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Abstract Let X = (V,E) he a digraph. X is mazimally connected, if
k(X) = 6(X). X is mazimally arc-connected, if A(X) = §(X). And X
is super arc-connected, if every minimuin arc-cut of X is either the set of
inarcs of some vertex or the set of outarcs of some vertex. In this paper, we
prove that the strongly connected Bi-Cayley digraphs are maximally con-
nected and maximally arc-connected, and the most of strongly connected
Bi-Cayley digraphs are super arc-connected.
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1 Introduction

All graphs considered in this paper are finite and simple, unless other-
wise stated. We follow the notation and terminology, not defined here, of
Bondy and Murty [1].

A digraph is a pair X = (V,E), where V is a finite set and E is an
irreflexive relation on V. Thus E is a set of ordered pairs (u,v) € V x V
such that u # v. The eleinents of V are called the vertices or nodes of X
and the elements of E are called the arcs of X. Arc (u,v) is said to be an
inarc of v and an outarc of u; we also say that (u,v) originates at u and
terminates at v. If u is a vertex of X, then the outdegree of u in X is the
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number d% (u) of arcs of X originating at u and the indegree of u in X is
the number d (u) of arcs of X terminating at u. The minimum outdegree
of X is 6*(X)=min{d%(u) | v € V} and the minimum indegree of X is
6~ (X)=min{dx (u) | u € V}. We denote by §(X) the minimum of §*(X)
and §—(X).

The reverse digraph of digraph X = (V,E) is the digraph X() =
(V,{(v,u) | (u,v) € E}). Digraph X = (V, E) is symmetric if E=E( and
is antisymmetric if E() E(M=@. An undirected graph is a pair X = (V, E),
where V is a finite set and E is a collection of two-element subsets of
V. We can identify an undirected graph X = (V| E) with the symrmetric
digraph X, = (V, E,) where E;={(u,v)|{u,v} € E} U {(v,u)|{u,v} € E}.
A digraph with exactly one vertex is called a trivial digraph. We denote
by K, the digraph with vertices the integers fromn 1 to n and arcs all pairs
(4,7) of such integers with 7 # j. A digraph isomorphic to K7, is said to be
a complete symmetric digraph.

For a digraph X = (V, E) and a suhset A of V, we can get a subdigraph
X[A] of X whose vertex set is A and whose arc-set consists of all arcs of X
which have both ends in A. And we call the subdigraph X[A] is an induced
subdigraph of X.

Definition 1.1. Let G be a group and Ty, T) C G. Then we define the Bi-
Cayley digraph X = BD(G,Ty,Th) to be the bipartite digraph with vertex
set G x {091} and arc set {((99 0)' (tO'g’ ]))1 ((tl'gr 1): (g’ 0)) | QGG,
to €To, £t €Ty } .

By definition we observe that d% ((g,0))=|Tol, d%((g,0)) = |Ta}, d%((g,1))
=|Th|, dx((g,1)) = |To|, for any g € G.

In this paper, we always denote Xg = G x {0} and X, = G x {1}.
Some new results on the Bi-Cayley graph are referred to {2, 5, 6, 7], and
the related knowledge about groups can be found in the book of Xu [10].
Let R(G) = {R(a)|R(a) : (9,1) — (ga,i), for a,g € G and i=0, 1}. Then
we have the following proposition.

Proposition 1.2. Let X = BD(G,Ty,T1). Then

(1) R(G) <Aut(X), furthermore Aut(X) acts transitively both on X,
and X] .

(2) X is strongly connected if and only if [To| 2 1, |T1| 2 1 and G =<
Tl-lTo > .

Proof. (1) For any R(a) € R(G) and ((91,0), (g2,1)) € E(X), there exists
some tg € Tp such that g, = togi, then gaa = togia. Thus ((g1,0), (g2, 1)) R
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= ((918,0),(g2a,1)) € E(X). Similarly, if ((g2,1),(91,0)) € E(X), then
((g2,1), (g1,0))R®) € E(X). So R(a) is an automorphism of the Bi-Cayley
digraph X, thus R(G) < Aut(X). Since (g1,i)RO7'92) = (gy,%) for any
91,92 € G, Aut(X) acts transitively both on Xy and X;.

(2) If X is strongly connected, then {Tp| = 1, |T1] = 1 and there exists a di-
rected path from (1¢,0) to (g,0) for any g € G. Thus there exists an integer
n, t(()i) € Tp and tgi) € T1(1 € i < n) such that 1g — t(()l) - (tgl))_ltf,l) -
oo (@1t Py 1@ ()14l = g, that is G =< TT T >
On the other hand, for any h, g € G, h~lg is in G =< Tl"'To > if and
only if it can be written as a product of elements of 77T U (T} 1 Tp) 1.
Thus we can easily know there exists a path from (g,1) to (h,?). And since
|To| =2 1 and |T] 2 1, (g,0) has hoth outarcs and inarcs for any g € G. So
X is strongly connected. O

2 Connectivity

Let X = (V, E) be a strongly connected digraph. An arc disconnecting
set of X is a subset W of E such that X\W=(V, E\W) is not strongly
connected. An arc disconnecting set is minimal if no proper subset of W
is an arc disconnecting set of X and is a minimum arc disconnecting set
if no other arc disconnecting set has smaller cardinality than W. The arc
connectivity A(X) of a nontrivial digraph X is the cardinality of a minimum
arc disconnecting set of X.

The positive arc neighborhood of a subset A of V is the set w}(A) of
all arcs which initiate at a vertex of A and termninate at a vertex of V\A.
The negative neighborhood of subset A of V is the set wy(A) of all arcs
which initiate in V\A and terminate in A. Thus wyx(A)=w}(V\A). Arc
neighborhoods of proper, nonemnpty subsets of V, often called arc-cuts,
are clearly arc disconnecting sets. Thus for any proper, nonempty subset
A of V, |wt(A)] = A(X). If we consider the cases where A consists of
a single vertex or the complement of a single vertex, we easily see that
AMX) < 6(X).

A nonempty subset A of V is called a positive (respectively, negative)
arc fragment of X if |wt(A)| = A(X) (respectively, |w™(A4)| = A(X)). An
arc fragment A with 2 < |A4| < |V(X)|—2 is called a strict arc fragment of
X. An arc fragment of miniinum cardinality is called A-atom of X and a
strict arc fragient of least possible cardinality is called a A-superatom of X.
Note that a A-atomn (respectively, A-superatom) may be either a positive arc
fragiment or a negative arc fragment or both. A A—atom which is a positive
(respectively, negative) arc fragment is called a positive (respectively, nega-
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tive) A-atom and a A—superatomn which is a positive (respectively, negative)
arc fragment is called a positive (respectively, negative) A-surperatom.

A vertex disconnecting set of X is a subset F of V(X) such that X\F
is either trivial or is not strongly connected. We often call F a vertez-cut.
The connectivity k(X) of a nontrivial digraph X is the cardinality of a
minimuin vertex disconnecting set of X.

The positive neighborhood of a subset F of V is the set N*(F) of all
vertices of V' \ F' which are targets of arcs initiating at a vertex of F.. The
positive closure C*(F) of F is the union of F and N*(F). The negative
neighborhood of subset F' of V is the set N~ (F) of all vertices of V \ F
which are the initial vertices of arcs which termninate at a vertex of F'. The
negative closure C~(F) of F is the union of F and N~ (F).

If F is a nonempty subset of V with C*(F) # V, then the positive
neighborhood of F is clearly a vertex disconnecting set for X. Thus for
each such set F, [IN*(F)| > &(X). If we consider the cases where F consists
of a single vertex or the complement of a single vertex, we easily see that
K(X) £ 8(X). There are many elegant and powerful results on connectivity
in graph theory, see [8, 9, 11] for exainple.

A nonempty subset F of V is called a positive (respectively, nega-
tive) fragment of X if IN*(F)| = s(X) and C*(F) # V (respectively,
INT(F)| = k(X) and C~(F) # V). A fragment of minimum cardinality is
called atom. Note that an atomn may be either a positive fragment or a neg-
ative fragment or both. A atom which is a positive (respectively, negative)
fraginent is called a positive (respectively, negative) atom .

A digraph X is mazimally arc connected (respectively, mazimally con-
nected), or more simply, maz-A (respectively, maz-x), if £K(X) = §(X)
(respectively, A(X) = §(X)). And X is super arc connected, or more sim-
ply, super-A if every minimuin arc-cut of X is either the set of inarcs of
somne vertex or the set of outarcs of some vertex. The relationship of A(X)
and x(X) is well known: x(X) < AX) < §(X). So if k(X) = §(X),
then A(X) = 8(X). In the following of this section, we try to prove that
k(X) = §(X) for Bi-Cayley digraphs.

A desirable property one wishes any type of atomn to have is that, if
nontrivial, they forin imprimitive blocks for the automorphism group of the
digraph. To be precise. an imprimitive block for a group ® of permutations
of aset T is a proper, nontrivial subset A of T such that if ¢ € ® then either
@(A) = A or p(A)N A = 0. In the following proposition, Hamidoune has
proved that the positive (respectively, negative) atoms of X are imprimitive
blocks of X. The following proposition also indicates why imprimitivity is
so useful.
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Proposition 2.1. (4] Let X = (V, E) be a graph or digraph and let Y be
the subgraph or subdigraph induced by an imprimitive block A of X. Then
1. If X is vertez-transitive then so isY;

2. If X is a strongly connected arc-transitive digraph or a connected edge-
transitive graph and A is a proper subset of V', then A is an independent
subset of X .

Proposition 2.2. (3] Let X = (V,E) be a strongly connected digraph
which is not a complete symmetric digraph and let A be a positive (re-
spectively, negative) atom of X. If B is a positive (respectively, negative)
fragment of X with ANB # 0, then AC B.

Proposition 2.3. Let X be a strongly digraph with x(X) < §(X), end A
be an atom of X. Then X[A] is strongly connected.

Clearly if X = BD(G, Tp, T) is a strongly connected Bi-Cayley digraph
with k(X) < 6(X) and A is an atomn of X, then A; = AnX; # @fori =0,1.

Lemma 2.4. Let X = BD(G,To,T) be a strongly connected Bi-Cayley
digraph with k(X) < 6(X). If A is an atom of X, then

(1) V(X) is a disjoint union of distinct positive(or, negative) atoms of X ;
(2) Let Y = X[A]. Then Aut(Y') acts transitively both on Ag and A;;

(3) If (1,%) € A; = H; x {i}, then H; is the subgroup of G for i=0,1;

(4) |4o| = |A4l.

Proof. (1) and (2) follow from the results that the distinct positive (nega-
tive) atomns are disjoint and Aut(X) acts transitively both on Xy and X;.
(3) For any g € Hy, Ag is also a positive atom since R(g)e Aut(X). And
g € AN Ag, then we get that A = Ag, thus Apg = Ag and A;g = A,. The
former equality means that Hy is a subgroup of G.

(4) From Proposition 1.2(1) and Proposition 2.2, we can get V(X) =
UK p:(A) where ; € Aut(X) such that p;(A) Ny;(A) = @ if i # 7,
then X; = UX_p:(4;). Since |Xo| = | X1|, we have |Ao| = |A41|. O

From the proof of Lemnma 2.4, Y = X[A] has the property that d3 ((g:, 0))
= d}((g5,0)) and d7((9:,0)) = dy ((g;,0)) for any vertices (g, 0), (g;,0)€
Ap. And if (1,0) € Ag,then Ayg = A; is right for any ¢ € Hy, so
H\Hy = H,. It means H, is a left coset of Hy since |Hp| = |H:|. We
have the following lemina.

Lemma 2.5. Let X = BD(G,Ty,T)) be a strongly connected Bi-Cayley di-
graph with x(X) < 6(X), and A be a positive atorn. Let Ao = {91,92, - 9m}
x {0} = Hp x {0} and Ay = {g,,92) -+ 9m} % {1} = Hy x {1}. Then

(1) If t.g; € Hy for some t; € T; (i=0, 1) and some some j(1 < 7 < m),

25



then tigr € Hy for any k(1 <k <m);
(2) If tl_lgj € Hy for some ty € Ty and some j(1 < j < m), then
tl’]g;c € Hy for any k(1 < k < m).

Proof. (1) Assume (1,0) € Ao, then HyHy = H,. If t;g; € H,, then
tingO =t;Ho = Hy. It means t;gr € H for any k(1 £ k < m).

(2) Similarly, assume (1,0) € Ao, then HiHo = H,. If t7'g; € Hy, then
g;- € t1Hy. So H, = t;Hp. it mneaus that t,'lg;c € Hp for any k(1 < k <
m). 0

Theorem 2.6. Let X = BD(G,Ty,T1) be a strongly connected Bi-Cayley
digraph. Then k(X) = §(X)

Proof. Suppose X is not max-k. Without loss of generality, assume that
A = AgUA, is a positive atom. Denote A9 = Hox{0} and A; = Hyx{1}. If
|N*(Ag)\Ai| # 0, then by Lemna 2.5 we have |[N*(A4)\ A1| = |Ho|. Thus
INT(A)| = IN*t(Ao) \ A1] + IN* (A1) \ Aol = [N*(Ao) \ Al + {T7 1 Hy \
Ho} x {0} = |Ho| +|T7' \ Ho| =| T7'| > 8(X), a contradiction. If
IN*(A1) \ Aol # 0, then by Lemma 2.5 we have |[N*(A;) \ Ao| > |H,y|.
Thus [N*(A)| = [N*(Ao) \ A1l + [N*(A1)\ Ao| = {ToHo \ H1} x {1} +
IN*(Ao)\ Ai| = |To \ Hi|+|H\| = |To| > 8(X), a contradiction. Therefore
N+t(A) =90, it is a contradiction . O

Corollary 2.7. Let X = BD(G,Ty,T\) be a strongly connected Bi-Cayley
digraph. Then (X) = AMX) = 6(X).

3 Super arc-connectivity

A weak path of a digraph X is a sequence uy, ..., u, of distinct vertices
such that for ¢ = 1,...,7, either (u;_j,u;) or (u;,u;—1) is an arc of X. A
directed graph is weakly connected if any two vertices can be joined by a
weak path.

Proposition 3.1. Let X = BD(G,Ty,T1) be a strongly connected Bi-
Cayley digraph and A be a A~superatom. Then

(1) Y = X[A] is weakly connected;

(2) 1A] = 6(X).

Proof. Suppose A is a positive A—superatoin.
(1) If |A] = 2, then we obtain that A is not an independent set since
[N*(A)| = 6(X) and N*(u) # 0 for any u € V(X). Now assume |4} > 3.
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If Y = X[A] is not weakly connected, we can get a A—superatom with
cardinality less than A, a contradiction.

(2) M(X) = [wx (A)] > |A|(6(X) - (|A] - 1)) = |A|(6(X) - |A] + 1),

we can verify that A(X) > §(X) when 2 < 4| < §(X), a contradiction. [J

Any digraph with d*(zx) = d~(z) for every vertex = of X is said to be
a balanced digraph.

Proposition 3.2. [4] Let X = (V,E) be a strongly connected, balanced
digraph and let A and B be arc fragments of X such that AZ B and B € A.
IfANB # @ and AUB # V. Then each of the sets ANB, AUB, A\ B
and B\ A is an arc fragments of X.

Theorem 3.3. [4] Let X = (V, E) be a strongly connected balanced digraph
which is not a symmetric cycle, is not super arc-connected and has §(X) >
2. If §(X) > 2 or X is vertez-transitive, then distinct A—superatoms of X
are vertex disjoint.

Sitnilarly, we can also achieve the analogous results.

Proposition 3.4. Let X = (V, E) be a strongly connected digraph and let
A and B be positive (respectively, negative) arc fragments of X such that
A¢Band BZ A. If ANB # @ and AUB # V, then each of the sets
ANB, AUB, A\ B and B\ A is a positive (respectively, negative) arc
fragments of X.

Theorem 3.5. Let X = (V, E) be a strongly connected digraph which is
not a symmetric cycle, is not super arc-connected and has §(X) > 2. If
8(X) > 2 or X is vertex-transitive, then distinct positive (respectively,
negative) A—superatoms of X are vertez disjoint.

Lemma 3.6. Let X = BD(G, Ty, T)) be strongly connected but not super—A.
If X is neither a directed cycle nor a symmetric cycle , then distinct positive
(respectively, negative) A—superatoms of X are vertex disjoint.

Proof. Suppose to the contrary that there are distinct positive A—superatorms
A, B of X with ANB # §. By Proposition 3.4, each of ANB, AUB, A\B, B\
A is a positive arc fragment which is a proper subset of a A—superatom.
Therefore, each of these sets must have cardinality 1 so that we may as-
sume A = {u,v}, B = {v,w} with v # w. Thus we have d}IA](u) =
d}w(v) < 1. d)‘([A](u) = d}lA](v) <1, d}[B](v) = d}[B](w) < 1 and
dJ_{IB](v) = d}lB](w) <1

Case 1 §(X) = 1.
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d}(u) =d¥() = d(w) =1, so |Ty| = 1, |Ti| = 1. And because
X is a strongly connected digraph, we can get X is a directed cycle, a
contradiction.

Case 2 §(X) = 2.

d%(u) = d%(v) = d}(w) = 2.
Because X[A] and X[B] are weakly connected and A, B and AU B are arc
fragments, we can deduce

lToI = IT1| =2and Tp =T3.
Because X is strongly connected, X is a cycle, a contradiction.
Case 3 §(X) > 3.

It is true by Theorem 3.5. a

For the rest of the paper we set A; = ANX,; = H; xi,i =0,1. Similarly
to Lemia 2.4, we can derive the following theorem.

Lemma 3.7. Let X = BD(G,Ty,T1), which is neither a directed cycle
nor a symmetric cycle, be strongly connected but not super—X . Let A be a
A—superatom of X. Then

(1) V(X) is a disjoint union of distinct positive (negative) A\—superatoms;
(2) Let Y = X[A]. Then Aut(Y') acts transitively both on Ap and A;;

(3) If A; contains (1,7)(1 = 0,1), then H; is a subgroup of G;

(4) |Ao| = |41].

Similarly as Lemma 2.4, we also have H,Hy = H, if (1,0) € Ay and
HoH, = Hy if (1,1) € Ay. The following proposition is easy to get.

By a similar argument as Lemma 2.5, the following lemina. is obtained.

Lemma 3.8. Let X = BD(G,Ty,Ty), which is neither a directed cycle
nor a symmetric cycle, be strongly connected but not super—X\ . Let A be a
A— superatom ofX and set Ay = {g1,92,93,.-.,gm} X {0} = Hp x {0} and
Al = {91192’931 sgm} X {1} = Hl x {1} Then

(1) If tig; € Hy for some t; € T; (i=0, 1) and some some j(1 < j < m),
then t,g;c € Hy for any k(1 < k < m);

(2) If t;! gJ € Hy for some t) € T\ and some j(1 < j < m), then t7! gk €
Hy for any k(1 < k < m).

Theorem 3.9. Let X = BD(G,To,Th) be strongly connected. If X is
neither a directed cycle nor a symmetric cycle, then X is not super—\ if
and only if X satisfies one of the following conditions:

(1) There ezists a subgroup H < G and there distinct elements to, t;,, tg €T
such that

|H| = 8(X), Ty M0 € H t5"(To \ {to}) C H and t5't, ¢ H.
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or

|H| = é(X)/2, T} Yo C H, t3 (To\ {to,to}) C H and t3'ty, t5'ts ¢ H
.Where ty # to and t, # to
(2) There exists a subgroup H < G and two distinct elements tit, €Ty
and some element to € Ty such that

|H| =6(X), t5'To  H, (T\{t,})""to € H and £, to ¢ H.
or
|H| = 6(X)/2, t5'To c H, (Ti\{t1,t,})"'to C H and 1=t to ¢

(3) There ezists a subgroup H < G and two distinct elements to,to €T
and some element t; € Ty such that |[H| = §(X)/2, ty YTo\ {to}) € H,
tg'to & H, (TI\{t:})"'to C H and t7'to ¢ H, where ty # to.

Proof. Necessity. Without loss of generality assuine A is a positive A—super-
atom of X and (1,0) € A. From Lemma 3.7, Hp is a subgroup of G
and Y = X|[A] is a bipartite digraph with df ((g,i))=d¥((g:,7)) and
dy ((gk,1))=dy((g1,1)) for any vertices (gk,i),(g,i) € A(i=0, 1). Fur-
thermore, df ((9;,0)) = dy((g:, 1)) and dy((g5,0)) = df((g¢,1)). Denote
45 ((95,9)) = dy (91, 1)) = p, dy ((97.0)) = d((g0, 1)) = g. Let H = Ho.
Claim: There exist at least an element tg € Tp such that Hy = tgHyg if
(1,0) € A.

The proof of the Claim: If p = 0, then §(X) = AMX) = |[w}(4)| =
[ Aol(|To| — p) + |A1I(IT7] = q) = |Aol|To| + | A1|(IT1] - q) = |To| +|A:|(|T2] -
q) 2> |To| 2 8(X). So|Ao| = |A1| =1and [T1|—g = 0. SowT(A4) = wt(4y),
thus X is super—A. By a similar argurnent we can prove X is super—A when
g = 0. A contradiction. So pg # 0.

If (1,0) € Ao, then Hy; = HyHp. And because p # 0, there exist at least
an element tg € Ty such that ¢ € Hy. Thus Hy; = toHp. So the Claim is
true.

Since 6(X) = A(X) = [w}(A)] = [4ol(ITo] - 7) + [A1[(ITh] - 0), 4] >
6(X) and |Ao| = |A;], we have |Ag| = |Ay| 2 §(X)/2 and |Tp|—p+|T1|—¢q <
2. Now we consider fine cases.

Case 1l |Typ| —p=1and [T1|-¢=0.

(i) MX) = |wk(4)| = |Ao| = |Ho| = |H| = §(X), since [To| —p = 1 and
|Th| —g=0.

(ii) Since |Ty| — p = 1, there exists an element £, € To such that (To \
{to})Ho C H, and tng N H, = 0. It means (Tp \ {to})Ho C toHo and
toHo NtoHo = 0, so t5'(To \ {tg}) C Ho and t5'ty ¢ H.

(iii) since |Ti|—q = 0, we have that T;"' Hy C Hp. It means T 'toHo C Ho,
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so Tl-lto C Hy.

Case 2 |To| —~p=0and [T3] — ¢ = 1.
() M(X) = lw}(A) = | 4] = |H)| = |Ho| = |H| = §(X), since |To] —p = 0
and [T1| —g=1.

(ii) Since |Tp| — p = 0, we have that ToHo C H;. It means ToHp C toHp,
so tg 1Ty C Ho.

(iii) since |T1| — ¢ = 1, there exists an element ¢, € Ty such that (T3 \
{t:})" H, C Hp and t7'Hy N Hp = 0. It means (T1 \ {t1})"toHo C Ho
and t;ltoHo NHy =0, so (Ty \ {tl})_lto C Hp and tl_lto ¢ Hy.

Case 3 |[Ty| —p=2and [T}| —¢g=0.

It is similar to Case 1, we have

(1) |H| = |Ho| = §(X)/2. . .

(i) t5 (To \ {to, to }) C Ho and t5'ty, t5 te ¢ Ho for some tg,t, € To.

(iii) Tl_lto C Hy.

Case 4 |Ty| —-p=0and |Th| -g=2.

It is similar to Case 2, we have

(i) H{ = |Hy| = 6(X)/2.

(i) t5 ' To € Ho.

(i) (T1\{t,£]}) Yo C Ho and t, 'to,t, 'to ¢ Ho for some ¢, ¢, € T}.
Case 5 ||Ty|—p=1and [T1]|—g=1.

‘(i) |)~(X) = |wk(A)| = |Ao| = |Ho| = |H| = §(X)/2, since |To| ~p =1, and
Tl —q= 1.

(ii) since |To| — p = 1, then t5 ' (To \ {t5}) C Ho and t3'ty ¢ Hp for some
element ty € Ty and ty # to.

(iii) since |Ty| —q = 1, (T;7'\{t:~"})to C Hp and t7'ty ¢ Hp for some
t €Th.

Sufficiency. Set A = H x {0} U (toH) x {1}. Thus (1,0) € A, Hy = H and
H, =tHp.

(1) If t;1(To \ {to}) € H and t5'ty ¢ H, then t3'(To \ {to})H = H
and t ¢ toH, it is (To \ {to})H = toH = Hj and tyHoN H, = 0. So
|Tol —p = 1. And if T "to C H, then Ty 'oH C H. 1t is Ty *H, C H.
So |T3| — ¢ = 0. Associate with the condition {H| = &(X), we have
AMX) = lwk(A4)] = |Ao| = |H| = §(X). So A is a A—superatom of X.
Similarly, If |H| = 6(X)/2, Ty 'to € H, tg'(To \ {to,tp}) C H and

to 't tg 'ty ¢ H, we can prove A is a A—superatom of X.

() I (T\{t)~"to C H and £, 'to ¢ H, then (T1\{£,})*toH C H and
to g t1H, it is (Tl\{tl})_1H1 C Hand toHNnt1H=0. So |T1| -qg=1
And if t5'Ty C H, then ty'ToH C H, it is ToH C toH. So [To| —p = 0.
Associate with the condition |H| = §(X), we get A(X) = |lw} (4)| = |41| =
|Hy| = |Ho| = 8(X). So A is a A—superatom of X.

Similarly, If |[H| = §(X)/2,t5'To € H. (Ti\{t1,t,})"'to C H and t]  to, ¢,
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H, we can prove A is a A—superatom of X.

(3) If t3 1 (To \ {to}) € H, (T1\{t:1})""to C H, and t3'ty,t1"*to ¢ H then
t5 (To \ {t)H C H, (T\\{t:})""toH C H, ty ¢ toH and to ¢ t,H, it
is (To \ {to})H C toH = Hi, (T)\{t1})""H\ C Hy, toH NtoH = § and
toHNt1H = 0. So |To| —p = 1 and |T1| — ¢ = 1. Thus associate with
the condition |H| = 6(X)/2, we have A(X) = |w§(A4)| = |Ao| + 41| =
|Ho| + |Hi| = 8(X). So A is a A—superatom of X. (]
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