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Abstract

Let p3, u2, ..., un be the eigenvalues of the sum-connectivity matrix of a
graph G. The sum-connectivity spectral radius of G is the largest eigenvalue
of its sum-connectivity matrix, and the sum-connectivity Estrada index of

n
G, is defined as SEE(G) = Y e*i. In this paper, we obtain some results
i=1
about the sum-connectivity spectral radius of graphs. In addition, we give
some upper and lower bounds on sum-connectivity Estrada index of graph
G, as well as some relations between SEE and sum-connectivity energy.
Moreover, we characterize that the star has maximum sum-connectivity
Estrada index among trees on n vertices.
AMS subject classification 2010: 05C50; 15A18
Keywords: Sum-connectivity matrix; Sum-connectivity Estrada index;
Graph spectrum; Spectral radius; Eigenvalue

1. Introduction

In this paper we are concerned with simple finite graphs, without loops,
multiple or directed edges. If G is such a graph with n-vertices and m-edges,
then G will be called (n, m?-graph. Let G be such a graph, with vertex set
V(G) = {v1,va,...,vn}. If two vertices v; and v; of G are adjacent, then
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we use the notation v; ~ v;. For v; € V(G), the degree of the vertex v;,
denoted by d;, is the number of the vertices of the vertices adjacent to v;.

In 1975 Milan Randié [1] invented a molecular structure descriptor de-

fined as ’
RG)=)_

i~j V "dj

where the sum run over all pairs of adjacent vertices of the underlying
Smolecular) aph. Nowadays, R(G) is referred to as the Randié index; for

etail see[2,3]. The Randié-index-concept suggest that it is purposeful to
associate to the graph G a symmetric square matrix R(G). The Randi¢
matrix R(G) = (Tij)nxn is defined as [4,g]

1 if ;s .
i v

ri; =9 0, if the vertices v; and v; are not adjacent
0, if i =7.

In 2009, a closely related variant of the Randié connectivity index called
the sum-connectivity index was introduced by B. Zhou and N. Trinajsti¢
(6]. It was defined as
1
S(G) = —_——
() 2~: =
For more mathematical properties of the sum-connectivity index, one may
refer to [7,8,9].
The sum-connectivity matrix S = S(G) of the graph G is defined as [10]

l .
Sij={ dit+d;’ o

0, otherwise.

Since 8 is real symmetric matrices, their eigenvalues are real numbers. De-
note the eigenvalues of the sum-connectivity matrix S = S(G) by py, pto, . . .,
pn and label them in non-increasing order. The greatest eigenvalue y; is
called the sum-connectivity spectral radius of the graph G. The multiset
Sps = Sps(G) = {p1,42,...,un} will be called the S-spectrum of the
graph G. In addition, ¢s(G, A) = det(Al,, — S) will be referred to as the
S-characteristic polynomial of G.

The sum-connectivity energy of the graph G, denoted by SE(G), de-
fined as [10]

SE(G) =Y Iul.

B. Zhou et al. [10] obtained upper bounds for the maximum eigenvalue
of sum-connectivity matrix of a graph G. In the second section of this
paper, we get lower bounds for sum-connectivity spectral radius of a graph
G. In the section 3, a new index will be defined, namely sum-connectivity
Estrada index and then will be obtained lower and upper bounds for this
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new index. We determine that the star has maximum sum-connectivity
Estrada index among trees on n vertices.

2. Lower bounds for sum-connectivity spectral radius
of a graph

In order to obtain several lower bounds for the sum-connectivity spectral
radius of a connected graph, we need some auxiliary definitions and lemmas.
Definition 2.1 Let G be a graph with n vertices. Then the sum of the
i-th row of sum-connectivity matrix S(G) is defined as

n
S,'= E Sij.
i=1

Lemma 2.2 (Rayleigh-Ritz){11] If A is a symmetric n X n matrix with
eigenvalues A; > Ay > ... > Ap, then for any X € R*(X # 0),

XTAX <\ XTX.

Equality holds if and only if X is an eigenvector of A corresponding to the
largest eigenvalue A;.

Lemma 2.3 [12] Let A be a nonnegative symmetric matrix and X be a
unit vector of R™. If A;(4) = XTAX, then AX = A\;(4)X.

Lemma 2.4 Let G be a bipartite graph with sum-connectivity matrix S.
If 1 is an eigenvalue of S with multiplicity &, then —u is also an eigenvalue
of S with multiplicity k.

Proof. Let V(G) = X|JY be a bipartition of G. It is not hard to see

that we may write S = BOT g) . Let (z,y)T be an eigenvector of S

corresponding to u. So we get the equation

(5 2)()=+()

Then it is easy to verify that (z, —y)T is an eigenvector of S with eigenvalue
—p. It is also clear that if we have k linearly independent eigenvector for
i, then the above construction will produce k linearly independent eigen-
vectors for —p. Thus p and —p are eigenvalues with the same multiplicity.
This completes the proof.

Lemma 2.5 Let G be a simple connected graph with n vertices. Then

25(G)
b it Sl
[.Ll(G) P n
with equality holds if and only if $; = S =---=8,.
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Proof. Let X = 7‘;(1, 1,...,1)T. By Lemma 2.2, we obtain

XTsx
XTX
=l(31, Sa2,...,8)(1,1,...,1)T

n
1 n
=Z§S"

2
==5(G).

m(G) 2

Now we suppose that the equality holds. By Lemma 2.3, we get SX =
#1(G)X. This implies that S; = u;(G) for all i. Conversely, if §; =
Sy =..-=8, =a (ais a constant), then SX = aX. It is known that
for any positive eigenvector of a nonnegative matrix, the corresponding
eigenvalue is the spectral radius of that matrix. Hence u;(G) = a. Since

3 S; = na = 28(G), we have u,(G) = 25(G). This completes the proof.0]
i=1

Now we define a sequence

a,m, 61(2)’

i
o
where a,{l) =a; € R, and a?) =3 sijaj(.l—l) foreach! > 2,1l € Z.
i~j

Theorem 2.6 Let G be a connected graph with n vertices. Then

#1(G) 2 maxmax
ai

The equality holds if and only if

a£z+1) _ a;1+1) _ CEY
051) a,f,') == oQ
or G is a bipartite graph with the partition {v1,vz,...,vn,} U{vn, +1,Vn, +2,
.++,Un}, such that
O

Proof. By Rayleigh quotient, we have

XTS2(G)X

HH(G) = 1 (S%(0) = max =%
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Now we take the positive vector

n o T
a=(00,00,.... 00"
Since
n g n ! H T
S (3 s 50,3 sese?)
j=1 Jj=1 Jj=1
' T
=(a§'+l),0§ +1), . ’O.'(ll+1>)
and
we get

Now we assume that the equality holds. By Lemma 2.2, we have o
is a positive eigenvector of 82 corresponding to p;(S?). Moreover, if the
multiplicity of 41 (S?) is one, then by Perron-Frobenius theorem, o is an
eigenvector of S corresponding to x;1(G). Therefore Sa = u,(G)a, which
implies 0!+ = 1y (G)oP for all i. If the multiplicity of u;(S?) is two,
then —u1(8) is also an eigenvalue of S. Then G is a connected bipartite

graph. Without loss of generality, we assume that S = ( BOT lg) , Where

B is an n; x (n — n;) matrix.

Let Y = (y1,%2,...,yn)T be a positive eigenvector of S corresponding
to u1(G). Let a = (a1,02)T and Y = (Y1, Ys)T where oy = (agl),agl), cey
0'1(!‘1))1" Q2 = (Ugl)+1’ag1)+2""aa’g))'r? h= (ylyy%---vym)T and Y, =
(yn1+l’ Yn 42 ’yn)T' Since

S? BBT 0
“\ 0o BTB

we have
BBTOt] = M1 (Sz)al, BTBQ2 = M1 (Sz)az

and

BBTY, = Hl(sz)Yl;BTBYZ = p; (S?)Ya.

Note that BBT and BTB are similar matrices. Then p,(S?) is the
eigenvalue both of the matrices BBT and BTB with multiplicity one.
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Hence Y; = aaj(a # 0) and Y, = baz(b # 0). Now it follows from
SY = u;(G)Y, thus we have

o'nl a
= e — —l[l(G)
EU
and (+1) (1+1)
o o b
mil o=t
Oni+1

Conversely, considering the similar method in the proof of Theorem 2 in
[13], it can be easily seen that the result holds. This completes the proof.0]

I?y setting a; = 1 and ! = 1 in Theorem 2.6, we have the following
result.

Corollary 2.7 Let G be a connected graph with n vertices. Then

with equality holds if and only if $; =Sy = ... = 8,.
3. Sum-connectivity Estrada index of graphs

In this section we will mainly introduce and investigate sum-connectivity
Estrada index of graph G and also present upper and lower bounds for it.
Moreover, some bounds for the sum-connectivity Estrada index involving
sum-connectivity energy are also put forward.

We first recall that the Estrada index of a graph G is defined in [14] by

EE=FEE(G)=) e
i=1

where A1 > Ay > .- > )\, are the eigenvalues of the adjacency matrix

f4(]G) of G. Denoting by M) = M;(G) the k-th moment of the graph G
15

My = Mi(G) = _ k.
i=1

Recalling the power series expansion of e*, we have
oo
M
EE= kz% o

Estrada index of graphs has an important role in chemistry and physics.
For detailed information we refer to the reader [15,16]. In addition, recently
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much work on the Estrada index of the graph appeared also in the mathe-
matical literature [17,18,24-28].

Now we introduce the sum-connectivity Estrada index of graph G.
Definition 3.1 If G is an (n, m)-graph, then the sum-connectivity Estrada
index of graph G, denoted by SEE(G), is equal to

SEE = SEE(G) =) e*

i=1

where py > pp > -+ > un are the S-eigenvalues of G.

Let
N = ny
i=1
Then
[e )
Ny
SEE=Y_ o
k>0

Recall that the harmonic index of G is defined as [19] H(G) = ) F%aj
i~g
The properties of the harmonic index may be found in [20-22].
Theorem 3.2 Let G be a graph with n vertices. Then for any integer
t>3,

A
k!

J n? +2H(G) + <SEE(G)
k=3
<n—1-H(G) +eVH©
+3 M= (VEG)"

k!

k=3
Equality holds in both sides if and only if G = K.

Proof. Lower bound: By the definition of the sum-connectivity Estrada
index, we have

SEE?*G) = i e 42 Y etiels,
t=1

1<i<j<n

n
By the arithmetic-geometric mean inequality and using the fact that ) p; =

i=1
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0, we get

2 ) et Zn(n—l)[(ﬁe“‘)z("'l)]m
1<i<j<n i=1

n

=n(n — 1)(e-‘§! m)
=n(n - 1).

el

By means of a power series expansion of e*, and Ng = n, N; =0, N3 =
H(G), we have

ie'm;:zn: 2"""

i=1 i=1 k>0 k!
ziz
—n +2H(C) +Zz N".

Therefore

SEE(G) > \'n2+2H G)+Z2 N".

Upper bound: We will use the following inequality:
For nonnegative a;,as,...,a, and integer k > 2,

n

n k
ek < (Ya?)
i=1

i=1
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Note that 3 u2 = H(G). We have
i=]

SEE@G) =Y %" + ) }:u,

k=0 k>t+1  i=1
Z + Z Zlml"
k= k! k>t41 k! i=1
t k
Nk 1 2
< ?’+ Z F(ZI‘?)
k= k>t+1 i=1
v N, v (VEG)
- ! k!
k=0 k>t+1
_ . I_V_ VHAG _ Z(\/H(G)
k!
k=0

=n—1-H(C) +eVH©® +ZN"’ VH(G)) :

Now we assume that the equality holds. Then py = g2 =+ = pun =0.
This happens only in the case of the graph K,,. This completes the proof.(]
Remark 3.3 Since ) —k > 0, thus SEE(G) > \/n? + 2H(G). Note

k>3
that H(G) > 22 (see [23]). Hence

SEE(G) > y/n? + 2.

11}1l the following, we give lower and upper bound for SEFE of bipartite
graphs.

Theorem 3.4 Let G be a connected bipartite graph with n > 2 vertices.
If ng is the multiplicity of its eigenvalue zero of G, then

mo+ (n- nO)COSh(V e ) <SEE(G)<n-2+ 2cosh( _H_(2£)),

where cosh stands for the hyperbolic cosine [cosh(z) = (¥ + e~%)/2].
Moreover, the equality of left-hand side holds if and only if all positive
eigenvalues are equal, while the equality of right-hand side holds if and
only if G is a complete bipartite graph.

Proof. Let py > po > -+- > pn be the S-eigenvalues of G. Since G is a
bipartite graph, using Lemma 2.4, we have pu; = —pun,.
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Lower bound: We will use the following inequality:
For positive a1, as,...,a, and integer k > 0,

k
a; 2n
ELO
with equality for £ > 2 if and only if all a; are equal.

Note that Y~ u? = H(G). We have
ip #0

SEE(G) _n0+ > (e* e

t #i#0
o (u2)*
i
=ng + é @R
20 + Z (2k)'(n - no)(n . Z p‘z)k
k> s #0
( ﬂgl)zk
=noc+(n=ma) 2, =y
=ng +(n— no)cosh( :I—_(C-:%) .

Now we suppose that the equality holds. It is evident that equality will
be attained if and only if all the positive eigenvalue are equal.

Upper bound: By n; we denote the number of positive eigenvalue of
b H(G)
G. Note that Y p? = #E) We have
i=1

N4
SEE(G) =no+ ) _(e" +e™™)
i=1
n4
> (12)*
=ng+2) =———0
0 ,; (2k)!
=) % IJ-'k
=ng + 2n4 + 22 2R
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Ty k
2
= (24)
Sn+2kz—(2—k)-!——, as n=ng+ 2n,
=1

oo (%u?)k
=n—2+2z-—'i—
k=0

2K)!
- o
=n-2+2k§-(—(2;T)-
=n—2+2cosh( —H(2—G))

n4 ny k
Now suppose that equality holds. Then we get )_ pk = ( 3 “?) for
i=1 i=1

k > 1. Since G is a connected bipartite graph with n > 2 vertices, p, is
ny n4 k

nonzero. So we have ny > 1. For k> 2, Y p?f = ( 3 uf) implies that
i=1 i=1

ny < 1. Thus ny = 1. Since G is bipartite graph, we have ) = —u, and
po = p3 = -+ = jin—; = 0. Then by [10} Proposition 2, we conclude that
G is a complete bipartite graph. This completes the proof. O

Using Theorem 3.4, we have the following corollary.
Corollary 3.5 Let T be a tree of order n. Then

SEE(T) < SEE(S,).

Equality holds if and only if T is a star S,.
By computing the sum-connectivity characteristic polynomial of the
complete bipartite graph Kn, n,, we know that the S—spectrum of Ky, n,

(1) (1)
is {0("""""2), Vil -/ A } By the definition, we have
= _ _mn2
SEE(Kny,ny) = 1 + g — 2+ 2cosh( | /n1 +n2).

By the monotonicity of f(z) = cosh(z), we obtain the Corollary 3.6.

Corollary 3.6 SEE(Kn—1) < SEE(Kz2n_2) <--- < SEE(KL%“;:,]).
In the following, we present some bounds for the sum-connectivity

Estrada index involving sum-connectivity energy.

Theorem 3.7 Let G be a graph with n vertices. Then

n—n,+ %(e _1)SE(C) < SEE(G) < n—1+ &5
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where n, denotes the number of positive sum-connectivity eigenvalues of
G. Moreover, the equality holds in both sides if and only if G ¢ K.

Proof. Lower bound: Let ng be the number of eigenvalue zero of G. Con-
sidering the inequalities e* > ex and €* > 1 + x, we have

SEE(G) =) e
i=1

=ng + Z el 4 E eti

p§i>0 pi<0

>no+ Y epi+ Y (1+ )

Bi>0 pi<0

n

=no+(e —1)(p1 +p2 + -+ +pn, ) +(n —ny —no), as Zﬂi =0
i=1

e —

1
—SE(G).

=n-—n4 +

Upper bound: Since f(z) = €* monotonically increases in (—o0, +00),
we obtain

SEE(G)=no+ Y  e*+ Y ek

pi>0 pi<0
<no+ (n—n4y —ng) + Z et
#i>0
ny4 /Jk
nonr 34
i=1 k>0
1 &
k
=n+ Y gD M
k>1 7 i=1
1/ K
STH-ZE,'( ﬂ'i)
k>1 " =1
(SE G )"
2
=n=14+3
k>0
SE(G
=n—1+e

Moreover, the equality holds if and only if G 2 K,,. This completes the
proof. O

In the following, we present another lower bound for the SEE(G).
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Theorem 3.8 Let G be a nonempty simple connected graph of order n.
Then

i: (0§l+l))
(=)

1
i ) n—1

)
e i§1 i

Moreover, the equality holds if and only if G = K,,.
Proof. Using arithmetic-geometric mean inequality, we get

L
1 i

SEE(G) > e

SEE(G) = i ek

i=1
n
Zem + (n — 1)(Hem
=2

=eM + (n—1) (e_‘“)"—if.

1
)'nTI

Since f(z) = €* + (n — 1)e” 77 is an increasing function for z > 0. By
Theorem 2.6, we obtain the required lower bound.

2": ( asx-ﬂ))’
Now we assume that the equality holds. Then y; = EW and
o
i=1
U2 = u3 = -+ = up. Note that G has only eigenvalue if and only if G is

an empty graph. Then G has exactly two distinct sum-connectivity eigen-
values. By [10] Proposition 1, we know that G is the complete graph K.
Conversely, it can be easily seen that the equality holds for the complete
graph K,,. This completes the proof of theorem.

The following corollary states a lower bound for the sum-connectivity
Estrada index involving the sum-connectivity index S(G).

Corollary 3.9 Let G be a connected graph with n vertices. Then
o, o1
entaty
Equality holds if and only if Sy =S = -+ = 8.
Proof. The result is obvious from Theorem 3.8 and Theorem 2.5. O

SEE(G) > e
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