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Abstract

Let G be a cactus, which all of blocks of G are either edges or
cycles. Denote ¥(n,r) the set of cactuses of order n and with r
cycles. In this paper, we present a unified approach to the extremal
cactuses, for Schultz and the modified Schultz indices.

1 Introduction

Let G = (V, E) be a simple connected graph with the vertex set V(G) and
the edge set E(G) and |V| = n, |E(G)| = m are the number of vertices
and edges G, respectively. For any u,v € V, dg(u) (or simply by d(u))
and dg(u,v) (or simply by d(u,v)) denote the degree of u and the distance
(i.e.,the number of edges on the shortest path) between u and v, respec-
tively. Let P,, C, and S,(Kjn-1) be the path, cycle and the star on n
vertices.

The oldest and most thoroughly examined use of a topological index in
chemistry was by Wiener [1] in the study of paraffin boiling points, and the
topological index was called Wiener index or Wiener number. The Wiener
index of the graph G, is equals to the sum of distances between all pairs of
vertices of the respective molecular graph, i.e.,

wEe)= Y do(uv) (1)

{u,v}CV(G)

In connection with certain investigations in mathematical chemistry,
Schultz [2] in 1989 introduced firstly in connection with certain chemical
applications. Soon after, I. Gutman (3] named it the Schultz indez, defined
as

Wi(G):=5(G)= ) (do(w)+do(®)ds(w,v)  (2)
{up}CV(O)

This name was eventually accepted by most authors.
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Motivated by equation (2), I. Gutman [4] defined the modification of
W, (G), i.e.,

Wi(G):=8"(G):i= > (de(w)-dg(v))da(u,v) (3)
{u,0}CV(G)

which here we refer to as the modified Schultz indez. The Schultz and mod-
ified Schultz indices attracted much attention after them were discovered.
It has been demonstrated that W, (G), W.(G) and W(G) are closely mu-
tually related for certain classes of molecular graphs (5-9]). Klein et al [6]
derived an explicit relation between Wy.(G) and W(G) for trees:

Wi(G) = 4W(G) — n(n—1) (4)
A result analogous to equation (4) applies [3]:
We(G) =4W(G) - (n—1)(2n - 1) (5)

In [8], the authors derived relations between W(G) and W, (G), W, (G) for
the (unbranched) hexagonal chain composed of n fused hexagons, i.e.,

Wi (C) = %W(G) - %(27; +1)(20n +7) ()

W.(G) = 5W(G) - 3(2n +1)2 (7)

In [10], A. I. Tomescu characterized the connected unicyclic and bi-
cyclic graphs in terms of the degree sequence, as well as the graphs in these
classes minimal with respect to the Schultz index are given. In [11], O.
Bucicovschi and S. M. Cioab3 studied the Schultz index of graphs with
given order and size, and determined the minimum degree distance of a
connected graph of order n and size m. In [12-15], the authors derived the
formulas for calculating the modified Schultz index of nanotubes covered
by C4 and polyhex nanotubes, C4Cg nanotubes. In [16], the authors inves-
tigated bicyclic graphs with extremal modified Schultz index. More results
in these directions can be found in Refs. [17-20].

We say that the graph G is a cactus if any two of its cycles have at
most one common vertex. If all cycles of the cactus G have exactly one
common vertex we say that they form a bundle. Denote ¥(n,r) the set of
cacti of order n and with r cycles. Obviously, ¥(n,0) is the set of all trees
and ¥(n, 1) is the set of all unicyclic graphs. We use G°(n,r) to denote the
cactus obtained from the n—vertex star by adding  mutually independent
edges (see Figure 1).

In this paper, we present a unified approach to the extremal Schultz
and modified Schultz indices for cactuses.
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Figure 1. The graphs G%(n,7)

2 Three transformations which decrease the
Schultz and modified Schultz indices

Let E' C E(G), we denote by G—E’ the subgraph of G obtained by deleting
the edges of E/. W C V(G), G — W denotes the subgraph of G obtained
by deleting the vertices of W and the edges incident with them.

Firstly, We introduce some known Lemmas, which are useful to our
proof.

Lemma 2.1. Let C, be the cycle of order n, v is a vertex on C,,. Then

in?, if n is even;

ze‘;c,,)dc“(v’x) - { %(n"' —1), ifnisodd.
ind, if n is even;
W(Cn) = { -Z-(n3 —n), ifn isodd.

Similar to the Lemma 2.1, we have
Lemma 2.2. Let C,, be the cycle of order n, then

if n is even;

1.3
W+(Cn) = W‘(Cn) = 4W(Cn) = { .Z.(né —_ n), if n is odd.

Lemma 2.3. Let G°(n,r) be the cacti depicted in Figure 1, then

(i) We(GO(n, 7)) = 4rn — 107 + 3n% — Tn + 4;

(ii) Wu(G%(n,r)) = 4r? + 6rn — 167 + 2n? — 5n + 3.

Proof. For all pairs (z,y) of vertices in G%(n,r), we have d(z,y) =1
or d(z,y) = 2. We divided the vertices into two groups-the center vg, the
neighbors vy, vg, - - -, Vg, of the center, and the leaves vorq1,*+, Un—2r—1.

Case (i) By the definition of Schultz index, we have

(1) Obviously, there are n + r — 1 pairs with d(z,y) = 1, all the total
pairs for the contribution to the Schultz index are:

dxr+nx(n—-2r—-1)+2rx(n+1)
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(2) All pairs of the form (z,y) = (vi,v;)(vi % v;), (z,y) = (vi,v;) for
1<i<2r,2r+1<j<n-2r-1) satisfy d(z,y) = 2. The total pairs for
the contribution to the Schultz index are:

2 x (n_22r_1)+4[(22r)—r]+3x2r><(n-—2r—1)

Summing up, the Schultz index of G%(n,r) is
Wi (G%(n, 1))
= dx7+nx(n-2r—1)+2rx(n+1)+2x {2x ("~ 2"1)
+4[(%) =] +3x 2r x (n —2r — 1)}
= 4rn+3n2—-10r-Tn+4
Case (ii) By the definition of modified Schultz index, we have
(1)All the total pairs with d(z,y) = 1 for the contribution to the mod-
ified Schultz index are:

4xr+(n—-1)xn—-2r-1)+2rx2(n-1)

(2)All pairs satisfy d(z,y) = 2 for the contribution to the modified
Schultz index are:

(n_22r_1) +4[(Z;T) =7 +2x2r x(n-2r-1)

Summing up, the Schultz index of G%(n,r) is
Wi(G%(n, 1))
= 4xr+(n-1)x(n-2r-1)+2rx2(n—-1)+2x {7
+4[(2') —r]+2x2r x (n-2r—-1)}
= 4r2 +6rn+2n%—16r —5n+3
Nextly, We give three transformations which will decrease the Schultz
and modified Schultz indices as follows.
Transformation A: Let uv be an edge in G, dg(v) > 2, Ng(v ) =
{u,wy,ws, ---,w,}, and wy,ws,---,w, are leaves adjacent tov. G =
— {vwy,vws, - -+, vw,} + {uwy, uwy, - - -, vws}
Lemma 2.4. Let G’ be obtained from G by transformation A, then
(). W (G') < W (G); (ii)[16]. WL(G') < WL(G).
Proof. (i) Let Gy = G — {v,w1,ws, -, ws}, Gj = Go — u. By the
definition of the Schultz index, we have
W4 (G)
= T (@) +dgyWMaymy) + (5+2) T doy(a)doy (x.)
O

z,y€Gy
+y(dg(u) +2s+1) Z dgy(z,u) + (25 + 1) E dg; ()

ze€Gy

+(3s +1)|Gy| + (23 + l)dc(u) +3s2+3s+1
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Wi (G")
= X (dgy(z) +day(y))day (7, y) + (s +2) Z dg; (z)dgy(z, u)

z,y€G,
+(da(‘u) +2s+1) Z dG' (zyu)+ (s + 1) z: d(;-l (z)

z€G, o
+(s+1)|G)| + (s + l)dc(u) +3s2+4s+1
Therefore,
Wi(G) — Wi (G) =s Z day () + 2s|Gy| + sdg(u) — s > 0.

Remark 1. Repeatmg Transformatlon A, any cyclic graph can be
changed into a cyclic graph such that all the edges not on the cycles are
pendant edges.

Transformations B. Let v and v be two vertices in G. uy,us, -, us
are the leaves adjacent to u, vy, v, - - -, v; are the leaves adjacent to v. G' =
G—{vv1,vvg, -+, vve }+{uvy, wvy, - - , v}, G” = G—{uuy, uug, - - -, utg }+
{vuy,vug,- -, vus}.

Lemma 2.5. Let G’ and G be obtained from G by transformation B.

Then

(i)- Wi (G) > Wy (G') or Wi (G) > Wi (G");

(ii) [16). Wi(G) > WL (G') or W,(G) > W,(G").

Proof. (i) Let G§ = Go — {u,v}. By the definition of Schultz index,
we have

Wi (G') = Wi (G)
= 4(8;-t) + GZC-"[dGa (z) + dg(u) + tlde(z, u) + eEG" [dGB (z) +da(v)

—tlda(z,v) + (de(w) + de(v))da (v, v) + (s + DL + do(u) + 8|+
(s +t)[1 +de(v) — t|(da(u,v) + 1) + ¢ Z 1+ dc~ (2))(de(z, u)

—4(3) — 4(3) — 2st(da(u,v) +2) - 2 [do; (@) + do(w)]
dg(z,u) = IEEG‘[dGa (z) + de(v)]lda(z, v) [dc: u) + de(v))da(u, v)

—s[1 + dg(u)] — t[1 + da(v)] — 3[1 + de(v)](dc(u,v) + 1)
~t[1 + do(u)|(da(w,v) +1) ¢ 3 [1+do; (=)](da(z,v) +1)
= H 3 2+ doy(@)ldo(a,) — dof@,)] + tda(w v)ldo(v) ~ do(u)]
—t(3s + t)dc(u, v)}
Similarly, we have

Wi(G") - Wy (G)
= S{xezc:;'(2 + dg; (2))[de(z,v) — da(z, u)] + sde(u, v){de(u) — de(v))

—5(3t + s)dg(u,v)}
If Wi (G') — W4 (G) > 0, thus
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Z (2 + dg; (z))de(z, v) + da(v)de(u,v)
> Z (2 + dgy (2))de(2,v) + da(u)de (v, v) + (35 + t)dg (v, v)

z€Gy
Then .
Wi (G) =Wy (G)
= s 62@(2 + dg; (z))de(z,v) — ezc (2 +dg;(z))de(z, u)

+dg(u)de(u,v) - de(v)de(u,v) — (3t + s)dg(u,v)}
< —4s(s+t)dg(u,v) <0
Otherwise, W.(G") — W4 (G) > 0, thus
z (2 + de; (z))dg (2, v) + de(u)de (4, v)

> E (2 + dg; (z))de(z, v) + de(v)de (v, v) + (3t + s)de(u, v)

z€Gy
Then
Wi(G) - Wi (G)

= t{ ezc_(2+dc~(x))dc(x yu) = Z_(2+d05(x))da($,v)

+da(v)dc(u, v) — dc;(u)dg(u,'u — (3s + t)de(u,v)}
< —A4t(s+t)dg(u,v) <0
Remark 2. After repeating transformation A, repeating transforma-
tion B, any cyclic graph can be changed into a cyclic graph such that all
the pendant edges are attached to the same vertex.
Lemma 2.6. Suppose that G is a graph of order n > 7 obtained from
a connected graph Go ¥ P, and a cycle Cp = vy - - - vp_1vp(p = 4 for p
is even; otherwise p > 5) by identifying vy with a vertex v of the graph
Go. Let G’ = G ~vp_1v,_2 +vvp_3. We name above operation as grafting
transformation C. Then (i). Wi (G) > W, (G'); (ii)[16]. W.(G) > W.(G").
Proof.(i) Let Gy = Go —v, C; = Cp — {v,v,1}, Cj_, = Cp_1 —v. By
the definition of Schultz index, we have
Case (1). p is even.
W4 (G)
= 2 dg(2)dg;(¥)dey(z,y) + EEG (dg; (z) + do(v))dgy (z, v)
cecr

z,y€G,

+4 S doy(z,y) + 2+ do()) z": de (z,)
z,yeC},

+4 T doy(z,9) +2 +dg(v) + z 2+ dgy (2))
z€C;, z€Gy

> [dc:' (z.v)+ X (2+dc;,($))[dc;, (z,v) +1]
y€C; z€Gy,

- >:"G oy (@) + dey Wldey(a:1) +p 3 doy(a)doy a0+
z,¥y€EGy

[do(v) +2p - 2] ZG day(2,v) + & Z dc' (2) + Brdg(v)
z€G, z€G, 0

+E - E L E(V(Gh)| - 1)

188



Similarly, we have

Wi(G)

= ZG [day (z) + dey (v)ldey (z,y) +p g: dg; (z)dgy (z,v)
z,¥€6G, x G
+ldg(v) +2p - 2] Z dgy (z,9) + (& — B +1) 2 doy(2)

z€Gy z€Gy
+(E —§+1)dc(v)+22- -p*+3p—4
+(& —p+ )(IV(Go)l - 1)
Thus,
Wi (G) - Wi(G)
= (1-5) GZ dey (z) + (1 - Bde(v) + (1 - p)(IV(Go)| - 1)
o3+
< 0 (sincep=4)
Case (2). p is odd.
Similar to case (i), we have
W+(G') Wi (G)
= (3-%) ; dgy(z) + (3 — §da(v) + (2 - p)(IV(Go)l - 1)
Q(P 4)2:‘ 2
< 0 (since p=>5)
The completes the proof.

3 Results

In this section, we determine the extremal cactuses for the Schultz and
modified Schultz indices.

In [21], Boroviéanin and Petrovié showed that G°(n,r) is the maximal
spectral radius in the set ¥(n,r). In [22], H. Liu and M. Lu derived a
unified approach to extremal cacti for Wiener index, Merrifield-Simmons
index, Hosoya index and spectral radius. In [23], Lu, Zhang and Tian prove
that G°(n,r) is the minimal Randié index in the set ¥(n, 7).

Let C(ay,az,---,a,; k) be a graph obtained from r cycles C,,(1 £ i < 1)
and k edges by taking one vertex of each cycle and each edge, and com-
bining them as one vertex. Denote ¥%(n,r) = {C(ay,a2,-+,a,;k) : a; >

3,1<i<m Zr:(a, —1)+k+1=n}. Then ¥%(n,r) C #(n,r) and
GOn,r) = C(3 3 ,3n—2r —1).
\_\,_/

r

Theorem 3.1. Let G € ¥(n,r), then
Wi (G) 2 Wi (G%(n,1)); Wi(G) 2 Wi(GO(n, 1))
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The equalities hold if and only if G = G%(n, 7).

Proof. Choose G € 4(n,r) such that the Schultz index and modified
Schultz index of G are as small as possible.

Let V. = {v € V(G) : v is a cut-vertex of G}

We first prove that the graph |V;| = 1. In order to do that we will prove
the following claim.

Claim 1. G € ¥%(n,r).

Proof of Claim 1.

Assume that |V;| > 1. Let u,v € V; and H is a component containing
u,v such that Ng(u) \ Ng(u) # 0 and Ng(v) \ Ng(v) # 0. Denote by
Ne(u) \ Nu(u) = {u1,uz,---,us}, Ng(v) \ Ng(v) = {v1,v2,+,v;} for
s,t 2 1. Let G} = G — {uug,uuy, -+, vu,} + {vuy,vug,---,vu,} and
G5 = G — {vv1,vv,- -+ ,vue} + {uwv1, uvy, - -+, ue}, then G1,G5 € 4(n,r).
By Lemma 2.5, W, (G7) < W4(G), Wi(G}) < W.(G) and W, (G3) <
Wi(G), W.(G3) < W.(G) , which contradict to the choice of G. Therefore,
[Ve| = 1, such that G € €°(n,7).

Follows from Claim 1, the graph G is a bundle and denote the only
cut-vertex of G by v.

Secondly, we prove that if G contains a tree T attached to a cycle at
some vertex u (called the root of T') then T consists only of edges containing
u, i.e.,

Claim 2. Any tree T attached to a vertex v of one of the cycles in the
graph G contains only vertices at distance one from its root w.

Proof of Claim 2.

In the opposite case, there exists a tree Tj(with root v; € C;) and a
vertex v; of T; whose distance from v; is greater than one. We will get
a graph G* = G — vj_1v; + vj_2v; (suppose that the path between v;,v;
is v;+ -+ vj_2vj_1v;), and G* € ¥(n,r). Further, by Lemma 2.4, we have
Wi (G*) < Wi(G) and W, (G*) < W.(G), which contradict to the choice
of G.

Hence, any tree T attached to a vertex of some cycle of G consists only
of edges with exactly one common vertex.

Thirdly, We shall prove the following claim.

Claim 3. Any tree T of the graph G is attached to the common vertex
v of all cycles of the bundle.

Proof of Claim 3.

This can be resulted directly from Lemma, 2.5.

Hence G is a bundle with a unique tree attached to the common vertex
of all cycles of G, and this tree contains only vertices at distance one from
the root.

Finally, we prove

Claim 4. G = G%(n,7).

Proof of Claim 4.

190



Suppose that G % G%(n,r). Then there exists a cycle
Cp = wwiwy * + Wp—1W

with p > 4. Let G* = G — wywy + wws, then G* € G%(n,r) and by Lemma
2.6, Wi (G*) < W4(G) and W, (G*) < W,(G), a contradiction.
Combining arguments from Claims 1-4, we have that G = G%(n,r).

Follows from Lemma 2.3 and Theorem 3.1, we arrive at the following
result.

Theorem 3.2. The minimal Schultz and modified Schultz indices in
the set ¢(n,r)(1 < r < |25}]) are obtained uniquely at G%(n, 7).

Note that G%°(n,0) = K; n—1 and by Lemma 2.3, we have

Theorem 3.3. (i) W4(Go) > W4(G1) > -+ > Wi (G asa();
(i) Wa(Go) > Wi(G1) > -+ > Wu(G 201 ))-
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