A COMBINATORIAL IDENTITY AND ITS RELATED CONJECTURE

M.H. HOOSHMAND

ABSTRACT. In recent researches on a discriminant for polynomials, I faced with a recursive (combinatorial) sequence $\lambda_{n,m}$ that its first four terms and identities are $\lambda_{0,m} := \binom{m}{0} = \binom{m-1}{m-1}, \ \lambda_{1,m} := \binom{m}{1} = \binom{m}{m-1}, \ \lambda_{2,m} := \binom{m}{1}^2 - \binom{m}{2} = \binom{m+1}{m-1}, \ \lambda_{3,m} := \binom{m}{1}^3 - 2\binom{m}{1}\binom{m}{2} + \binom{m+2}{3} = \binom{m+2}{m-1}$. In this paper I introduce it, prove an identity thereabout, and leave a problem and a conjecture concerning it.

1. Introduction

In [2], I faced to a new recursive doubled sequence as follows. For every integer numbers $n, m \geq 0$, define the sequence $\lambda_{n,m}$ by the following recursive definition

$$\lambda_{0,m} := 1 , \ \lambda_{n,m} := \sum_{j=0}^{n-1} (-1)^{n+j+1} \binom{m}{n-j} \lambda_{j,m}.$$

Therefore

$$\lambda_{0,m} := \binom{m}{0}, \lambda_{1,m} := \binom{m}{1}, \lambda_{2,m} := \binom{m}{1}^2 - \binom{m}{2}$$

$$, \lambda_{3,m} := \binom{m}{1}^3 - 2\binom{m}{1}\binom{m}{2} + \binom{m}{3}$$

$$, \lambda_{4,m} := \binom{m}{1}^4 - 3\binom{m}{1}^2\binom{m}{2} + 2\binom{m}{1}\binom{m}{3} + \binom{m}{2}^2 - \binom{m}{4}, \cdots$$

As regards finding the coefficients of the above summations a problem and related conjecture have been raised. A simplified formula and an explicit definition for $\lambda_{n,m}$ are aimed for this interesting sequence.

2000 Mathematics Subject Classification. 05A19.
Key words and phrases. Combinatorial identity, recursive sequence

2. Main theorem and problem

Now, we prove the first identity for $\lambda_{n,m}$.

Theorem 2.1. For every integer numbers $n, m \geq 0$, we have $\lambda_{n,m} = \binom{m-1+n}{m-1}$.

Proof. For n=0 the formula is true. Next, assume that the formula holds for every $1 \le k \le n$. Consider the following well-known combinatorial identity (see [1])

$$\sum_{j=0}^{k} (-1)^{j} \binom{m}{k-j} \binom{m-1+j}{m-1} = 0$$

Upon replacing k by k+1 in the above identity we get

$$\sum_{i=0}^{k} (-1)^{j} \binom{m}{k+1-j} \binom{m-1+j}{m-1} = (-1)^{k} \binom{m+k}{m-1}.$$

Employing the above identity we obtain

$$\lambda_{n+1,m} = (-1)^n \binom{m}{n+1} + \sum_{j=0}^{n-1} (-1)^{n+j+1} \binom{m}{n-j} \binom{m+j}{m-1}$$

$$= (-1)^n \binom{m}{n+1} + (-1)^n ((-1)^n \binom{m+n}{m-1} - \binom{m}{n+1}) = \binom{m-1+(n+1)}{m-1}.$$

Therefore, the proof is complete.

Now, let m be a fixed positive integer. By using the above theorem, we observe that

Observe that
$$\binom{m}{0} = \binom{m-1}{m-1} \\
\binom{m}{1} = \binom{m}{m-1} \\
\binom{m}{1}^2 - \binom{m}{2} = \binom{m+1}{m-1} \\
\binom{m}{1}^3 - 2\binom{m}{1}\binom{m}{2} + \binom{m}{3} = \binom{m+2}{m-1} \\
\binom{m}{1}^4 - 3\binom{m}{1}^2\binom{m}{2} + 2\binom{m}{1}\binom{m}{3} + \binom{m}{2}^2 - \binom{m}{4} = \binom{m+3}{m-1} \\
\binom{m}{1}^5 - 4\binom{m}{1}^3\binom{m}{2} + 3\binom{m}{1}^2\binom{m}{3} - 2\binom{m}{4}\binom{m}{1} + 3\binom{m}{1}\binom{m}{2}^2 - 2\binom{m}{3}\binom{m}{2} + \binom{m}{5} = \binom{m+4}{m-1}$$

In general, we have

$$\binom{m-1+n}{m-1} = \sum_{\substack{n_1+\cdots+n_k=n\\0\leq n_1\leq\cdots\leq n_k}} C_{n_1,\ldots,n_k} \binom{m}{n_1} \ldots \binom{m}{n_k}$$

$$= \sum_{\substack{i_1+2i_2+\cdots+ni_n=n\\i_i>0}} d_{i_1,\ldots,i_n} {m \choose 1}^{i_1} \ldots {m \choose n}^{i_n},$$

where $C_{n_1,...,n_k}$ and $d_{i_1,...,i_n}$ are integers subject to the next conjecture. Therefore we have the following problem.

Problem. Find the values of $C_{n_1,...,n_k}$, $d_{i_1,...,i_n}$.

Following the above problem, we guess the conjecture bellow.

Conjecture. The values of C_{n_1,\ldots,n_k} , d_{i_1,\ldots,i_n} are dependent only on n (independent from m), $d_{n,0,\ldots,0}=1$, $d_{0,\ldots,0,1}=(-1)^{n+1}$, and the summation of all coefficients d_{i_1,\ldots,i_n} is zero for all n>1.

REFERENCES

- K. H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press, 1999.
- [2] M.H. Hooshmand, A new discriminants for polynomials, submitted.

DEPARTMENT OF MATHEMATICS, SHIRAZ BRANCH, ISLAMIC AZAD UNIVERSITY, SHIRAZ. IRAN.

E-mail address: hadi.hooshmand@gmail.com , hooshmand@iaushiraz.ac.ir