The Relationship between Series $\sum_{i=1}^{n} i^{m}$ and the Eulerian Numbers

Dan Guo

Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China

guopingwei@yahoo.com.cn

Abstract

In this paper, I study the Eulerian numbers $\langle A(m,k)\rangle_{k=1}^m$ and prove the relationship between $\sum_{i=1}^n i^m$ and $\langle A(m,k)\rangle_{k=1}^m$ to be $\sum_{i=1}^n i^m = \sum_{k=1}^m A(m,k)\binom{n+k}{m+1}$.

Keywords: Eulerian number, Combinatorial identity

AMS Classification: 05A05, 05A19

1 Introduction

Let $\pi = a_1 a_2 \cdots a_m \in S_m$ be a permutation of length m. The descent number $d(\pi)$ of π is defined as follows

$$d(\pi) = |\{i \colon 1 \le i \le m-1, \, a_i > a_{i+1}\}|.$$

Let m, k be positive integers. For $1 \le k \le m$, the Eulerian numbers A(m,k) are defined as $A(m,k) = |\{\pi \in S_m : d(\pi) = k-1\}|$, see Stanley [5, Chaper 1]. Clearly, A(m,1) = A(m,m) = 1 and $\sum_{k=1}^m A(m,k) = m!$.

By definition, we can easily acquire the following table.

m	$\langle A(m,k)\rangle_{k=1}^m$
1	1
2	1 1
3	1 4 1
4	1 11 11 1

Table 1 The Eulerian numbers for m = 1, 2, 3, 4

On the other hand, we know

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) = \binom{n+1}{2},$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) = \binom{n+1}{3} + \binom{n+2}{3},$$

$$\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2 = \binom{n+1}{4} + 4\binom{n+2}{4} + \binom{n+3}{4},$$

$$\sum_{i=1}^{n} i^4 = \frac{1}{30}n(n+1)(2n+1)(3n^2+3n-1)$$

$$= \binom{n+1}{5} + 11\binom{n+2}{5} + 11\binom{n+3}{5} + \binom{n+4}{5}.$$

If we let $\left\langle \binom{n+k}{m+1} \right\rangle_{k=1}^m$ be a basis, its coefficients coincide with the Eulerian numbers as in Table 1. Then, a natural question is whether $\sum_{i=1}^n i^m$ and $\sum_{k=1}^m A(m,k) \binom{n+k}{m+1}$ are equal in the general case. The aim of this paper is to confirm this result.

2 The relationship between $\sum_{i=1}^{n} i^{m}$ and $\langle A(m,k) \rangle_{k=1}^{m}$

For convenience, we let A(m,k) = 0 for k = 0 or k > m. For $\pi = a_1 a_2 \cdots a_m$, let $\pi' = a'_1 a'_2 \cdots a'_m$ where $a'_i = m + 1 - a_i$, and it is easy to see $d(\pi) = m - 1 - d(\pi')$. Then the following identity is immediate.

$$A(m,k) = A(m,m+1-k). (2.1)$$

To prove our result, we need the following lemma.

Lemma 2.1 For positive integers $m, k \ (k \le m+1)$, we have

$$A(m+1,k) = k A(m,k) + (m+2-k)A(m,k-1).$$

Proof. There are two ways we can get an (m+1)-permutation π with (k-1) descents from an m-permutation π' by inserting the entry m+1 into π' . Either π' has k-1 descents, and the insertion of m+1 does not form a

new descent, or π' has k-2 descents, and the insertion of m+1 does form a new descent.

In the first case, we have to put the entry m+1 at the end of π' , or we have to insert m+1 between two entries that form one of the k-1 descents of π' . This means we have k choices for the position of m+1. As we have A(m,k) choices for π' , the first term of the right-hand side is explained.

In the second case, we have to put the entry m+1 at the front of π' , or we have to insert m+1 between two entries that form one of the (m-1)-(k-2) ascents of π' . This means that we have m+2-k choices for the position of m+1. As we have A(m,k-1) choices for π' , the second part of the right-hand side is explained, and the lemma is proved.

Theorem 2.2 For any positive integer m,

$$\sum_{k=1}^{m} A(m,k) \binom{x+k-1}{m} = x^{m}.$$

Proof. Let

$$f_m(x) = \sum_{k=1}^m A(m,k) \binom{x+k-1}{m}.$$

Then it is easy to see $f_1(x) = x$. For $m \ge 2$, by Lemma 2.1, we have

$$f_{m}(x) = \sum_{k=1}^{m} (k A(m-1,k) + (m+1-k)A(m-1,k-1)) {x+k-1 \choose m}$$

$$= \sum_{k=1}^{m-1} k A(m-1,k) {x+k-1 \choose m} + \sum_{k=2}^{m} (m+1-k)A(m-1,k-1).$$

$${x+k-1 \choose m}$$

$$= \sum_{k=1}^{m-1} k A(m-1,k) {x+k-1 \choose m} + \sum_{k=1}^{m-1} (m-k)A(m-1,k) {x+k \choose m}$$

$$= \sum_{k=1}^{m-1} A(m-1,k) \left(k {x+k-1 \choose m} + (m-k) {x+k \choose m} \right)$$

$$= \sum_{k=1}^{m-1} A(m-1,k) \left(k {x+k-m \choose m} + (m-k) {x+k \choose m} \right) {x+k-1 \choose m-1}$$

$$= x \sum_{k=1}^{m-1} A(m-1,k) {x+k-1 \choose m-1}$$

$$= x f_{m-1}(x).$$

By induction, we get the required result. This completes the proof.

Now, we can prove the main result of this paper.

Theorem 2.3 For any positive integers m, n,

$$1^m + 2^m + \dots + n^m = \sum_{k=1}^m A(m,k) \binom{n+k}{m+1}$$

Proof. From Theorem 2.2,

$$\sum_{i=1}^{n} i^{m} = \sum_{i=1}^{n} \sum_{k=1}^{m} A(m,k) \binom{i+k-1}{m}$$

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} A(m,k) \binom{i+k-1}{m}$$

$$= \sum_{k=1}^{m} A(m,k) \sum_{i=1}^{n} \binom{i+k-1}{m}.$$

On the other hand, for all k = 1, ..., m, we have

$$\sum_{i=1}^{n} \binom{i+k-1}{m} = \binom{k}{m} + \binom{k+1}{m} + \dots + \binom{k+(n-1)}{m}$$
$$= \binom{k+1}{m+1} + \binom{k+1}{m} + \dots + \binom{k+(n-1)}{m}$$
$$= \binom{k+n}{m+1},$$

which implies the theorem.

Acknowledgments. I would like to thank the referee for suggesting the useful references [1, 2, 3, 4].

References

- [1] T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. 9 (2004), 15-18.
- [2] T. Kim, On p-adic q-l-functions and sums of powers, J. Math. Anal. Appl. 329 (2007), 1472-1481.

- [3] T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), 179-187.
- [4] T. Kim, Some identities on the q-Euler polynonomials of higher order and q-stirling numbers by the fermionic p-adic integral on \mathbb{Z}_p , Russ. J. Math. Phys. 16 (2009), 484-491.
- [5] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, UK, 1999.