn+1—z‘

foreach 1 <i<k. O

Remark. For each non-abelian group G € G, and k£ > 1 let
Ar={X € P(G) : X € Z(G) and |C¢(X)| > k}. Then define
(G) = max{k € N: k < |G| and A # 0}. It is clear that
(G) < |GI/p.

Theorem 2.5. If G € G, is a non-abelian group, then

G 1 -1
pm+=2 TG Z(G)] (p— 1)pmtn3
([G.Z(G)])‘l_ -1

m (p — 1)pn2

P(m,n,G) <

Jor allm,n < l(G).
Proof. For each i < {(G) we have

| Ce(X)|
P(m,i+1,G) = (|G|)(|G| Z (| iG-l(-l )

i+1) XePm(G)

1 [Ce(X)| — i (|1Ce(X)
(IGI)(\Gl)XZ Te/ ( ; )

€Pn(G)
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I |CG(X)| — i (|Ce(X)]
= _(|c|) (|c_;|) Z + Z | —1 (
m/\i/ | XePn(2(G)) X € Pn(G)

X € Pu(2(G))

( o
1 IGI) ¢ (1ICe(X)]
< = Z ( .+ Z -p——( .
= (IG(IG —
(m)( i ) XePm(Z(G)) ’ X € Pa(G) Gl -1 :

X & Pn(2(G))

1 e O €/ )
= 5P(m,%G) + (1 p) Gl -2 (S

1 . 1
< ;P(m,z, G) + m (By Lemma 2.4 and n < 1%)
m
Thus
n—1 _
P(m,n,G) < P(m,G) 1 p 1

pn—1 + ([G:fn(c)]) ’ p*2(p — 1)

and by the same method

d(G) 1 p™ -1
P m, G < + * )
mC) < ot Y G720 72— D)
from which the result holds. a

Corollary 2.6. Let G € §, and m,n < I(G). Then
(i) If G is non-abelian, then

- -1 —1
pP+p—1 -1 p? -1
Plm, =, G) < T oot \m) - Dp 2

(iii) If G is a finite p-group of derived length d > 2, then

pd +pd—l -1 pm—-l -1 p2 1 pn—l 1
pmFnt2d-3 + (p — 1)pm+n-1 T\m (- D)p~2

Proof. The result follows by Theorem 2.5 and the facts that
d(G) < &Ej"—l (see [6, Lemma 1.3]) and if G is a p-group of

P(m,n,G) <
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derived length d > 2, then d(G) < P"—’;g;;.‘—'l (see [7, Theorem
12(ii)]). O

3. GROUPS WITH SMALL CENTRAL FACTORS

In this section we shall compute P(m,n,G) and P(n,G) for
finite groups G such that G/Z(G) is a p-group of order p? and
p3, respectively. The following theorem is a generalization of
Theorem 2.4 in [2].

Theorem 3.1. If G is a finite group such that -Z% S Zp X Ly,
then

P(m,n,G) = 1

(= (%)
[0 ()-(21) (()-)
+(IZ1(S)I) <Iil) + (IZELG)I) (lgl) _ (lzf)l) (IZiG)I)] .

Proof. Let X be an m-subset of G and M = {M,..., M,41} be
the set of all maximal subgroups of G containing Z(G). Also let
A, B and C denote the m-subsets of Z(G), M; (1 <i<p+1)
and G, respectively. Now we consider the following cases.

(i) If X € A, then Ce(X) = G and there are (%)) such
subsets.

(ii) If X € B\ A, then |Ce(X)| = |G|/p and there are

0+ ((ff) - ('Zf)'))
such subsets.

(iii) If X € €\ B, then Ce(X) = Z(G) and the number of all
such subsets is

(©)-0((B)-(49)- ()
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Using the above results we have
P(m,n,G)

(|G|)1(|G|) X Z (ICG',S'X”)

€Pm(G)

) (Z+ 2.2 ) (*2")

XeA XeB\A XecC\B
= (—lg')lT‘j'S (IAl(Ial) + |B\A|(I‘g) + |e\B|('Z( ”))

and by substituting the size of A, B \ A and C\ B the result
follows. (]

Corollary 3.2. Let G € G, be a non-abelian group. Then
'ZTGG')' > 7, x Z, if and only if

161

() (:; )

Proof. If 7= Z(G) & Zp X Zyp, then it is enough toput m =1 in
Theorem 3.1. Conversely, by Theorem 2.1, we get [G : Z(G)] <
p?, which follows that [G : Z(G)] = p? 0O

The following theorem gives a partial generalization of the
above corollary.

Theorem 3.3. If G is a finite nilpotent group of class 2 such
that |G'| = p, then
161 161
_ (3) 1 (%)
0.0 - (- (5 ) 7+ 1

Proof. If z € G\ Z(G), then |z°| = |z[z, G]| = |[z, G|, where
[z, G] is a subgroup of G’. Hence |z°| = p and so |Cg(z)| = g
The result follows easily.
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Theorem 3.4. Let G be a finite group such that 'z% is a p-
group of order p*.
() If G has no abelian mazimal subgroup, then
zZ(G G Z(G
P& = L[ (1) .2y (H2ON)]

(i) If G has an abelian mazimal subgroup, then

P(n,G) = I—Z(,—(gc,;)—)l [(Ii‘) +(p* - 1)(%) +p*(p - 1)(%)] -

Proof. (i) If G has no abelian maximal subgroups, then Cg(z) =
(Z(G), z) and so |Cg(z)| = |G|/p? for each z € G\ Z(G). Hence

o 2 (45, (%)

_:reZ(G) z€G\Z(G)

@ [2e(7) +1e\ Z(G>|(%)]

and the result follows.

(ii) Assume that G has a unique abelian maximal subgroup
M, which of course is unique. If z € M\ Z(G), then Cg(z) =
and so |Cg(z)| = |G|/p. Also if z € G\ M, then Cg(z) =
(Z(G), z) that is |Ce(z)| = |G|/p*. Now we have

P(n,G)

ﬁ(z ¢ E ez ) (5

n/ \z€Z(G) zeM\Z(G) zeG\M

- [|Z(G)| (') 1\ 2@ (fl) +IG\ M (L’J)]

and the result follows. O
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4. WREATH PRODUCTS OF FINITE ABELIAN GROUPS

We use the notations and terminologies in [3]. Let A and B
be any groups and A* be the weak direct product of copies of
A indexed by elements of B. If 0,(b) denotes the element of A*
with a on b-th component and 1 elsewhere, then an arbitrary
element of A* can be written in the form

Oa, (bl) **Oq, (bS);

where by, ..., b, are distinct elements of B and a,, ..., a, are any
elements of A. Then the wreath product A B is the semidirect
product of A* and B, with respect to the following action of B
on A*:
ga(b)™ = ga(bc™?),

where we denote an element ¢ of B by 7. in the canonical copy
of B in At B. An arbitrary element of A? B can be written
uniquely in the form

Oay(b1) - - - 0o, (bs)Ts,

where 0,4, (b1) - - - 04, (bs) is an element of A* and 73 is an element
of B. In the following theorem we give an analogue of Theorem
1.1in [3].

Theorem 4.1. Let G = A B be the wreath product of finite
abelian groups A and B. Then

__1 1417 |Bl—B(s)+a(s,tr,tn)
P(n, G) = m Z (H ( lb IAl )

8,t1,....tn€B \beB

where l, is the number of i such that t; = b and B(s) and
a(s,ty,...,ts) are the index of subgroups (s) and (s,t1,...,t,)
in B, respectively, for each s,t1,...,t,,b € B.
Proof. First suppose that B = Z,, is a cyclic group. Fix the
elements s,t;,...,t, € B and let g, hy,...,h, € G be elements
with the following expressions

g= o'al ©e0g,, Ts

and
h‘i = 0..1:.',1 v O.:B.',mT—tn
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where h; are pairwise distinct. Also let 3(s) = ged(m,s) and
afs, ty,...,tn) = ged(m, s, t1, ... ,t,) be the index of subgroups
(s) and (s,%1,...,t,) in B. According to the proof of [3, Theo-
rem 1.1], g and h; commute if and only if the following system
of equations hold for eachi=1,...,8(s)and j=1,...,n:

Ti — Ligs = Qi — Qiqy;

Tits — Tit2s = Qits — Qitott;
ZTitds = Tit(d+1)s = Qitds — Qit(d+1)s+t;
and

(1) @i+ aips + + Gitds = Gige; + Cigops; +* + Cigdare

where n = (d + 1)8(s).

By the first system of equations (z;i, ..., Z:m) can be chosen
in |A[#) different many ways, for each i = 1,...,n. We shall
count the number of n-tuples (z;;,...,Z:,) is such a way that

hi,...,h, are distinct. Clearly h; # h; if t; # t; and no re-
striction on z;; and zj; is needed. Moreover, if ¢; = ¢;, then we
should have (z;1,...,Zim) # (Zj1,...,Zjm). Let {; be the num-
ber of ¢; equal to 2. Then !; +--- 4+ 1, = m and any solution
to this equation is equivalent to an n-subset {ti,...,¢,} of B.
Hence the number of n-tuples (hy,...,hy) is

|AJACe) | A|A6)
() (%)
On the other hand, the equation (1) holds for each ¢; and one
easily see that

(2)  aitaipst -t Gigds = Gige + Gigsre + 0 F Givdsie

for each linear combination ¢t of ¢;,...,%,. Lett = ged(ty,...,t,).
Then the equation (2) distribute «f(s,t;,...,t,) independent
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subsystems
Q; + Qiys+ -+ Qipds = Qigt + Qipsye + - + Qitds+t
Qigt + Qigspt +**° + Qipdott = Qig2t + Qipsy2t + -+ Citds+2t

Qig(u—1)t T Cigot(u-1)t T+ Citds+(u-1)t
= Qitut T Gigstut + 0 + Citdstut

where u = B(s)/a(s,t1,-..,ts) is the order of subgroup (¢t +
(8)) = (t1 + (8),...,tn + (s)) of B/(s). Hence the number of
n-tuples (ai, ..., an) is

lAlm—(u—l)a(s,t;,...,tn) — ‘Alm—ﬁ(s)+a(s,t1,...,t,.).

Clearly the result holds by assuming B = {b; : ¢ € I} is any
abelian group and replacing s,t; by bs, b;,. Hence the proof is
complete. O
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