On the sum-connectivity spectral radius and sum-connectivity Estrada index of graphs *

Fuqin Zhan^{a,b} Youfu Qiao^{a,†}

^aDepartment of Mathematics, Hechi University,
Yizhou 546300, P.R.China
^bCollege of mathematics, Beijing Normal University,
Beijing 100875, P.R.China
(zhanfq@mail.bnu.edu.cn; qiaoyf78@163.com)

Abstract

Let $\mu_1, \mu_2, \ldots, \mu_n$ be the eigenvalues of the sum-connectivity matrix of a graph G. The sum-connectivity spectral radius of G is the largest eigenvalue of its sum-connectivity matrix, and the sum-connectivity Estrada index of

G, is defined as $SEE(G) = \sum_{i=1}^{n} e^{\mu_i}$. In this paper, we obtain some results

about the sum-connectivity spectral radius of graphs. In addition, we give some upper and lower bounds on sum-connectivity Estrada index of graph G, as well as some relations between SEE and sum-connectivity energy. Moreover, we characterize that the star has maximum sum-connectivity Estrada index among trees on n vertices.

AMS subject classification 2010: 05C50; 15A18

Keywords: Sum-connectivity matrix; Sum-connectivity Estrada index; Graph spectrum; Spectral radius; Eigenvalue

1. Introduction

In this paper we are concerned with simple finite graphs, without loops, multiple or directed edges. If G is such a graph with n-vertices and m-edges, then G will be called (n, m)-graph. Let G be such a graph, with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. If two vertices v_i and v_j of G are adjacent, then

^{*}Supported by the Guangxi Natural Science Foundation (No. 2013GXNSFBA0190 22) and the Science Foundation of Guangxi Education Department (No. ZD2014114; No. YB2014324).

[†]Corresponding author.

we use the notation $v_i \sim v_j$. For $v_i \in V(G)$, the degree of the vertex v_i , denoted by d_i , is the number of the vertices of the vertices adjacent to v_i .

In 1975 Milan Randić [1] invented a molecular structure descriptor defined as

$$R(G) = \sum_{i \sim j} \frac{1}{\sqrt{d_i d_j}}$$

where the sum run over all pairs of adjacent vertices of the underlying (molecular) graph. Nowadays, R(G) is referred to as the Randić index; for detail see[2,3]. The Randić-index-concept suggest that it is purposeful to associate to the graph G a symmetric square matrix $\mathbf{R}(G)$. The Randić matrix $\mathbf{R}(G) = (r_{ij})_{n \times n}$ is defined as [4,5]

$$r_{ij} = \left\{ egin{array}{ll} rac{1}{\sqrt{d_i d_j}}, & if \ v_i \sim v_j \ 0, & if \ the \ vertices \ v_i \ and \ v_j \ are \ not \ adjacent \ 0, & if \ i=j. \end{array}
ight.$$

In 2009, a closely related variant of the Randić connectivity index called the sum-connectivity index was introduced by B. Zhou and N. Trinajstić [6]. It was defined as

$$S(G) = \sum_{i \sim j} \frac{1}{\sqrt{d_i + d_j}}.$$

For more mathematical properties of the sum-connectivity index, one may refer to [7,8,9].

The sum-connectivity matrix S = S(G) of the graph G is defined as [10]

$$s_{ij} = \left\{ egin{array}{ll} rac{1}{\sqrt{d_i + d_j}}, & if \ v_i \sim v_j \ 0, & otherwise. \end{array}
ight.$$

Since S is real symmetric matrices, their eigenvalues are real numbers. Denote the eigenvalues of the sum-connectivity matrix S = S(G) by $\mu_1, \mu_2, \ldots, \mu_n$ and label them in non-increasing order. The greatest eigenvalue μ_1 is called the sum-connectivity spectral radius of the graph G. The multiset $Sp_S = Sp_S(G) = \{\mu_1, \mu_2, \ldots, \mu_n\}$ will be called the S-spectrum of the graph G. In addition, $\phi_S(G, \lambda) = det(\lambda I_n - S)$ will be referred to as the S-characteristic polynomial of G.

The sum-connectivity energy of the graph G, denoted by SE(G), defined as [10]

$$SE(G) = \sum_{i=1}^{n} |\mu_i|.$$

B. Zhou et al. [10] obtained upper bounds for the maximum eigenvalue of sum-connectivity matrix of a graph G. In the second section of this paper, we get lower bounds for sum-connectivity spectral radius of a graph G. In the section 3, a new index will be defined, namely sum-connectivity Estrada index and then will be obtained lower and upper bounds for this

new index. We determine that the star has maximum sum-connectivity Estrada index among trees on n vertices.

2. Lower bounds for sum-connectivity spectral radius of a graph

In order to obtain several lower bounds for the sum-connectivity spectral radius of a connected graph, we need some auxiliary definitions and lemmas. **Definition 2.1** Let G be a graph with n vertices. Then the sum of the i-th row of sum-connectivity matrix S(G) is defined as

$$S_i = \sum_{j=1}^n s_{ij}.$$

Lemma 2.2 (Rayleigh-Ritz)[11] If A is a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, then for any $X \in \mathbb{R}^n (X \neq 0)$,

$$X^{\mathrm{T}}AX \leq \lambda_1 X^{\mathrm{T}}X.$$

Equality holds if and only if X is an eigenvector of A corresponding to the largest eigenvalue λ_1 .

Lemma 2.3 [12] Let A be a nonnegative symmetric matrix and X be a unit vector of \mathbb{R}^n . If $\lambda_1(A) = X^T A X$, then $AX = \lambda_1(A) X$.

Lemma 2.4 Let G be a bipartite graph with sum-connectivity matrix S. If μ is an eigenvalue of S with multiplicity k, then $-\mu$ is also an eigenvalue of S with multiplicity k.

Proof. Let $V(G) = X \cup Y$ be a bipartition of G. It is not hard to see that we may write $\mathbf{S} = \begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix}$. Let $(x,y)^{\mathrm{T}}$ be an eigenvector of \mathbf{S} corresponding to μ . So we get the equation

$$\begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mu \begin{pmatrix} x \\ y \end{pmatrix}.$$

Then it is easy to verify that $(x,-y)^{\mathrm{T}}$ is an eigenvector of **S** with eigenvalue $-\mu$. It is also clear that if we have k linearly independent eigenvector for μ , then the above construction will produce k linearly independent eigenvectors for $-\mu$. Thus μ and $-\mu$ are eigenvalues with the same multiplicity. This completes the proof.

Lemma 2.5 Let G be a simple connected graph with n vertices. Then

$$\mu_1(G) \geq \frac{2S(G)}{n}$$

with equality holds if and only if $S_1 = S_2 = \cdots = S_n$.

Proof. Let $X = \frac{1}{\sqrt{n}}(1,1,\ldots,1)^{T}$. By Lemma 2.2, we obtain

$$\mu_1(G) \ge \frac{X^T \mathbf{S} X}{X^T X}$$

$$= \frac{1}{n} (S_1, S_2, \dots, S_n) (1, 1, \dots, 1)^T$$

$$= \frac{1}{n} \sum_{i=1}^n S_i$$

$$= \frac{2}{n} S(G).$$

Now we suppose that the equality holds. By Lemma 2.3, we get $SX = \mu_1(G)X$. This implies that $S_i = \mu_1(G)$ for all i. Conversely, if $S_1 = S_2 = \cdots = S_n = a$ (a is a constant), then SX = aX. It is known that for any positive eigenvector of a nonnegative matrix, the corresponding eigenvalue is the spectral radius of that matrix. Hence $\mu_1(G) = a$. Since

 $\sum_{i=1}^{n} S_i = na = 2S(G)$, we have $\mu_1(G) = \frac{2}{n}S(G)$. This completes the proof.

Now we define a sequence

$$\sigma_i^{(1)}, \sigma_i^{(2)}, \ldots, \sigma_i^{(l)}, \ldots$$

where $\sigma_i^{(1)} = a_i \in \mathbb{R}^+$, and $\sigma_i^{(l)} = \sum_{i \sim j} s_{ij} \sigma_j^{(l-1)}$ for each $l \geq 2$, $l \in \mathbb{Z}$.

Theorem 2.6 Let G be a connected graph with n vertices. Then

$$\mu_1(G) \geq \max_{l} \max_{a_i} \sqrt{\frac{\sum\limits_{i=1}^{n} \left(\sigma_i^{(l+1)}\right)^2}{\sum\limits_{i=1}^{n} \left(\sigma_i^{(l)}\right)^2}}.$$

The equality holds if and only if

$$\frac{\sigma_1^{(l+1)}}{\sigma_1^{(l)}} = \frac{\sigma_2^{(l+1)}}{\sigma_2^{(l)}} = \dots = \frac{\sigma_n^{(l+1)}}{\sigma_n^{(l)}}$$

or G is a bipartite graph with the partition $\{v_1, v_2, \ldots, v_{n_1}\} \bigcup \{v_{n_1+1}, v_{n_1+2}, \ldots, v_n\}$, such that

$$\frac{\sigma_1^{(l+1)}}{\sigma_1^{(l)}} = \frac{\sigma_2^{(l+1)}}{\sigma_2^{(l)}} = \dots = \frac{\sigma_{n_1}^{(l+1)}}{\sigma_{n_1}^{(l)}}, \frac{\sigma_{n_1+1}^{(l+1)}}{\sigma_{n_1+1}^{(l)}} = \frac{\sigma_{n_1+2}^{(l+1)}}{\sigma_{n_1+2}^{(l)}} = \dots = \frac{\sigma_n^{(l+1)}}{\sigma_n^{(l)}}.$$

Proof. By Rayleigh quotient, we have

$$\mu_1^2(G) = \mu_1(\mathbf{S}^2(G)) = \max_{X \neq 0} \frac{X^{\mathrm{T}} \mathbf{S}^2(G) X}{X^{\mathrm{T}} X}.$$

Now we take the positive vector

$$\alpha = \left(\sigma_1^{(l)}, \sigma_2^{(l)}, \dots, \sigma_n^{(l)}\right)^{\mathrm{T}}.$$

Since

$$S\alpha = \left(\sum_{j=1}^{n} s_{1j}\sigma_{j}^{(l)}, \sum_{j=1}^{n} s_{2j}\sigma_{j}^{(l)}, \dots, \sum_{j=1}^{n} s_{nj}\sigma_{j}^{(l)}\right)^{T}$$
$$= \left(\sigma_{1}^{(l+1)}, \sigma_{2}^{(l+1)}, \dots, \sigma_{n}^{(l+1)}\right)^{T}$$

and

$$\alpha^{\mathrm{T}}\alpha = \sum_{i=1}^{n} \left(\sigma_i^{(l)}\right)^2,$$

we get

$$\mu_1(G) = \sqrt{\max_{X \neq 0} \frac{X^{\mathrm{T}}\mathbf{S}^2 X}{X^{\mathrm{T}} X}} \geq \sqrt{\frac{\sum\limits_{i=1}^n \left(\sigma_i^{(l+1)}\right)^2}{\sum\limits_{i=1}^n \left(\sigma_i^{(l)}\right)^2}}.$$

Now we assume that the equality holds. By Lemma 2.2, we have α is a positive eigenvector of \mathbf{S}^2 corresponding to $\mu_1(\mathbf{S}^2)$. Moreover, if the multiplicity of $\mu_1(\mathbf{S}^2)$ is one, then by Perron-Frobenius theorem, α is an eigenvector of \mathbf{S} corresponding to $\mu_1(G)$. Therefore $\mathbf{S}\alpha = \mu_1(G)\alpha$, which implies $\sigma_i^{(l+1)} = \mu_1(G)\sigma_i^{(l)}$ for all i. If the multiplicity of $\mu_1(\mathbf{S}^2)$ is two, then $-\mu_1(\mathbf{S})$ is also an eigenvalue of \mathbf{S} . Then G is a connected bipartite graph. Without loss of generality, we assume that $\mathbf{S} = \begin{pmatrix} 0 & B \\ B^{\mathrm{T}} & 0 \end{pmatrix}$, where B is an $n_1 \times (n-n_1)$ matrix.

Let $Y = (y_1, y_2, ..., y_n)^T$ be a positive eigenvector of **S** corresponding to $\mu_1(G)$. Let $\alpha = (\alpha_1, \alpha_2)^T$ and $Y = (Y_1, Y_2)^T$ where $\alpha_1 = (\sigma_1^{(l)}, \sigma_2^{(l)}, ..., \sigma_{n_1}^{(l)})^T$, $\alpha_2 = (\sigma_{n_1+1}^{(l)}, \sigma_{n_1+2}^{(l)}, ..., \sigma_{n_1}^{(l)})^T$, $Y_1 = (y_1, y_2, ..., y_{n_1})^T$ and $Y_2 = (y_{n_1+1}, y_{n_1+2}, ..., y_n)^T$. Since

$$\mathbf{S}^2 = \begin{pmatrix} BB^{\mathrm{T}} & 0\\ 0 & B^{\mathrm{T}}B \end{pmatrix}$$

we have

$$BB^{\mathrm{T}}\alpha_1 = \mu_1(\mathbf{S}^2)\alpha_1, B^{\mathrm{T}}B\alpha_2 = \mu_1(\mathbf{S}^2)\alpha_2$$

and

$$BB^{\mathsf{T}}Y_1 = \mu_1(\mathbf{S}^2)Y_1, B^{\mathsf{T}}BY_2 = \mu_1(\mathbf{S}^2)Y_2.$$

Note that BB^{T} and $B^{T}B$ are similar matrices. Then $\mu_{1}(S^{2})$ is the eigenvalue both of the matrices BB^{T} and $B^{T}B$ with multiplicity one.

Hence $Y_1=a\alpha_1(a\neq 0)$ and $Y_2=b\alpha_2(b\neq 0)$. Now it follows from $\mathbf{S}Y=\mu_1(G)Y$, thus we have

$$\frac{\sigma_1^{(l+1)}}{\sigma_1^{(l)}} = \dots = \frac{\sigma_{n_1}^{(l+1)}}{\sigma_{n_1}^{(l)}} = \frac{a}{b}\mu_1(G)$$

and

$$\frac{\sigma_{n_1+1}^{(l+1)}}{\sigma_{n_1+1}^{(l)}} = \cdots = \frac{\sigma_n^{(l+1)}}{\sigma_n^{(l)}} = \frac{b}{a}\mu_1(G).$$

Conversely, considering the similar method in the proof of Theorem 2 in [13], it can be easily seen that the result holds. This completes the proof. \Box

By setting $a_i = 1$ and l = 1 in Theorem 2.6, we have the following result.

Corollary 2.7 Let G be a connected graph with n vertices. Then

$$\mu_1(G) \geq \sqrt{\frac{1}{n}\sum_{i=1}^n S_i^2}$$

with equality holds if and only if $S_1 = S_2 = \cdots = S_n$.

3. Sum-connectivity Estrada index of graphs

In this section we will mainly introduce and investigate sum-connectivity Estrada index of graph G and also present upper and lower bounds for it. Moreover, some bounds for the sum-connectivity Estrada index involving sum-connectivity energy are also put forward.

We first recall that the Estrada index of a graph G is defined in [14] by

$$EE = EE(G) = \sum_{i=1}^{n} e^{\lambda_i}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the eigenvalues of the adjacency matrix A(G) of G. Denoting by $M_k = M_k(G)$ the k-th moment of the graph G [15]

$$M_k = M_k(G) = \sum_{i=1}^n \lambda_i^k.$$

Recalling the power series expansion of e^x , we have

$$EE = \sum_{k=0}^{\infty} \frac{M_k}{k!}.$$

Estrada index of graphs has an important role in chemistry and physics. For detailed information we refer to the reader [15,16]. In addition, recently

much work on the Estrada index of the graph appeared also in the mathematical literature [17,18,24-28].

Now we introduce the sum-connectivity Estrada index of graph G. **Definition 3.1** If G is an (n, m)-graph, then the sum-connectivity Estrada index of graph G, denoted by SEE(G), is equal to

$$SEE = SEE(G) = \sum_{i=1}^{n} e^{\mu_i}$$

where $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ are the S-eigenvalues of G. Let

$$N_k = \sum_{i=1}^n \mu_i^k.$$

Then

$$SEE = \sum_{k>0}^{\infty} \frac{N_k}{k!}.$$

Recall that the harmonic index of G is defined as [19] $H(G) = \sum_{i=1}^{\infty} \frac{2}{d_i + d_j}$.

The properties of the harmonic index may be found in [20-22].

Theorem 3.2 Let G be a graph with n vertices. Then for any integer $t \geq 3$,

$$\sqrt{n^{2} + 2H(G) + \sum_{k=3}^{t} \frac{2^{k} N_{k}}{k!}} \leq SEE(G)$$

$$\leq n - 1 - \sqrt{H(G)} + e^{\sqrt{H(G)}} + \sum_{k=3}^{t} \frac{N_{k} - (\sqrt{H(G)})^{k}}{k!}.$$

Equality holds in both sides if and only if $G \cong \overline{K_n}$.

Proof. Lower bound: By the definition of the sum-connectivity Estrada index, we have

$$SEE^{2}(G) = \sum_{i=1}^{n} e^{2\mu_{i}} + 2 \sum_{1 \leq i < j \leq n} e^{\mu_{i}} e^{\mu_{j}}.$$

By the arithmetic-geometric mean inequality and using the fact that $\sum_{i=1}^{n} \mu_{i} =$

0, we get

$$2\sum_{1 \leq i < j \leq n} e^{\mu_i} e^{\mu_j} \ge n(n-1) \left[\left(\prod_{i=1}^n e^{\mu_i} \right)^{2(n-1)} \right]^{\frac{1}{n(n-1)}}$$
$$= n(n-1) \left(e^{\sum_{i=1}^n \mu_i} \right)^{\frac{2}{n}}$$
$$= n(n-1).$$

By means of a power series expansion of e^x , and $N_0 = n$, $N_1 = 0$, $N_2 = H(G)$, we have

$$\sum_{i=1}^{n} e^{2\mu_i} = \sum_{i=1}^{n} \sum_{k \ge 0} \frac{(2\mu_i)^k}{k!}$$

$$\ge \sum_{k=0}^{t} \frac{2^k N_k}{k!}$$

$$= n + 2H(G) + \sum_{k=3}^{t} \frac{2^k N_k}{k!}.$$

Therefore

$$SEE(G) \ge \sqrt{n^2 + 2H(G) + \sum_{k=3}^{t} \frac{2^k N_k}{k!}}.$$

Upper bound: We will use the following inequality: For nonnegative a_1, a_2, \ldots, a_n and integer $k \geq 2$,

$$\sum_{i=1}^n a_i^k \le \left(\sum_{i=1}^n a_i^2\right)^{\frac{k}{2}}.$$

Note that $\sum_{i=1}^{n} \mu_i^2 = H(G)$. We have

$$\begin{split} SEE(G) &= \sum_{k=0}^{t} \frac{N_k}{k!} + \sum_{k \geq t+1} \frac{1}{k!} \sum_{i=1}^{n} \mu_i^k \\ &\leq \sum_{k=0}^{t} \frac{N_k}{k!} + \sum_{k \geq t+1} \frac{1}{k!} \sum_{i=1}^{n} |\mu_i|^k \\ &\leq \sum_{k=0}^{t} \frac{N_k}{k!} + \sum_{k \geq t+1} \frac{1}{k!} \Big(\sum_{i=1}^{n} \mu_i^2 \Big)^{\frac{k}{2}} \\ &= \sum_{k=0}^{t} \frac{N_k}{k!} + \sum_{k \geq t+1} \frac{\left(\sqrt{H(G)}\right)^k}{k!} \\ &= \sum_{k=0}^{t} \frac{N_k}{k!} + e^{\sqrt{H(G)}} - \sum_{k=0}^{t} \frac{\left(\sqrt{H(G)}\right)^k}{k!} \\ &= n - 1 - \sqrt{H(G)} + e^{\sqrt{H(G)}} + \sum_{l=0}^{t} \frac{N_k - \left(\sqrt{H(G)}\right)^k}{k!}. \end{split}$$

Now we assume that the equality holds. Then $\mu_1 = \mu_2 = \cdots = \mu_n = 0$. This happens only in the case of the graph K_n . This completes the proof. \square Remark 3.3 Since $\sum_{k\geq 3} \frac{2^k N_k}{k!} \geq 0$, thus $SEE(G) \geq \sqrt{n^2 + 2H(G)}$. Note that $H(G) \geq \frac{2m}{n}$ (see [23]). Hence

$$SEE(G) \geq \sqrt{n^2 + \frac{4m}{n}}.$$

In the following, we give lower and upper bound for SEE of bipartite graphs.

Theorem 3.4 Let G be a connected bipartite graph with $n \geq 2$ vertices. If n_0 is the multiplicity of its eigenvalue zero of G, then

$$n_0 + (n - n_0) cosh \left(\sqrt{\frac{H(G)}{n - n_0}} \right) \leq SEE(G) \leq n - 2 + 2 cosh \left(\sqrt{\frac{H(G)}{2}} \right),$$

where cosh stands for the hyperbolic cosine $[cosh(x) = (e^x + e^{-x})/2]$. Moreover, the equality of left-hand side holds if and only if all positive eigenvalues are equal, while the equality of right-hand side holds if and only if G is a complete bipartite graph.

Proof. Let $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$ be the S-eigenvalues of G. Since G is a bipartite graph, using Lemma 2.4, we have $\mu_1 = -\mu_n$.

Lower bound: We will use the following inequality: For positive a_1, a_2, \ldots, a_n and integer $k \geq 0$,

$$\sum_{i=1}^n a_i^k \ge n \Big(\frac{1}{n} \sum_{i=1}^n a_i\Big)^k$$

with equality for $k \geq 2$ if and only if all a_i are equal.

Note that $\sum_{i:\mu_i\neq 0} \overline{\mu_i^2} = H(G)$. We have

$$SEE(G) = n_0 + \frac{1}{2} \sum_{i:\mu_i \neq 0} \left(e^{\mu_i} + e^{-\mu_i} \right)$$

$$= n_0 + \sum_{k \geq 0} \frac{\sum_{i:\mu_i \neq 0} \left(\mu_i^2 \right)^k}{(2k)!}$$

$$\geq n_0 + \sum_{k \geq 0} \frac{1}{(2k)!} (n - n_0) \left(\frac{1}{n - n_0} \sum_{i:\mu_i \neq 0} \mu_i^2 \right)^k$$

$$= n_0 + (n - n_0) \sum_{k \geq 0} \frac{\left(\sqrt{\frac{H(G)}{n - n_0}} \right)^{2k}}{(2k)!}$$

$$= n_0 + (n - n_0) \cosh\left(\sqrt{\frac{H(G)}{n - n_0}} \right).$$

Now we suppose that the equality holds. It is evident that equality will be attained if and only if all the positive eigenvalue are equal.

Upper bound: By n_+ we denote the number of positive eigenvalue of

G. Note that
$$\sum_{i=1}^{n_+} \mu_i^2 = \frac{H(G)}{2}$$
. We have

$$SEE(G) = n_0 + \sum_{i=1}^{n_+} (e^{\mu_i} + e^{-\mu_i})$$

$$= n_0 + 2\sum_{k \ge 0} \frac{\sum_{i=1}^{n_+} (\mu_i^2)^k}{(2k)!}$$

$$= n_0 + 2n_+ + 2\sum_{k=1}^{\infty} \frac{\sum_{i=1}^{n_+} \mu_i^{2k}}{(2k)!}$$

$$\leq n + 2 \sum_{k=1}^{\infty} \frac{\left(\sum_{i=1}^{n_+} \mu_i^2\right)^k}{(2k)!}, \text{ as } n = n_0 + 2n_+$$

$$= n - 2 + 2 \sum_{k=0}^{\infty} \frac{\left(\sum_{i=1}^{n_+} \mu_i^2\right)^k}{(2k)!}$$

$$= n - 2 + 2 \sum_{k=0}^{\infty} \frac{\left(\sqrt{\frac{H(G)}{2}}\right)^{2k}}{(2k)!}$$

$$= n - 2 + 2 \cosh\left(\sqrt{\frac{H(G)}{2}}\right).$$

Now suppose that equality holds. Then we get $\sum_{i=1}^{n_+} \mu_i^{2k} = \left(\sum_{i=1}^{n_+} \mu_i^2\right)^k$ for $k \geq 1$. Since G is a connected bipartite graph with $n \geq 2$ vertices, μ_1 is nonzero. So we have $n_+ \geq 1$. For $k \geq 2$, $\sum_{i=1}^{n_+} \mu_i^{2k} = \left(\sum_{i=1}^{n_+} \mu_i^2\right)^k$ implies that $n_+ \leq 1$. Thus $n_+ = 1$. Since G is bipartite graph, we have $\mu_1 = -\mu_n$ and $\mu_2 = \mu_3 = \cdots = \mu_{n-1} = 0$. Then by [10] Proposition 2, we conclude that G is a complete bipartite graph. This completes the proof.

Using Theorem 3.4, we have the following corollary.

Corollary 3.5 Let T be a tree of order n. Then

$$SEE(T) \leq SEE(S_n)$$
.

Equality holds if and only if T is a star S_n .

By computing the sum-connectivity characteristic polynomial of the complete bipartite graph K_{n_1,n_2} , we know that the S-spectrum of K_{n_1,n_2} is $\left\{0^{(n_1+n_2-2)}, \sqrt{\frac{n_1n_2}{n_1+n_2}}^{(1)}, -\sqrt{\frac{n_1n_2}{n_1+n_2}}^{(1)}\right\}$. By the definition, we have

$$SEE(K_{n_1,n_2}) = n_1 + n_2 - 2 + 2cosh\left(\sqrt{\frac{n_1 n_2}{n_1 + n_2}}\right).$$

By the monotonicity of f(x) = cosh(x), we obtain the Corollary 3.6. Corollary 3.6 $SEE(K_{1,n-1}) < SEE(K_{2,n-2}) < \cdots < SEE(K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil})$.

In the following, we present some bounds for the sum-connectivity Estrada index involving sum-connectivity energy.

Theorem 3.7 Let G be a graph with n vertices. Then

$$n - n_+ + \frac{1}{2}(e - 1)SE(G) \le SEE(G) \le n - 1 + e^{\frac{SE(G)}{2}}$$

where n_+ denotes the number of positive sum-connectivity eigenvalues of G. Moreover, the equality holds in both sides if and only if $G \cong \overline{K_n}$. Proof. Lower bound: Let n_0 be the number of eigenvalue zero of G. Considering the inequalities $e^x \geq ex$ and $e^x \geq 1 + x$, we have

$$SEE(G) = \sum_{i=1}^{n} e^{\mu_i}$$

$$= n_0 + \sum_{\mu_i > 0} e^{\mu_i} + \sum_{\mu_i < 0} e^{\mu_i}$$

$$\geq n_0 + \sum_{\mu_i > 0} e^{\mu_i} + \sum_{\mu_i < 0} (1 + \mu_i)$$

$$= n_0 + (e - 1)(\mu_1 + \mu_2 + \dots + \mu_{n_+}) + (n - n_+ - n_0), \text{ as } \sum_{i=1}^{n} \mu_i = 0$$

$$= n - n_+ + \frac{e - 1}{2} SE(G).$$

Upper bound: Since $f(x) = e^x$ monotonically increases in $(-\infty, +\infty)$, we obtain

$$SEE(G) = n_0 + \sum_{\mu_i > 0} e^{\mu_i} + \sum_{\mu_i < 0} e^{\mu_i}$$

$$\leq n_0 + (n - n_+ - n_0) + \sum_{\mu_i > 0} e^{\mu_i}$$

$$= n - n_+ + \sum_{i=1}^{n_+} \sum_{k \ge 0} \frac{\mu_i^k}{k!}$$

$$= n + \sum_{k \ge 1} \frac{1}{k!} \sum_{i=1}^{n_+} \mu_i^k$$

$$\leq n + \sum_{k \ge 1} \frac{1}{k!} \left(\sum_{i=1}^{n_+} \mu_i\right)^k$$

$$= n - 1 + \sum_{k \ge 0} \frac{\left(\frac{SE(G)}{2}\right)^k}{k!}$$

$$= n - 1 + e^{\frac{SE(G)}{2}}.$$

Moreover, the equality holds if and only if $G \cong \overline{K_n}$. This completes the proof. \square

In the following, we present another lower bound for the SEE(G).

Theorem 3.8 Let G be a nonempty simple connected graph of order n. Then

$$SEE(G) \ge e^{\sqrt{\frac{\sum\limits_{i=1}^{n} \left(\sigma_{i}^{(l+1)}\right)^{2}}{\sum\limits_{i=1}^{n} \left(\sigma_{i}^{(l)}\right)^{2}}}} + \frac{n-1}{\frac{1}{e^{\frac{1}{n-1}}\sqrt{\frac{\sum\limits_{i=1}^{n} \left(\sigma_{i}^{(l+1)}\right)^{2}}{\sum\limits_{i=1}^{n} \left(\sigma_{i}^{(l)}\right)^{2}}}}.$$

Moreover, the equality holds if and only if $G \cong K_n$. *Proof.* Using arithmetic-geometric mean inequality, we get

$$SEE(G) = \sum_{i=1}^{n} e^{\mu_i}$$

$$\geq e^{\mu_1} + (n-1) \left(\prod_{i=2}^{n} e^{\mu_i} \right)^{\frac{1}{n-1}}$$

$$= e^{\mu_1} + (n-1) \left(e^{-\mu_1} \right)^{\frac{1}{n-1}}.$$

Since $f(x) = e^x + (n-1)e^{-\frac{x}{n-1}}$ is an increasing function for x > 0. By Theorem 2.6, we obtain the required lower bound.

Now we assume that the equality holds. Then $\mu_1 = \sqrt{\frac{\sum\limits_{i=1}^n \left(\sigma_i^{(l+1)}\right)^2}{\sum\limits_{i=1}^n \left(\sigma_i^{(l)}\right)^2}}$ and

 $\mu_2 = \mu_3 = \cdots = \mu_n$. Note that G has only eigenvalue if and only if G is an empty graph. Then G has exactly two distinct sum-connectivity eigenvalues. By [10] Proposition 1, we know that G is the complete graph K_n . Conversely, it can be easily seen that the equality holds for the complete graph K_n . This completes the proof of theorem.

The following corollary states a lower bound for the sum-connectivity Estrada index involving the sum-connectivity index S(G). Corollary 3.9 Let G be a connected graph with n vertices. Then

$$SEE(G) \ge e^{\frac{2S(G)}{n}} + \frac{n-1}{\frac{2S(G)}{\rho \frac{n(n-1)}{n(n-1)}}}.$$

Equality holds if and only if $S_1 = S_2 = \cdots = S_n$. *Proof.* The result is obvious from Theorem 3.8 and Theorem 2.5.

References

[1] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97(1975), 6609-6615.

- [2] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
- [3] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59(2008), 127-156.
- [4] S. B. Bozkurt, A. D. Güngör, I. Gutman, A. S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64(2010), 239-250.
- [5] I. Gutman, B. Furtula, Ş. B. Bozkurt, On Randić energy, Linear Algebra Appl. 442(2014), 50-57.
- [6] B. Zhou, N. Trinajstić, On a novel connectivity index, J. math. chem. 46(2009), 1252-1270.
- [7] J. Chen, S. Li, On the sum-connectivity index of unicyclic graphs with k pendent vertices, Math. Commun. 16(2011), 359-368.
- [8] Z. Du, B. Zhou, N. Trinajstić, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. math. chem. 47(2010), 842-855.
- [9] Z. Du, B. Zhou, On sum-connectivity index of bicyclic graphs, Bull. Malays. Math. Sci. Soc. 35(2012), 101-117.
- [10] B. Zhou, N. Trinajstić, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chim. Slov. 57(2010), 518-523.
- [11] F. Zhang, Matrix theory basic results and techniques, Springer-Verlag, New York, 1999.
- [12] Y. Hong, X. D. Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees, Discr. Math. 296(2005), 187-197.
- [13] S. Hu, A sharp lower bound of the spectral radius of simple graphs, Appl. Anal. Discr. Math. 3(2009), 379-385.
- [14] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319(2000), 713-718.
- [15] E. Estrada, J. Rodriguez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E 71. 056103-056103-9. 2005.
- [16] E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18(2002), 697-704.

- [17] B. Zhou, On Estrada index, MATCH Commun. Math. Comput. Chem. 60(2008), 485-492.
- [18] H. Deng, S. Radenković, I. Gutman, The Estrada index, in: D. Cvetković, I. Gutman, Eds. Applications of Graph Spectra, Math. Inst., Belgrade (2009), 123-140.
- [19] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer 60(1987), 189-197.
- [20] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161(2013), 2740-2744.
- [21] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25(2012), 561-566.
- [22] Q. Fan, S. Li, Q. Zhao, Extremal values on the harmonic number of trees, International Journal of Computer Mathematics (2014), 1-15.
- [23] A. Ilić, Note on the harmonic index of a graph, arXiv preprint arXiv: 1204.3313, 2012.
- [24] H. Bamdad, F. Ashraf, I. Gutman, Lower bounds for Estrada index and Laplacian Estrada index, Appl. Math. Lett. 23(2010), 739-742.
- [25] J. A. de la Peña, I. Gutman, J. Rada, Estimating the Estrada index, Lin. Algebra Appl. 427(2007), 70-76.
- [26] H. Zhao, Y. Jia, On the Estrada index of bipartite graphs, MATCH Commun. Math. Comput. Chem. 61(2009), 495-501.
- [27] A. Ilić, D. Stevanović, The Estrada index of chemical trees, J. math. chem. 47(2010), 305-314.
- [28] H. Deng, J. Zhang, A note on the Laplacian Estrada index of trees, MATCH Commun. Math. Comput. Chem. 63(2010), 777-782.