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Abstract

Let G(n;02,+1) denote the class of non-bipartite
graphs on n vertices containing no 6g4+;-graph and
f(n;02k41) = max{e(G) : G € G(n;02¢+1)}. In this pa-
per we determine f(n;6s), by proving that for n > 11,
f(n;6s5) < [("—_‘IILQJ + 1. Further, the bound is best pos-
sible. Our result confirm the validity of the conjecture
made in (1], "Some extermal problems in graph theory",
Ph.D thesis, Curtin University of Technology, Australia
(2007).

1 Introduction

For our purposes a graph G is finite, undirected and simple. We
denote the vertex set of G by V(G) and the edge set of G by
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E(G). The cardinalities of these sets are denoted by v(G) and
E(G), respectively. The cycle on n vertices is denoted by C,.
Let C be a cycle in a graph G, an edge in G that joins two non-
adjacent vertices of C is called a chord of C. Further, a graph G
has a ;- graph if G has a cycle C of length k£ and C' has a chord
in a graph G. Let G be a graph and u € V(G) . The degree
of a vertex u in G, denoted by dg(u) , is the number of edges
of G incident to u. The neighbor set of a vertex u of G in a
subgraph H of G, denoted by Ny (u) , consists of the vertices of
H adjacent to u; we write dy(u) = |Ng(u)|. For vertex disjoint
subgraphs H; and H; of G we let E(H,, H,) = {zy € E(G) :
z € V(Hl),y S V(Hg)} and 8(H1, Hz) = IE(HI, H2)| .

For a proper subgraph H of G we write G[V(H)] and G —
V(H) simply as G[H] and G — H respectively.

In this paper, we consider the Turdn-type extermal problem
with the §-graph being the forbidden subgraph. Since a bipar-
tite graph contains no odd f-graph, we consider non-bipartite
graphs. First, we recall some notation and terminology. For a
positive integer n and a set of graphs F, let G(n; F) denote the
class of non-bipartite F-free graphs on n vertices, and

f(n; F) = max{&(G) : G € G(n; F)}.

Moreover, let H(n;F) denote the subclass of G(n;F) con-
sisting of Hamiltonian graphs in G(n; F). We write

h(n; F) = max{E(H) : H € H(n; F)}.

An important problem in extermal graph theory is that of de-
termining the values of the functions f(n; F) and h(n;F). Fur-
ther, characterize the extermal graphs of G(n; F) and H(n; F)
where f(n;F) and h(n;F) are attained.

For a given C. , the edge maximal graphs of G(n;C;,) have
been studied by a number of authors [2, 4, 5, 6, 9]. Bondy [3]
proved that a Hamiltonian graph G on n vertices without a cycle
of length » has at most %n2 edges with equality holding if and
only if n is even and r is odd. Hoggkvist et al. [8] proved
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that f(n;C,) < [@#J + 1 for all . This result is sharp only

for r = 3. Jia [10] proved that f(n;Cs) = [gﬁ}%ﬁ" + 3 for
n > 9, and he characterized the extermal graphs as well. Jia
[10] conjectured that f(n;Cox+1) < [gn—fﬁj +3forn >4k +2
. Recently, Bataineh [1] confirm positively the above conjecture
for n > 36k. Moreover, Bataineh [1] conjectured that f(n;0;5) <
[i’i;—‘ﬁj +1.

In this paper we establish the above conjecture by proving
that for n > 9,

+ L

smon) < | L]

Furthermore, the bound is best possible.

2 Main Results

The following results will be used frequently in the sequel:
Theorem 2.1 ([10]) Let G € G(n;Cs),n > 9. Then

e < | & ;2)2J 3

Furthermore, equality holds if and only if G € GZ(n) for
n > 10 where GZ(n) denote the class of graphs obtained by
adding a triangle, two vertices of which are new, to the complete

bipartite graph K |4(n-2)|,[4(n-2)]

Lemma 2.2 ([7]) For 5 < n < 8, let G be a graph on n
vertices containing no fs-graph as a subgraph. Then £(G) < 7

for n = 5, and £(G) < [”{J for 6 <n < 8.

In the following theorem we determine the maximum number
of edges of a graph with n vertices containing no fs-graph as a
subgraph.
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Theorem 2.3 For a positive integer n > 9, let G be a graph
on n vertices containing no fs-graph as a subgraph. Then

£(G) < [”{J .

Proof: We prove the theorem by using strong mathematical
induction. For n = 9. Let G be a graph with 9 vertices con-
taining no fs-graph as a subgraph. If G is a bipartite graph,
then £(G) < 20 as required. Now, consider that G is a non-
bipartite graph. If G has no cycle of length 5, then by Theorem
2.1 we get £(G) < 15. So, we need to consider that G has a
cycle of length 5. Let z,22z3z42521 be the cycle of length 5 in G,
and let y1, 2, y3s and ys be the remaining vertices in G. Define
A = G[z1, T2, T3, T4, T5) and B = Gy, Y2, ¥s, ya)- Note that A
contains no chord as otherwise 65 is produced. Thus, £(A) = 5.
Also, £(y;, A) < 3 for i = 1,2, 3,4 with equality hold only if the
vertex y; is adjacent to three consecutive vertices of A, otherwise
05 is produced. Define H = {y; € B : E(y;, A) = 3,i = 1,2, 3,4}.
Note that E(G[H]) = @ and |H| < 2, otherwise G would have
05 as a subgraph. We consider three cases according to the value
of |H|.

Case 1: |H| = 0. Note that £(B, A) < 8. Thus,

£(G)

E(A) + £(B) + £(B, A)
5+6+8

92
&l
Case 2: |H| = 1. Suppose that £(y;, A) = 3, say y, is adjacent
to 1,72, z3. Observe that, if y;y; is an edge in B, for some

J = 2,3,4, then £(y;,A) < 1 and equality holds when y; is
adjacent to z,, otherwise G would have 65 as a subgraph. Hence

IA

A

196



£(B) +&(B, A) < 12,

E(G) = E(A)+E(B)+E(B,A)

9+ 12
92
5]

Case 3: |H| = 2. Using the same argument as in case 2, we
have

IA

N

E(G) = E(A)+E(B)+E(B,A)

< 5+5+8
92
3

Now, we suppose the result holds for 9 < k < n, so we need to
prove it for n. Let G be a graph on n vertices containing no
fs-graph as a subgraph. We now consider two cases according
to parity of G.

Case 1: G is a bipartite graph. Then

A

n

£(G) < [z |

Case 2: G is a non-bipartite graph. So we need to consider two
subcases according to the existence of a cycle of length 5 in G.

Subcase 2.1: G contains no cycle of length 5. Then by
Theorem 2.1 we get

£G) < i(n _ 2)2J +3
2
= _%—} -n+4
n2
< IJ (Sinse n > 9).
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Subcase 2.2: G has a cycle of length 5. Let z,z2z3z4752,
be a cycle of length 5 in G. Define A = G[z,, 2, 3, 74, T5) and
B = G — A. Note that A has no chord, otherwise a 85-graph is
produced. As above, define H = {z € B : £(z, A) = 3}. Note
that every vertex of H is adjacent to three consecutive vertices.
Further, E(G(H)) = @ and |H| < 2, otherwise G would have
fs. Now, we consider 3 cases according to the value of | H|. Now,
we consider the case |H| = 0 (i.e., every vertex of B adjacent to
at most two vertices of A). Then by induction step and Lemma

2.2, we have £(B) < [!Lfﬁj if n # 10 and £(B) < 7 if n = 10.
Thus, for n # 10,

E(G) = E(B)+£&(B,A)+E(A)

l@-—TE)XJ+2(n—5)+5
n?—2n+5
4

- |3

E(B) +£(B, A) + £(4)
< 7+10+5

)

We now consider the case |H| = 1 (i.e., only one vertex of
B adjacent to three vertices of A, say z). Suppose that z is
adjacent to z1, T2, 3. Set A; = G[A,z] and B; = G — A; (see
Figure 1).
Let z be a vertex in B;. If zz is an edge in B, then £(z,4) < 1
and equality holds when 2z is adjacent to z;, otherwise G would

AN

IA

And for n = 10,

£(G)

A
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A, B,

Figure 1: This Figure depicts the situation in case |H| = 1.

have 65 as a subgraph. Thus, £(A4;) + (B, A;) < 8+2(n—6).
By induction step, £(G) < lL';GX J if n # 10,11, and so

E(G) = &(By)+E(B1, A1) +E(A)
2
< lMJ+2(n—6)+8

4
< n? —4n+ 20
- 4
<

n2
5
If n = 11, then by Lemma 2.2 £(B,) < 7, and so
E(G) = &(B1)+E&(B1, A1) +E(A)
< 7+10+8

1

|-

Similarly, if n = 10, then it is clear that £(B;) < 6, and so

E(G) = &(B1)+E&(Br,A) +E(A)
< 6+8+8

2
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Finally we consider the case |H| = 2 (i.e., Exactly two vertices
of B adjacent to three vertices of A). Suppose that, £(z, A) =
E(y, A) = 3, say z is adjacent to z,z2, 3. Then y is adjacent
to z1, x4, x5 or adjacent to x3, z4,z5. Without loss of generality,
we assume that y is adjacent to z1,z4,2s5. Set A; = G[A, z,y]
and B; = G — A; (see Figure 2). Let 2z be a vertex in B,.

B, A;

Figure 2: This figure depicts the situation in case |H| = 2.

As in the above, if zz or zy is an edge in B, then £(z, A) <
1. Moreover, no vertex of B is adjacent to both z and y, (as
otherwise if z € B is adjacent to both z and y, then zyz;z522 is
a 05, which is a contradiction). Thus, £(A;) +E&(B;, A7) < 11+
2(n — 7). By induction step, £(G) < [fl;—‘*ﬁj if n # 10,11, 12,
and so

E(G) = E(By)+E(By, Ag) + E(As)
2
< {(”;7) } +2(n—7)+11
< n? — 6n + 37
- 4

< m .

B !
For n = 10,11,12, we can use the same arguments as above,
by taking into account that for n = 10,E(B;) < 3, for n =
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11,E(B;) < 6 and for n = 12,E(B;y) < 7. This completes the
proof.

We now determine f(n;0s) and h(n;05). We begin with the
following construction: For odd n, let G; be the graph obtained
from K 1(n—1),3(n—1) DY subdividing an edge. For even n > 8, let
u,v be two vertices in the same bipartition set of K 22 Let
G be the graph obtained from K3 =z +uv by deleting sn edges
incident to u or v such that Ng, (u) N Ng,(v) = @,dg,(u) +
dg,(v) = 3n + 2, dg,(u) > 2 and dg,(v) > 2. Note that G; and
G, are Hamiltonian graphs containing no 65. Examples of the
graphs G; and G, for n = 7 and n = 8, respectively, are shown
below in Figure 3.

Gz Gl

Figure 3: G; and G, represent examples of the above construc-
tion in cases n = 7, 8.

Now, in the following theorem we determine f(n;8s).
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Theorem 2.4. Let G € G(n;05). Then,

f(n;6s) < l(n;l)zJ +1

for n > 11. Furthermore, the bound is best possible.
Proof: Let G € G(n;05). If G has no cycle of length 5, then
by Theorem 2.1 we have

f(n;5) < V";WJ +3

for n > 9. Thus,

5(0)3{ - J+3

< l(n;l)“’J +1.

So we need to consider the case when G has a cycle of
length 5. Let ziz2z3z4z521 be a cycle of length 5 in G and
A = G2y, 22, 73, 24, Z5)- Define R = G — A. Observe that A has
no chord, as otherwise G would have 05, so £(A) = 5. We want
to find £(R, A). Now, as in the argument of proof of Theorem
2.2, any vertex ¢ € R, z is adjacent to A by at most 3 edges.
Moreover, if z is adjacent to 3 vertices of A, then they must be
consecutive. Now, define H = {z € R: £(z, A) = 3}. Observe
that E(G[H]) = @ and |H| < 2, otherwise G would have 65.
Now, we consider 3 cases according to the value of |H|.

Case 1: |H| = 0. Then any vertex in R has at most two
neighbors on A. And so, £(R, A) < 2(n — 5). By Theorem 2.3,

we have
E(R) < [(”‘ 5)2J .

4

But,
E(G)=E(R)+E(R,A)+E(A)
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Hence,

_ 2
EG) < (n—4—5)—J+2n—10+5
-n2—10n+25+8n—20J
<
= 1
_ n—-2n+5
- =
| (n—1)?
= |+

Thus, we have

_1)2
£(G) < l(” 41) j+1.
Therefore,

f(n;05) = max{€(G):G € G(n;6s)}

RTEIN

Case 2: |H| = 1. Let H = {u}. Note that, as in Case 2 of
Theorem 2.1, every vertex in Ng(u) has at most one neighbor on
A. Define Ry = R — H. Then by Lemma 2.2 and Theorem 2.3

E(Ry) < [S"—}‘?L”J if n % 11 and E(Ry) < 7 if n = 11. Observe

that any vertex in R; — Ng,(u) has at most two neighbors on
A. Thus,

E(Ry, A) < 2(n — 6) — | Np, (u)|.

and
8(R1, H) < |NRl(u)l .
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Hence,

£(G)

IA

IA

E(A) + E({u}) + E(Ry) + E(Ry, A) + E(Ry, {u})

+E(A4, {u})
)2
5+0+[(n 6)
+|NR1(U)|+3
_R\2
(n46)J+2n—4
n?2—12n+ 36 + 8n — 16
i 4
n? —4n + 20
4

(n ; DzJ +1.

ifn#11. Forn =11,

Case 3: |H| = 2. Let H = {u,w} and R, = R-H. If
|Na(u) N Na(w)| > 2, then 65 is produced . So we have

Thus, without loss of generality, we assume that Na(u) = {z;, T, z3}
and Na(w) = {z1,24,25}. By Lemma 2.2 and Theorem 2.3
E(Ry) < {@J if n # 11,12 and £(R,) < 7 if n = 12. More-
over, it is easy to see that £(R;) < 6 if n = 11. Note that any
vertex in R; has at most two neighbors on A. Thus,

E(G) 7+10+38

25

102
[TJ +1

I IA

A

INa(u) N Na(w)| = 1.

E(Ry, A)<2(n—T)

204
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Now, we want to find £(R;, H). Observe that | Ng, (u)NNg, (w)| =
0, otherwise G would have 6s. Also, |Ng, (u)|+|Ng, (w)| < n—7.
Note that every vertex in Ng,(u) has at most one neighbor on
A. Similarly for the vertices in Ng, (w). Thus,

E(Ry1,A) £ 2(n —7) — |Ng,(u)| — | Ng, ()|
and

E(Ry, H) = |Ng, (u)| + | N, (w)}

EG) = ER)+E(A)+EH) + E(Ry, A) + E(Ry, H)

+&(A, H)
(n—17)%
L 4 -
— | Ng, (w)| + | Ng, (w)| + | Ng, (w)| + 6
(n=T7)>°
L 4 -
n? — 14n + 49 + 8n — 12J

+54+0+2(n—7) — |Ng,(u)|

IA

+2n—-14 + 11

IA

IA

4
_ |n*—6n+37
| 4

< (L—_l)_ZJ_H.

4

if n # 11,12. For n = 11,12, we use the same arguments as
above, by taking into account that for n = 11,&(R;) < 6, and
for n = 12,E(R;) < 7. Note that the bound is achievable by G,
and G in the above construction. This completes the proof of
the theorem.

In the following theorem we determine h(n;8s).
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Theorem 2.5. Let G € H(n;65). Then

h(n; 6s) = [(n - 1)2J +1

for n > 11. Further, the bound is best possible.
Proof: We know that H(n;05) C G(n;05). So,

h(n;8s) < f(n;0s)
< [("_1)2J+1.

4

Observe that the graphs G; and G, are Hamiltonian. Thus,
—1)2
h(n; 85) > [&T)‘J +1

Therefore,

h(n;0s) = [(n — 1)2J +1.
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