Packing and covering A-fold complete
symmetric digraphs with 6-circuits

Jeng-Jong Lin
Ling Tung University, Taichung 408, Taiwan

Abstract

In this paper we give the solutions of finding maximum packings
and minimum coverings of A-fold complete symmetric digraphs with
6-circuits.

1 Introduction and preliminary

If G is a graph and ) is a positive integer, let AG* be the A-fold symmetric
digraph obtained by replacing each edge uv of G with A arcs %0 and ) arcs
7%. A 1-fold symmetric digraph 1G* will be simply denoted G* and called
symmetric digraph. In particular, we use AK; to denote the A-fold complete
symmetric digraph with n vertices where any two distinct vertices u and v
are joined by A arcs #d and A arcs vt.. For an integer k > 2, by a k-circuit

Ci we mean an elementary circuit (directed cycle) of length k with vertex

set {vy,ve,...,ux} and the arc set {’01'02!,'021)3’,...,’Uk_l'vk),vk'ui}; and it is
denoted by (v1,va,...,u). In particular, (v, v2) denotes the 2-circuit with

arcs 0105 and U20;. A decomposition of a digraph G is a family {H; : i € L}
of subdigraphs of G such that each arc of G contained in exactly one mem-
ber of {H; : i € L}. Suppose that G, H, Hs,..., H, are digraphs, we will
write G = Hy ® Hy ® --- ® H, if G has a decomposition into subdigraphs
Hy\,H,,...,H,. Let a digraph H be given. An H-decomposition of a di-
graph G is a decomposition of G into subdigraphs isomorphic to H. J.
C. Bermond et al. [4] solved the k-circuit decompositions problemn of AK}
when k € {4,6,8,10.12,14,16}. The existence problem for k-circuit de-
compositions of coinplete symmetric digraphs K has been settled by B.
Alspach et al. [2].

A k-circuit decomposition of AK; may not exist, however, it is of interest
to see just how “close” we can come to a k-circuit decomposition. Let
G = (V(G), A(G)) be a digraph with vertex set V(G) and arc set A(G).
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For a set B C A(G), the erc-deletion (resp. arc-addition) of B from G
is the digraph G — B (resp. G + B) by removing (resp. adding) all arcs
of B. A mazimum k-circuit packing of G is a set {G,,G3,...,G¢} where
G: = Ci, V(G:) C V(G) for all i, and UL, A(G:) = A(G — L) such that
|L} is minimum. The arc set L is called the minimum le_gve. A minimum
k-circuit covering is a set {F1, Fa,...,Fn} where F; = Cy, V(F;) € V(G)
for all 4, and U2, A(F;) = A(G + P) such that |P| is minitnum. The arc
set P is called the minimum padding. Note that any arc set mentioned in
this paper may be a multiset. When there is no chance of confusion, we
also refer to the subdigraph induced by the arcs in L (resp. P) as the leave
(resp. padding).

For undirected graphs, maximum k-cycle packings and minimuin k-cycle
coverings of K, have heen found for all values of n when k € {3,4,5,6,8}
(see [5, 6, 7, 8, 10, 11, 13]). For digraphs, the problem of packings and cov-
erings of the A-fold complete symmetric digraph with 3- and 4-circuits was
investigated by F. E. Bennett et al. [3]. H. C. Lee [9] studied the maximum
packings and minimumn coverings of AK};, ,, with 6-circuits. In this paper
we give the solutions of finding maximum packings and minimum coverings
of A-fold complete symmetric digraphs with 6-circuits, respectively.

In order to state our results, we introduce some notations and terminolo-
gies. Consider two digraphs G = (V(G), A(G)) and G’ = (V(G"), A(G")),
the union of G and G is the digraph GUG’ with vertex set V(G)UV(G’) and
arc set A(G)UA(G’). The union of G and G’ is disjoint if V(G)NV(G') = 9,
denoted by G W G’. Let Kj;[v;,vs,...,vp) be the complete symmetric di-
graph with vertex set {v1,v2,...,v,} and K3, _(a1,02,...,am; b1, ba, ..., by)
the complete symmetric bipartite digraph with bipartition ({a1,az,...,am},
{b1,b2,...,b,}), respectively. In addition, denote by C,, a cycle with n ver-
tices and P, a path with n vertices.

For a vertex v of a multidigraph G, the outdegree d,(v) (resp. indegree
dg(v)) of v is the number of arcs incident from (resp. incident to) v.

Lemma 1.1. For each vertex v of a leave L (respectively, padding P) of
a 6-circuit packing (resp. 6-circuit covering) of MK, then df (v) = dj (v)
(resp. df(v) =dp(v)).

Proof. 1t follows from that every vertex v in AK};, d;tK; (v) = dyk. (v), and
so does the vertex of 5; in AK};. O

2 The case of n =6

Let us begin with a theorem concerning the k-circuit decomnposition of K.
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Theorem 2.1. ([2]|) For positive integers n and k, with 2 < k < n, there
exists a k-circuit decomposition of K, if and only if k divides the number
of arcs in K}, and (n, k) # (4,4),(6,3), (6, 6).

Since |A(KZ)| is a multiple of 6 and Kj can not he decomposed into
6-circuits (Theorem 2.1), either the leave of a packing or the padding of
a covering should have sizes a multiple of 6. Note that Cg is a spanning
subdlgraph of Kg. By Lemma 1 1, the minimumn possible leaves of K are

- =
5; O] Cz wCy, Ca ¥ 5’; and Cs W C’3, so are the minimium possible paddings.

Lemma 2.2. There exists a 6-circuit packing of Kg with leave Czw%LﬂCg
and there exists a 6-circuit covering of K§ with padding Co w Ca 6 Ca.

Proof. Let V(K3) = {1,2,3,4,5,6}. A suitable packing &, is given by
(1,3,5,2,6,4), (4,6,2,5,3,1),(1,5,4,2,3,6), (6,3,2,4,5,1) with leave (1,2),
(3,4),(5,6). On the other hand, since (1,2)U(3,4)U(5,6) U (2,3)U(4,5)V
(6,1) = (1,2,3,4,5,6) U (6,5,4,3,2,1), this implies that #1,(1,2,3,4,
5,6),(6,5,4,3,2,1) is a required covering with padding (2, 3), (4, 5), (6,1).

(]

Lemma 2.3. There exists a 6-circuit packing of K§ 'wzth leave C4lﬂ02 and
there exists a 6-circuit covering of K§ with padding C4 W Cz

Proof. Let V(K3) = {1,2,3,4,5,6}. A suitable packing £?; is given by
(1,4,6,5,2,3), (1,6,4,5,3,2), (1,3,5,6,2,4), (1,2,5,4,3,6) with leave (2,6,
3,4),(1,5). On the other hand, since (2,6, 3,4)U(1,5)U(2,5,4,6)U(1,3) =
(1,5,4,2,6,3)U(1,3,4,6,2,5), this implies that @, (1,5,4,2,6,3),(1,3,4,
6,2,5) is a required covering with padding (2,5, 4, 6), (1, 3). O

Lemma 2.4. There does not exist a 6-circuit packing of K¢ with leave
Cg -} C3

Proof. Suppose on the contrary that there exists a 6-circuit packing of
K¢[1,2,...,6] with leave C’3 ) 03, namely (1,2,3),(4,5,6). Since K§[1,2,

., 6] = K3 (1,2,3]® K3 3(1,2,3;4,5,6]® K34, 5, 6], this implies that there
exists a 6-circuit decomposition of the digraph (3,2,1) U K3 3(1,2,3;4,5,
6] U (6,5,4). We consider the following two cases.

Case 1. The arcs in (3,2,1) are contained in three distinct 6-circuits,
namely A;, A2 and Az. Note that the arcs in (6,5,4) must be contained in
the same, three 6-circuits. Without loss of generality, we may assume that
2_i and 54 are in A;. We shall deal with the case where 33 and 63 are in
As, 13 and 46 are in Ajz; the other cases are treated sunllarly

The possible 6-circuit A; that contains both 21 and 54 is (2,1,5,4,3,6)
or (2,1,6,3,5,4); A that contain both 33 and 65 is 3,2,6,5,1,4) or
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(3,2,4,1,6,5); Az that contain both Band28is (1,3,4,6,2,5) or (1, 3,5,2,
4,6). It is not difficult to check that none of the eight possibilities can hap-
pen.

Case 2. The arcs in (3,2,1) are contained in two distinct 6-circuits,
namely B; and B;. Note that the arcs in (6, 5,4) must be contained in the
same two 6-circuits and one arc in By, the other two arcs in B,. Without
loss of generality, we assume that 2_f and 5'74) in By, l_ﬁ U 55 and :13 U ng in
Bs, and the other cases are similar.

The possible 6-circuit B; that contain both 2_i and 54 is (2,1,5,4,3,6)
or (2,1,6,3,5,4) and one possibility for the 6-circuit B, that contains
18U33 and U is (1,3,2,4,6,5). Hence the subdigraph induced by
the arcs of By U By in K34[1,2,3;4,5,6] is (1,5) U (2,4,3,6) or (2,4) U
(1,6,3,5). It follows that there exists a 6-circuit decomposition of the
digraph K3 ;(1,2,3;4,5,6] — A((1,5) U (2,4,3,6)) or K34(1,2,3;4,5,6) —
A((2,4)U(1,6,3,5)). We consider the case of (1,5)U(2, 4, 3, 6) and the case
of (2,4) U (1,6,3,5) is similar. Since there exist no arcs between vertices
1 and 5, this implies that one 6-circuit must be of the type (1,a,b,5,c,d)
where {a,d} = {4,6} and {b,c} = {2,3}. We consider the case of a = 4,
b =2, c=3,d =6 and the other cases are similar. In this case, the
6-circuit is (1,4,2,5, 3,6), but the arc 3% has been removed. This contra-
diction finishes the proof. a

Lemma 2.5. There ezists a 6-circuit covering of K§ with padding 5§w5§

Proof. Let V(Kg) = {1,2,3,4,5,6}. By Lemma 2.3, there exists a 6-
circuit packing £, with leave (2,6,3,4),(1,5). On the other hand, since
(2,6,3,4)U(1,5)U(1,4,6)U(2,5,3) = (1,5,3,4,2,6) U(1,4,6,3,2,5), this
implies that £, (1,5,3,4,2,6),(1,4,6,3,2,5) is the required covering with
padding (1, 4, 6), (2,5, 3). Q

Proposition 2.6. ([4]) For integers n > 6 and A > 1, there exists a 6-
circuit decomposition of AK}, if and only if An(n — 1) = 0 (mod 6) ezcept
forn=6, A=1.

Now we have the following results for n = 6.

Theorem 2.7. Let A be a positive integer.
(a) There exists a mazimum 6-circuit packing of AK} with minimum leave
L, where

o] GGl orCiwls, ifA=1;
— 10, otherwise.
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(b) There exists a minimum 6-circuit covering of AKg with minimum padding
P, where

Pg{ CowChwCs, CiwC orCswCa, ifA=1;

0, otherwise.

Proof. This result follows from Theorem 2.1, Lemmas 2.2- 2.5 and Propo-
sition 2.6. (]

Corollary 2.8. For an integer )\, there exists a 6-circuit decomposition of
AKg if and only if A 2> 2.

3 Small cases of maximum packings and min-
imum coverings

In view of the above result, we shall assume that n > 7 in the sequel.
We will discuss necessary conditions for maximum packings and minimum
coverings. In dealing with minimum possible leaves and minimum possi-
ble paddings of undirected graphs, one has to consider both the parity of
degrees and the number of edges. However, in the case of digraphs, only
the number of arcs is relevant because the arcs which are oriented outward
from v and inward to v appear in pairs for any vertex v € V(AK,).

If n=0,1 (mod 3), then clearly 6 divides |A(AK};)|, so minimum pos-
sible leaves and minimum possible paddings are empty.

For the case when n = 2 (mod 3), if A =0 (mod 3), then |A(AK}})| is a
multiple of 6. This implies that the minimum possible leaves and minimum
possible paddings are empty. If A =1 (mod 3), then |JA(AK};)| = 6+ 2 for
some positive integer o, the minimﬂ)m possible leave is C; and the minimum
possible paddings are Cy, P§, CoWC, and 2P; (the case of 2P doesn’t exist
when X = 1), in view of the divisibility requirement for the number of arcs
in AK}. If A =2 (mod 3), arguing in the same way, the minimum possible
lia)wes are Cy4, P},Cy W C3 and 2P, and the minimum possible padding is
Cs.

We may summarize our results in Tables 1 and 2.

The well-known results about the decomposition of K, into isomorphic
cycles are due to M. Sajna [1] and B. Alspach et al. [12], respecively.

Theorem 3.1. ([1]) For positive even integers m and n with 4 < m < n,
the graph K, — I can be decomposed into cycles of length m if and only if
the number of edges in K,, — I is a multiple of m, where I is a 1-factor of
K,.
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Table 1: The minimum possible leaves in 6-circuit packings of AK:

n (mod 3) 1 2 0
A =1 (mod 3) ] 5)2 9
A =2 (mod 3) 9 Ci,P;CowCyor2P;, 0
A =0 (mod 3) 9 0 0

Table 2: The minimum possible paddings in 6-circuit coverings of AK*

n (mod 3) 1 2 0
A=1 (mod 3) 0 CiP;,CowChor2P;, 0
A =2 (mod 3) 0 C )
A =0 (mod 3) 9 0 U

(the case of 2P; doesn’t exist when A = 1)

Theorem 3.2. ([12]) Let n be an odd integer and m be an even integer
with 3 < m < n. The graph K, can be decomposed into cycles of length m
whenever m divides the number of edges in K,,.

The following criterion for the 2k-circuit decomposition of complete bi-
partite symmetric digraphs is needed for our discussions.

Theorem 3.3. ({14]) There ezists a 2k-circuit decomposition of K. if
and only if m > k, n > k, and k divides mn.

The following lemma provides a useful tool for the problems of k-circuit
packing and covering.

Lemma 3.4. If there exists a k-cycle packing (resp. covering) of K, with
leave L (resp. padding P), then there exists a k-circuit packing (resp. cov-
ering) of K, with leave L* (resp. padding P*).

Proof For each Cj in a k-cycle packing (resp. covering) of K,, obtain

two Ck by giving Ci the two possible orientations in each edge. Hence
there exists a k-circuit packing (resp. covering) of K with leave L* (resp.
padding P*). a

Next, we will give a collection of the necessary lemmas of maximum
packings and minimun coverings for the general construction to follow.
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Theorem 3.5. ([2]) There ezists a 6-circuit decomposition of K when
n=17910,12.

Lemma 3.6. Let )\ be a positive integer with A < 3.
(a) There exists a 6-circuit packing of AKg with leave L, where

LS G, P, CowCy, or2P), ifA=2;
9, if A = 3.

(b) There ezists a 6-circuit covering of AKg with padding P, where

Ci,P;, or GG, ifr=1;
Cs, ifr=2;
2, ifA=3.

P

IR

Proof. Let V(K3) = {1,2,3,...,8}. The case of A = 3 follows from Propo-
sition 2.6. We distinguish two cases by the values of A.

Case 1. A = 1. By Theorem 3.1, we have that Kgs—I can be decomposed
into cycles of length 6, where I is a 1-factor of Ks. Thus, by Lemma 3.4,
there exists a 6-circuit packing (1,2,5,6,3,8),(2,3,5,4,7,8),(1,3,4,6,7,5),
(1,7,2,4,8,6),(8,3,6,5,2,1),(8,7,4,5,3,2), (5,7,6,4,3,1), (6,8,4,2,7,1)
of K§ with leave (1,4),(3,7),(5,8),(2,6). In addition, we can see that
(1,2,5,6,3,8) U (2,3,5,4,7,8) U (1,4) U (3,7) U (5,8) = (1,2,3,8,5,4) U
(1,4,7,3,5,8)U(2,5,6,3,7,8). It follows that there exists a 6-circuit pack-
ing of Kg with leave C_)'z : (2,6). On the other hand, we have

(1,3,4,6,7,5) U (2,6) U (2,8,5,3) = (1,3,2,6,7,5) U (2,8,5,3,4,6);

(1,3,4,6,7,5) U (2,6)U (1,8) U(2,8) = (1,3,4,6,2,8) U(L,8,2,6,7,5);

(1,7,2,4,8,6)U(2,6)uU(1,4)U(7,8) =(1,7,8,6,2,4) U(1,4,8,7,2,6).
Hence there exist 6-circuit coverings of K3 with paddings Cy : (2, 8,5, 3),
P}:(1,8),(2,8) and 6; T 6; : (1, 4),(7,8), respectively.

Case 2. A = 2. Note that 2K3 = K3 ® Kg. Since the leave of 2K
can be composed of the leave of K§ together with the leave of the other
K3, by the result of case 1, it suffices to show the existence of the leave
C,. First, we choose two 6-circuits (1,3,4,6,7,5), (1,4,7,3,5,8) and the
leave (2, 6) from the 6-circuit packing of K3 in case 1. Next, by the result
of case 1 again, we assume that there exists a 6-circuit packing of the
other K3 with leave (2,5). Then we have (1,3,4,6,7,5) U (2,6) U (2,5) =
(1,3,4,6,2,5)U(2,6,7,5). It follows that there exists a 6-circuit packing of
2K} with leave C—: : (2,6,7,5). On the other hand, we have (1,4,7,3,5,8)U
(2,6,7,5)U(1,2) = (1,2,6,7,5,8)U(1,4,7,3,5,2). Hence there exists a 6-
circuit covering of 2K with padding Cs : (1,2). [m}
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Lemma 3.7. Let A be a positive integer with A < 3.
(a) There ezists a 6-circuit packing of AK}, with leave L, where

G, . ifa=1;
L { G, P;,CowCs, or2Py, ifA=2;
9, ifA=3.

(b) There exists a 6-circuit covering of AK7, with padding P, where

C'4,P3, orCzlﬂcz, ifiA=1;
P={ G if A =2;
9, if A=3.

Proof. Let V(K},) = {1,2,3,...,11}. The case of A = 3 follows from
Proposition 2.6. We distinguish two cases by the values of ).

Case 1. A = 1. A suitable packing is given by (1,3, 7,11, 6,9), (2,6,11, 4,
8,10), (2,11,5,8,7,3), (1,7,9,4,11,2), (6,1,5,9,7,4), (9,11,8,5,7,2), (8,
11,9,10,3,1), (5,11,7,1,6,2),(3,11,1,10,7,6),(1,11,3,10,8,4), (2,10,6,
7,8,1), (6,10,9,3,4,5), (2,3,6,8,9,5), (4,10,5,3,8,2),(5,10,4,9,2,7), (5,
4,3,9,8,6),(2,8,3,5,1,4),(7,10,1,9, 6,4) with leave (10,11). On the other
hand, since
(1,3,7,11,6,9)u(10,11)uU(2,9,3,10) = (1,3,10,11,6,9)U(2,9,3,7, 11, 10);
(1,3,7,11,6,9)u(10,11)u(1, 2)U(2,10) = (1,3,7,11,10,2)U(1,2,10, 11, 6, 9);
(2,6,11,4,8,10)U(10, 11)U(2,4)U(6,8) = (2,4,8,6,11,10)U(2,6,8,10, 11, 4).
Hence there exist 6-c1rcu1t covermgs of K}, with paddings a (2,9, 3,10),

T :(1,2),(2,10) and CQUCQ (2,4), (6, 8), respectively.

Case 2. A = 2. Note that 2K}, = KT, ® K7},. Since the leave of 2K},
can be composed of the leave of K7, together with the leave of the other
K3, by the result of case 1, it suffices to show the existence of the leave
C,. First, we choose two 6-circuits (2,11,5,8,7,3), (1,7,9,4,11,2) and the
leave (10, 11) from the 6-circuit packing of K7, in case 1. Next, by the result
of case 1 again, we assume that there exists a 6-circuit packing of K}, with
leave (8,10). Then (2,11,5,8,7,3) U (10,11) U (8,10) = (2,11,10,8,7,3) U
(5,8,10,11). It follows that there exists a 6-circuit packing of 2K}, with
leave 5‘: : (5,8,10,11). On the other hand, we have (1,7,9,4,11,2) U
(5,8,10,11)uU(7,8) = (1,7,8,10,11,2)U(4,11,5,8,7,9). Hence there exists
a 6-circuit covering of 2K7, with padding 82 : (7,8). a

4 Main results

Lemma 4.1. For an integer n > 6, if there ezists a 6-circuit packing

(resp. covering) of AK}; with leave L (resp. padding P), then there exists
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a 6-circuit packing (resp. covering) of AK,, ¢ with leave L (resp. padding
P).

Proof. Let V(AK;¢) = {00,1,2,3,...,n +4,n + 5}, we have a decompo-
sition of AK}, ¢ as follows.

MK 6[00,1,2,...,n 4 5
=AK;[00,1,2,...,n—1]
®AK,_16[1,2,...,n=1in,n+1,...,n+5]
® AK3[oo,n,n+1,...,n+5)].

Hence the result follows from the fact that K;_; ¢ and K7 have 6-circuit
decompositions by Theorems 3.3 and 3.5, respectively. O

Now we prove the main result of this paper.

Theorem 4.2. Let n and A be positive integers with n > 7.
(a) There ezists a mazimum 6-circuit packing of AK;, with minimum leave
L, where

g”g, ifn=2 (mod 3) and A =1 (mod 3);
L= C4,P§,C_)’2&la>'2, or 2Py, ifn=2 (mod 3) and A = 2 (nod 3);
0, otherwise.

(b) There exists a minimum 6-circuit covering of AK}; with minimum padding
P, where

b—;,Pg,ora’;kﬂa, ifn=2 (inod 3) and A =1;
Z':,P;,awé_;,or 2P, ifn=2 (mod 3)

P and A =1 (mod 3), A > 4;
5)'2, ifn =2 (mod 3) and A =2 (mod 3);
0, otherwise.

Proof. By Proposition 2.6, Theorem 3.5, Lemmas 3.6, 3.7 and 4.1, it suf-
fices to show the existence of the minimum possible paddings 2P} of 4K3
and 4K7,. Let V(K3) = {1,2,3,...,8}. By Lemma 3.6, there exists a 6-
circuit covering of 2Kg with padding a'-; :(1,2). Since 4K3 = 2K3 & 2K3,
there exists a 6-circuit covering of 4K3 with padding 2P5 : (1,2),(1,2).
Similarly, 4K}, has the same result and the proof is complete. O
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