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Abstract

Determining the size of a maximum independent set of a graph G,
denoted by a(G), is an NP-hard problem. Therefore many attempts
are made to find upper and lower bounds, or exact values of a(G)
for special classes of graphs.

This paper is aimed toward studying this problem for the class of
generalized Petersen graphs. We find new upper and lower bounds
and some exact values for a(P(n,k)). With a computer program we
have obtained exact values for each n < 78. In [2] it is conjectured
that the size of the minimum vertex cover, 8(P(n,k)), is less than
or equal to n + [%], for all » and k with n > 2k. We prove this
conjecture for some cases. In particular, we show that if n > 3k,
the conjecture is valid. We checked the conjecture with our table
for n < 78 and it had no inconsistency. Finally, we show that for
every fixed k, a(P(n,k)) can be computed using an algorithm with
running time O(n).

Keywords: Generalized Petersen Graphs, Independent Set, Tree De-
composition

1 Introduction and preliminaries

In a graph G = (V, E), an independent set I(G) is a subset of the vertices
of G such that no two vertices in I(G) are adjacent. The independence
number a(G) is the cardinality of a largest set of independent vertices
and an independent set of size a(G) is called an a-set. The maximum
independent set problem is to find an independent set with the largest
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number of vertices in a given graph. It is well-known that this problem is
NP-hard [10]. Therefore, many attempts are made to find upper and lower
bounds, or exact values of a(G) for special classes of graphs. This paper is
aimed toward studying this problem for the generalized Petersen graphs.

For each n and k (n > 2k), a generalized Petersen graph P(n,k),
is defined by vertex set {u;,v;} and edge set {u;uis1,uiv;, viVi+s }; where
i1 =1,2,...,n and subscripts are reduced modulo n. An induced subgraph
on v-vertices is called the inner subgraph, and an induced subgraph on u-
vertices is called the outer cycle.

In addition, we call two vertices u; and v; as twin of each other and the
edge between them as a spoke.

In [8], Coxeter introduced this class of graphs. Later Watkins [14] called
these graphs “generalized Petersen graphs”, P(n, k), and conjectured that
they admit a Tait coloring, except P(5,2). This conjecture later was proved
in {7]. Since 1969 this class of graphs has been studied widely. Recently
vertex domination and minimum vertex cover of P(n, k) have been studied.
For more details see for instance [2], [3], {4] and [11].

A set @ of vertices of a graph G = (V, E) is called a vertex cover of G if
every edge of G has at least one endpoint in Q. A vertex cover of a graph
G with the minimum possible cardinality is called a minimum vertex cover
of G and its size is denoted by B(G). In [2] and [4] B(P(n,k)), has been
studied. Since for every simple graph G, a(G) + B(G) = |[V(G)| [15], their
results imply the following results for a(P(n,k)), and n > 2k:

(RIGERVES S

IT) For all n > 4, a(P(n,2)) = [42].

n n 1S even

IIT) For all n > 6, a(P(n,3))={ - o

IV) If both n and k are odd, then a(P(n,k)) > n — &L,
Also, if k | n, then a(P(n,k)) =n — &L,

V) a(P(n,k)) = n if and only if n is even and k is odd.

VI) For all even k, we have

~ If k—1|n then a(P(n,k)) > n - 2.
— If k- 1{n then a(P(n,k)) > n — &7 - 2k.

VII) For all odd n, we have a(P(n, k)) < n — 42, where d = ged(n, k).

Recently, Fox et al. proved the following results in [9):
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VIII) For all n > 10, a(P(n,5)) = { Z_ 3 Z :: 223"

IX) For any integer k > 1, we have that a(P(3k, k)) = [2£-2].

X) If n, k are integers with n odd and k even, then o(P(n,k)) > 25t +
LR ) - ey + 5% - 13 (2 (mod [21))], where d = ged(n, k).

XI) If n, k are even, then a(P(n,k)) > 3 + $| &), where d = ged(n, k).

Notice that the problem of finding the size of a maximum independent
set in the graph P(n,k) is trivial for even n and odd k, since P(n,k) is
a bipartite graph. For odd n and k, P(n,k) is not bipartite but we can
remove a set of k + 1 edges from P(n, k) to obtain a bipartite graph. Thus
in this case we have n — (k + 1) < a(P(n, k)) < n. So, for odd k, we have
upper and lower bounds for a(P(n, k)) that are at most k+ 1 away from n.
In contrast, for even k, P(n, k) has a lot of odd cycles. In fact, the number
of odd cycles in P(n, k) is at least as large as O(n). This observation shows
that for even k, the graph P(n, k) is far from being a bipartite graph and
as we see in continuation, we need more complicated arguments for finding
lower and upper bounds for a(P(n, k)) compared to the case that k is an
odd number.

This paper is organized as follows. In Section 2, we provide an upper
bound for a(P(n,k)) for even k > 2. In Section 3, we present some lower
bounds when k is even. In both Section 2 and Section 3 we compare
our bounds with the previously existing bounds. Some exact values for
a(P(n, k)) are given in Section 4 by applying results presented in Sections 2
and Section 3. Finally, in Section 5 we prove Behsaz-Hatami-Mahmoodian’s
conjecture for some cases by using known lower bounds. We checked the
conjecture with our Table for n < 78, and it had no inconsistency.

2 Upper bound

In this section we present an upper bound for a(P(n, k)) when k& > 2 is even
and we will show that the presented upper bound is equal to a(P(n,k))
in some cases. Qur upper bound is better than the upper bound given by
Behsaz et.al. in [2].
Fort=1,2,...,n,wecall theset {us, Ue41,. .., Utr26—1, Ve, Vet1; -+ - s Vgt2k—1}
a 2k-segment and we denote it by I;. Let G[I;] be the subgraph of P(n, k)
induced by I;.

Let S be the set of all maximum independent sets of P(n,k). For
every S € S we denote by f(S) the number of 2k-segments I; for which
NS =2k (1<t<n).
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Define Smin = {S € S|VS' € S, f(S) < £(S')}. Since S is nonempty, Smin
is also nonempty. Let Sp € Spin.

Proposition 1 For any S € S, S € Smin if and only if £(S) = £(So).

Definition 1 For any S € S, we say I; is of Type 1 with respect to S if
|[I;NS| = 2k, of Type 2 with respect to S if |I; N S| = 2k — 1, and of Type
3 with respect to S if |, NS| < 2k - 2.

Let Ti(S) = {1y is of Type i with respect to S}, for i =1,2,3. Fora
given I, € T5(S), we say Iy is of Special type 2 with respect to S, ifus ¢ S
and {us} U (I; N S) becomes an independent set for G[I].

Since G[I;] has a perfect matching of spokes {uvs, Ut41Vi41, - - -  U2ktt—1Vok4t—1}
[Ty N S| < 2k. So every I is one of the above Types.
Note that f(S) = [T1(S)|.

Lemma 1 If k is an even number then o(G[ly]) = 2k and G[I;] has a
unique a-set shown in Figure 1.

e r—mc e e eeecrmerrec_e e — e, m e ——————-—————— .
1 Vek-1 Vt42k-1 1
1 Vetk-2 Ve42k-2 ]
1 1
] '
] L] [} ]
] L] . ]
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1 Vet2 V4 k42 1
' va Vitk+1 i
[ ) Ve+k 1
] LN ) LK ] 1
1 ]
,——@— —@—4 b— —
| Ut U4l Ue42 Ut+k Ue42k—1 4
b e e e o o o e e e = e e e e e e e o 4

Figure 1: I, as a Type 1 segment.

Proof G[I;] has a perfect matching {u;v;| t < i < t+ 2k - 1}. So
a(G[L)) < 'V(i["])' = 2k. On the other hand, Figure 1 is an example
of an independent set of G[I;] of size 2k. So a(G[L;]) = 2k.

To show that G[I;] has a unique a-set, let S be an a-set of (G[I;]). Since
a(G[L;]) = 2k, |S| = 2k and S must contain precisely one vertex from each
edge {u;,vi} where t <7 <t+ 2k — 1. Notice that the set of u-vertices of
(G[1]) induces a path of length 2k. Therefore |[SN{u;|t <i < t+2k-1}| <
k. The set of v-vertices of (G[I;]) induces a matching of size k. This means
that |SN {v;| t <i < t+2k—1}| < k. These two observations show that
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any a-set S of G[I;] has k vertices from u-vertices and k other vertices
from v-vertices of V(G[I;]). Moreover, every such S contains precisely one
vertex from each edge u;v; where t < ¢ < t + 2k — 1 and v;v;4x where
t <i<t+k—1. Now, consider two cases:

Case 1: v; € S.

In this case, u; and v, are forced not to be in S. So u;4 is forced to be in
S. Then 4 x—1 and w441 are forced not to be in S and this forces ve4x-1
and vi4r41 to be in S. Since vgpg+1 is in S, ve41 ¢ S. Therefore ugyy € S,
50 us42 ¢ S and thus vz € S. So, we showed that if v; € S then vz € S
too. Now, if we repeat the same argument for v;2 instead of v¢, we can
deduce that v;44 € S and by a simple induction, it follows that v;.o1 € S
for any 0 < ! < % — 1. Particularly, vi4x—2 € S. Therefore veyor—2 ¢ S.
This shows that w4212 € S. Hence usp2x—1 € S and veq26—1 € S. So
verk—1 € S. But we already showed that ve44_, is forced to be in S. This
contradiction shows that there is no Type 1 I; for which v; € S.

Case 2: u, € S.

In this case, similar to the argument in Case 1, each vertex is either forced
to be in S or it is forced not to be in S. So, there is a unique pattern for
SNI; when I; € T1(S). Since the pattern shown in Figure 1 is an instance
of an independent set of size 2k for G[I3], it is the unique pattern for such
an independent set. ]

Lemma 1 guarantees that there is a unique pattern for I; N S, if I is of
Special type 2 with respect to S.

Lemma 2 For every S € S, if It € Ti(S) then ugp4t, Vak+t, Ut—1, and
vi_1 € S. Also, if I, is a Special type 2 segment with respect to S then

Ugk+t 8nd Vop4t € S.

Proof If I, € Ti(S) then |I; N S| = 2k. So by Lemma 1, there is a unique
pattern for I; NS. Based on this pattern, ugr4+¢—; and vk4s € S. Therefore
uak+t and vorys € S, since S is an independent set of vertices of P(n, k).
A similar argument shows that u;—; and v;—; ¢ S. The proof of the second
part of the lemma is similar. ]

Corollary 1 If I; € Tl(S) then Ly, liv2y . ooy Jipok ¢ TI(S)

Proof Notice that if I, € T1(S) then for any edge u;v; € E(G[I;]) either
u; € Sorwv; €S. Since I; € T1(S), Lemma 2 implies that uar4¢ and
V2k4t ¢ S. On the other hand, uagysv2p+t € E(G[IH.,']) fori=1,2,---,2k.
Thus Iy, g2, -+ Tegor € T1(S)- u

Theorem 1 a(P(n,k)) < ]_W‘T'klmj for any even number k > 2 and any
integer n > 2k.
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Proof Let Sp € Spin. We consider two cases.

Case 1: f(Sp) =0.

In this case T1(So) = 0. So [; N Sp| <2k —1forany 1 <t < n. If we add
all of these n inequalities we get:

n
Y N So| < (2k = . (1)
t=1
On the other hand Y"1, |I: N So| = 2k|So|, since every element of S, is
contained in precisely 2k of the sets I;. Thus:

k-1
n.

2k[S0] < (2 = Iin = a(P(n, ) = || < 2

Case 2: f(Sp) > 0.
In this case T1(So) # 0. Similar to the inequality 1 we have:

n
2k|So| = ) _ 11 N So < (2k — 1)n + |T1(So)| — |T3(So)]-
t=1
So, to prove the theorem, it suffices to show that there exists So € Smin
such that |T1(So)| < |T3(So)-
If we can show that for any I. € T1(So), there exists an I, € T3(Sp) so
that Lry1, Irt2,.. ., I € T1(So), then it follows that ITI(SO)I < |T5(So)|-

On the contrary, suppose that there exists I; € T;(Sp) in such a way
that in the sequence Ity1, I42,... before we see an element of T3(Sp), we
see an element of T1(Sp). Without loss of generality we can assume that
t = 1. By Lemma 1, (I; N Sp) is of the form depicted in Figure 2.

Since I € T1(So), by Corollary 1, I, I3, ..., Iory1 ¢ Ti(So). Based on

]
|
]
|
1
v3 Vk43 ]
]
]
]
)

Figure 2: I as a Type 1 segment.
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our assumption, I, I3,..., Iok+1 € T2(So). In particular, Ipg4; € T>(So).
Since I} € T1(Sp), by Lemma 2 we have uggt1,v2p+1 € So. On the other
hand, we know that Sy must have one vertex from each edge u;v; where
2k + 2 < i < 4k. Since 2k + 2 < 2k + 3 < 4k, either uggs3 Or vary3 € Sp.
But notice that ver43 is adjacent to vg+3 which is in Sp, for £ > 2. Thus,
vor+3 € So and ugk43 must be in Sp. This means that usry2 € So. Now,
define S; := (So \ {u2k}) U {u2e+1}. One can easily see that 5; € S.
Based on the choice of Sg € Smin, f(So) < f(S1). Therefore, there must
be an index 2 < r < n so that I, € T1(S;) \ T1(So). Since So and S;
agree on every element except ugx and uar41, the only candidate for r is
r =2k +1. So Ipp41 € T1(S1) and Iog41 € T1(So). Moreover I} € Th (So)
and I} ¢ Ti(S;). Thus f(S;) = f(S1). By Proposition 1, S; € Smin-
Notice that if any of Iogt2,l2k+s,..-,In are of Type ¢ with respect to
S1, they are of Type ¢ with respect to So, as well. So, in the sequence
Lgy2, Iogts,- .., In, any Type 3 segment with respect to S; appears af-
ter an element of Type 1 with respect to S;. Since Ipxy; € T1(S1) by
Corollary 1, Ioky2, Iok43, .- -, Jag+1 € T1(S1). Then from our assumption
Doky2, Doy, - -+ Laksr € T2(S1)-

This means that the same argument can be applied to S; and if we
define Sy := (S1 \ {uar}) U {vax+1}, then Sy € Spin. If we consecu-
tively repeat this argument for $;,S2,53,...,8» where m = |3;| and
Si := (Si—1\{u2ix })U{u2ki+1}, then we observe that S; € Smin and Ioxiy1 €
T1 (S.) for i = 1, 2, ceey M, and none of Iz, I3, ceny ng(m+1), I2k(m+l)+l
are of Type 1 with respect to Sp. Also, Ipx(iy1)41 for i = 0,1,...,m
are of Special type 2 with respect to S;. Since S; and Sy agree on the
I2ki+2, I21u'+3, coe ,In, then I2k(i+1)+1 for i = 0, 1,...,m are of Special
type 2 with respect to Sp.

In other words, if I} belongs to T1(Sp) and the next element of T3(So) ap-
pears before the first element of T3(Sp) in the sequence I, I3, Iy, . .., then
all of I2k+1 N I4k+1, ey I2km+l, IZk(m+l)+l are Special type 2 with respect
to So. In particular, Iogm+1 is of Special type 2 with respect to Sp.

As Limy1 € Ti(Sm), by Lemma 2, uag(m+1)+1:V2k(m+1)+1 ¢ Sm and
since S, and Sp agree on the Ipgm+2, l2km+3,..-,In Wwe conclude that
U2k(m+1)+15 V2k(m+1)+1 ¢ So.

Now consider three cases:

e 2k(m+1)+1=1 (mod n):
Since Iogm41 is of Special type 2 with respect to Sp, by Lemma 2, we
have uggm+y1+2k = u1 € So. This is a contradiction as we assumed
I, € T1(Sp) and therefore u; € Sp.

¢ 2k(m+1)+1#0,1 (modn):
Since I} € T;(So), by Lemma 2, un,v, ¢ So. Also we know that
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Uzk(m+1)+1> V2k(m+1)+1 & So. Thus, Dog(ms1)+1 is of Type 3 with
respect to Sp and none of I Is,...,Iog(m+1) are of Type 1 with
respect to Sp which is a contradiction.

e 2k(m+1)+1=0 (mod n):
I, is of Type 1 with respect to Sy and for every 1 < i < m, Dk(iv1y+1
is of Special type 2 with respect to So. In particular, Iogmy is
of Special type 2 with respect to Sy, and therefore vopmiri2 =
Vok(m+1)—k+3 € So, (See Figure 3). On the other hand, v, € Sy
as Iy € T1(So), and since n = 2k(m + 1) + 1, v, is adjacent to
V2k(m+1)—k+3- Lhis is a contradiction.

So in all the cases, we get a contradiction which means, after any Type
1 segment I.., a Type 3 segment I,» will appear before we see another Type
1 segment. This means that |T1(So)| < |T3(So)| and the theorem follows,
as we argued earlier.

3 Lower bounds

In this section we introduce some lower bounds for a(P(n,k)) where k is
even and k£ > 2.

Here we explain a construction for an independent set in P(n, k) for even
numbers n and k. It happens that for every even n < 78, our lower bound
is equal to the actual value, using a computer program for finding the
independence number in P(n, k).

Theorem 2 Ifn and k are even and k > 2 then:

2 ifr <k,

n

o(P(n k) 2 @k-Dj 1 +{
? —k—1 ifr > k.

where T i3 the remainder of n modulo 2k.

Proof We partition the vertices of P(n, k) into | J} | 2k-segments and one
r-segment. Since n and k are even numbers, r is also an even number and
it is straightforward to see that if we choose a subset of the form shown
in Figure 3, from each 2k-segment they form an independent set Sg of size
(2k=1) 2.

Then we try to extend this independent set by adding more vertices
from the remaining r-segment. Without loss of generality, we may assume
that the r-segment consists of the vertices {u;,us,...,ur,v1,v2,...,0,}.
consider two cases:
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e r<k:
In this case the set Sp U {u2,%4,...,%r—2,u,} is an independent set
of size (2k - 1)| i | + 3.

er>k:
In this case the set:
So U {us,us, ..., Ur—k—3,Ur—k—1} U {v2,04,...,Vr—-2,Vr—} U
{ur—k+11ur—k+3, cee ,uk—s,uk—l} U {uk+2,uk+4a e :ur—2aur} U
{Vk+1,Vk+3, - - -, Ur—3,Vr—1} is an independent set of size (2k—1)| 5} |+
r—12c—2 + r—2-k + 2k2—r + r;k + r;k - (2k— 1)'_2’;] + 321- —k-1.

e mmmm e r e e m e — e _ e, EE R E e ——————————— "
| Vigk-1 Ve42k—1 1
1 Vetk—2 Vt4+2k-2 1
1 '
) '
1 . . [
1 . L] 1
] . . ]
] Ve42 Ve k+2 '
1 UHb Vt+k+1 i
1 Ve Vi4k 1
I LN LI ) 1
1 1
—= +—®
1 Ug Ut4l Ut42 Utk Ue+2k-1 |

Figure 3: I, as a Special type 2 segment.

In the next theorem we establish a lower bound for a(P(n, k)) for odd n
and even k.

Theorem 3 Ifn is odd and k > 2 is even then we have:

—-5+2 ifr =1,
a(P(n,k)) > 2k - 1))+ 3F! ifl<r<k,
T ifk<r <2k

where r is the remainder of n modulo 2k.

Proof We construct an independent set for the graph P(n, k). Similar to
the proof of Theorem 2, first we partition the vertices of the graph into | J; |
2k-segments and a remaining segment of size r. Without loss of generality,
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we can assume that the last 2k-segment starts from the first spoke and
the remaining segment starts from the (2k + 1)-st spoke and finishes at the
(2k+7)-th spoke. We also label the 2k-segments with indices 1,2,..., [} |

From each of 2k-segments 1,2,...,[ )} | — 1, we choose 2k — 1 vertices
as shown in Figure 3. We also choose the following vertices from the last
2k-segment and the remaining r-segment:

er=1:
{u2,uq,. .., up—2,ur} U {Uk43, k45, .-, U2k—1,U2k+1} U {Vkp1} U
{Uk+2, Vk+4y .-, U2k-2, vzk}-
e l<r<k:
{us,us,. .., up_3, U1} U {®k42,Uktd,..., U2k-2, U2k} U
{u2k+3, U245, - - U2kdr—2, U2k4r} U {V2,04,...,0k—2,U} U
{Vk+1, V43, -+ - s Ukdr—2, Vitr } U {Vak42, V2kads - - -, Vokpr—3, V2ktr—1 }-
e k<r<2k:
{us, s, -, ug—3,uk-1} U {¥rq2, Uksa,..., U232, U2k} U
{u2k+3, U2k 45, - - -, Usktr—2, U2ktr} U {V2,04,...,Vk—2,0} U
{Vk+1, V%43, - -, V2k—3,V2k—1} U {V2kt2,V2k44,.--,V3k—2, U3k }-

One can easily check that in each case, the given set is an independent set
of size specified in the theorem.

Notice that the upper bound given in Theorem 1 and the lower bound in
Theorem 2, and Theorem 3 are very close to each other for every fixed even
k > 2. More precisely, we have the following corollary:

Corollary 2 Ifk > 2 is an even number then a(P(n, k)) = (2';;1) n+0(k).
Notice that our lower bounds are considerably better than the lower

bounds obtained in [2] and [9].

4 Some exact values

In this section, we will find the exact value of a(P(n, k)) for some pairs of

n, k.

Proposition 2 Ifn > 8, then:

248



(™ ifn=0 (mod 8),
3n—1) ifn=1 (mod 8),
a(P(n,4))=J Tm—2)+1 ifn=2 (mod 8),
Tm-3)+2  ifn=3 (modS8),
n—-5)+4 ifn=5 (mod 8).
(In-49+2  ifn=4 (modS8),

a(P(n,4)) >4 i(n-6)+4 ifn=6 (mod8),

;’(n-—7)+5 ifn=T7 (mod 8).

\

Proof This result is straight consequence of Theorems 1, 2, and 3.

Notice that for k = 4 and n = 4,6 or 7 (mod 8), the upper bound and
lower bound differ by 1. In fact, for n < 700 the exact of a(P(n,k)) is the
same as our lower bound as we checked by computer.

Proposition 3 If k > 2 is an even number and n = 0,2,k — 1 ork+1
(mod 2k) then a(P(n,k)) = [(2";,:)”.

Proof This assertion is trivial consequence of Theorems 1,2 and 3. In fact
the upper bound and lower bounds we have for a(P(n,k)) are identical in
these cases.

5 Behsaz-Hatami-Mahmoodian’s conjecture

Conjecture ([2]). For all n, k we have B(P(n,k)) <n+[¢].
Notice that, since a(G) + B(G) = |V(G)|, this conjecture is equivalent to
a(P(n,k)) > | 7).

Theorem 4 The above conjecture is valid in the following cases:
e) k=1,2,3,4,5.
b) n is even and k is odd.
¢) n,k are odd and n > 5(";"1),

d) n,k are even.
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e) n is odd, k is even and n > 3k.

Proof  a) This case is a straight consequence of (I), (II), (III), Propo-
sition 2 and (VIII).

b) In this case P(n, k) is a bipartite graph and a(P(n, k)) = n.

c) a(P(n,k)) 2 n—"*3! ([2]). Forn > 5(";' 1) this lower bound is greater
than [ ].

d) Let n = 2kg+ r where ¢ > 1 and 0 < r < 2k. We consider the
following subcases:

— Ifr < k and g = 1 then by Theorem 2, a(P(n, k)) > 2k—1+] >
g(2k + r) for any k¥ > 10. For k < 10 conjecture holds based on
the information provided in Table 1.

— If r < k and ¢ > 1 then by Theorem 2, a(P(n,k)) > (2k—1)q+
2 > 8(2kg +r) for any k > 4. For k < 4, conjecture follows
from (a).

- If r > k and ¢ = 1 then by Theorem 2, a(P(n,k)) > 2k — 1 +

% —k—-1> 42k +r) for any k > 20. For k < 20 conjecture

2
holds based on the information provided in Table 1.

- If r > k and ¢ > 1 then by Theorem 2, a(P(n,k)) > (2k—1)q+
¥ —k—12> 3(2kg+7) for any k > 6. For k < 6, conjecture
follows from (a).

e) Similar to the previous part, let n = 2kg + r where ¢ > 1 and 0 <
r < 2k. We consider the following subcases:

= Ifr =1 and q =1 then P(n,k) = P(2k + 1,k) which is isomor-
phic to P(2k + 1,2). (For more information about isomorphic
generalized Petersen graphs see [13]).

— If r = 1 and ¢ > 2 then by Theorem 3, a(P(n, k)) > (2k —1)g —
¥ +2> 2(2kq +1) for every k > 2.

— If 1 < r < k then ¢ has to be larger than 1. In fact if 1 < r < k
and ¢ = 1 thenn =2kq+r < 3k. For 1 <r < k and q > 2 then
by Theorem 3, a(P(n,k)) > (2k — 1)g + 3} > ¥(2kg + 1)
for every k > 2. (Note that since n is odd and k is even, r > 1
implies that r > 3).

— If k < r < 2k then by Theorem 3, a(P(n,k)) > (2k — 1)g+ & +

T2 > 3(2kg+7) for k > 5. For k < 5 then the assertion is

2
concluded from part (a).

250



Corollary 3 If n > 3k then a(P(n,k)) > |%), and Behsaz-Hatami-
Mahmoodian’s conjecture holds.

6 Polynomial algorithm for a(P(n,k))

In this section we will prove that the independence number of generalized
Petersen graphs with fixed k can be found in linear time, O(n). This result
is a special case of a deep theorem stating that the problem of finding the
independence number of graphs with bounded treewidth can be solved in
linear time of the number of vertices of the graph.

In the continuation we will show that for every fixed k and any integer
n > 2k the treewidth of P(n,k) is bounded. First, we need to formally
define the concepts of tree decomposition and treewidth of a graph.

Definition 2 Let G = (V,E) be a graph. A tree decomposition of G is
a pair (X,T), where X = {X1,Xa,...,X,} is a family of subsets of V,
and T is a tree whose nodes are the subsets X;, satisfying the following
properties:

1) The union of all sets X; equals V.

2) For every edge (v,w) in the graph, there is a subset X; that contains
both v and w.

3) If X; is on the path from X; to X; in T then X;NX; C X;. In other
words, for all vertices v € V, all nodes X; which contain v induce a
connected subtree of T'.

The width of (X,T) is defined to be the size of the largest X; minus one.
The treewidth, tw(G), of the graph G is defined to be the minimum width
of all its tree decompositions. The treewidth will be taken as a measure of
how much a graph resembles a tree.

Theorem A ([5]). The problem of finding a mazimum independent set
of a graph G with bounded treewidth, tw(G) <l can be solved in O(2%n)
by dynamic programming techniques, where n is the number of vertices of

graph.
For more details see for instance [1], [5], [6], and [12].

Theorem 5 For any fized k, the problem of finding independence number
of the graphs P(n, k) can be solved by an algorithm with running time O(n).
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Proof By Theorem A, we only need to show that for a given number k,
the treewidth of P(n, k) is bounded. Consider the following tree decompo-
sition of P(n, k) of width 4k + 3. Without loss of generality we can only
consider the case where n > 2k + 1. Let T be the path of order n — 2k — 1
and define X, Xo,..., X, _2k—1 as follows:

X = {ul, Up, U2, U2y .« s Uk+1y Uk+1, Un—ks Un—k) Un—k+1) Un~k+1y .-+, Un, vn};
Xz = (X1 \ {u1,n1}) U {up42,Ve42},

X3 = (X2 \ {um 'Un}) U {un—k—lsvn—k-l};

Xa = (X3 \ {u2,v2}) U {uk+3,vk43},

X5 = (Xa \ {#n-1,9n-1}) U {ttn—k—2,Vp-x~2}, and so on.

Notice that in each step we remove two elements and add two other ele-
ments. Therefore | X;| = 4k +4 for all i. One can easily see that (X,T) is a
tree decomposition for P(n, k) where X = {X;,X,,...,Xp-2t—1}. Thus,
tw(P(n,k)) < 4k + 3 and by Theorem A, the proof is complete. ]
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Table 1: Independence number of P(n,k),n < 77.
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