# On the page number of triple-loop networks with even cardinality \*

Bin Zhao<sup>a</sup>, Laihuan Chen<sup>a</sup>, Yuepeng Zhang<sup>b</sup>, Yingzhi Tian<sup>a</sup>, Jixiang Meng<sup>a†</sup>

<sup>a</sup>College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China

<sup>b</sup>Department of Basic, Handan Polytechnic College, Handan 056001, China

Abstract: A book-embedding of a graph G consists of placing the vertices of G on a spine and assigning edges of the graph to pages so that edges assigned to the same page without crossing. In this paper, we propose schemes to embed the connected triple-loop networks with even cardinality in books, then we give upper bounds of page number of some multi-loop networks.

**Keywords:** Book embedding; Page number; Triple-loop networks; Multi-loop networks.

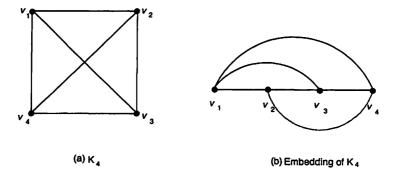
#### 1 Introduction

In this paper, we investigate embedding of graph in structures called books. Let G be a graph, denote the vertex set of G by V(G) and edge set by E(G). A book consists of a spine which is just a line and some number of pages each of which is a half-plane with the spine as boundary. A bookembedding of a graph G consists of placing the vertices of G on the line in order and assigning edges of the graph to pages so that edges are assigned to same pages without crossing. Page number, denoted by pn(G), is a measure of the quality of a book embedding which is the minimum number of pages in which G can be embedded. For an easier understanding of page number, it is helpful to have a look at the example in Fig. 1.

Ollmann [7] first introduce the page number problem and the problem is NP-complete, even if the order of nodes on the spine is fixed ([1, 2]).

<sup>\*</sup>The research is supported by NSFC (No.11171283,11401510).

<sup>&</sup>lt;sup>†</sup>Corresponding author. E-mail: mjxxju@sina.com.



**Fig.1** Embedding of  $K_4$ ,  $pn(K_4) = 2$ . Ordering of  $V(G) = \{v_1, v_2, v_3, v_4\}$ . In (b), dashed line represents one page, black lines represent another.

The book embedding problem has been motivated by several areas of computer science such as sorting with parallel stacks, single-row routing, fault-tolerant processor arrays and turning machine graphs, see [1]. Book embeddings have applications in several contexts, such as VLSI design, fault-tolerant processing, sorting networks and parallel matrix multiplication ([1, 4, 5, 6]).

A multi-loop network, denoted by  $ML(N; a_1, a_2, \ldots, a_l)$ , can be represented by a directed graph with N nodes,  $0, 1, \ldots, N-1$  and lN links of l types, where the type  $-a_i$  links (we call the type  $-s_i$  links  $s_i$ -arcs if there is no confusion) are

$$v \to v + a_i \pmod{N}, v = 0, 1, ..., N - 1 \text{ and } i = 0, 1, ..., l.$$

A triple-loop networks are denoted by  $TL(N; a_1, a_2, a_3)$ . In [8], Yang embed double-loop networks with even cardinality in books.

Theorem 1.1. [8] Let  $gcd(N; s) = d_1, gcd(N, t) = d_2$ . Then DL(N; s, t) can be embedded in a 4-page-book if  $d_1$  (or  $d_2$ ) is even. In particular, DL(N; s, t) can be embedded in a 3-page-book if  $N|d_1t$  (or  $N|d_2t$ ).

**Theorem 1.2.** [8] Let  $gcd(N; s) = d_1, gcd(N, t) = d_2$ . Then DL(N; s, t) can be embedded in a 7-page-book if  $d_1$  and  $d_2$  are odd. Furthermore, DL(N; s, t) can be embedded in a 6-page book if  $d_1 = 1$  (or  $d_2 = 1$ ).

In this paper, we propose schemes to embed the connected triple-loop networks with even cardinality in books, then we give upper bounds of page number of some multi-loop networks.

#### 2 Preliminaries

**Theorem 2.1.** [9]  $ML(N; s_1, s_2, ..., s_l)$  is strongly connected if and only if  $gcd(N, s_1, s_2, ..., s_l) = 1$ .

If  $gcd(N, a_1, a_2, a_3) = d$  then we can decompose  $TL(N; a_1, a_2, a_3)$  to d copies of  $TL(\frac{N}{d}; \frac{a_1}{d}, \frac{a_2}{d}, \frac{a_3}{d})$ . Since if  $G_1$  and  $G_2$  are two components of G, then  $pn(G_1 \cap G_2) = max\{pn(G_1), pn(G_2)\}$  ([10]). So, we always assume that  $gcd(N, a_1, a_2, a_3) = 1$  in the following.

C. Godsil and G. Royle[11] have shown the next theorem. We use this theorem to prove a lemma which is important to this paper.

**Theorem 2.2.** [11] If  $\theta$  is an automorphism of the group G, then X(G,C) and  $X(G,\theta(C))$  are isomorphic.

In Theorem 2.3, X is a Cayley graph, and C is an inverse-closed subset of  $G \setminus e$ . We use  $a \equiv b$  to denote  $a \equiv b \pmod{N}$  if there is no confusion. Let  $gcd(N, a_i) = d_i$  for i = 1, 2, 3. By Theorem 2.3, we can draw the following lemma.

**Lemma 2.3.** If  $d_i = 1$  for some  $i \in \{1, 2, 3\}$ , then there are two integers b and c such that  $TL(N; a_1, a_2, a_3) \cong TL(N; 1, b, c)$ .

**Proof.** Since  $Z_N^*$  is an automorphism of  $Z_N$ , by Theorem 2.3, we have  $TL(N; a_1, a_2, a_3) \cong TL(N; ua_1, ua_2, ua_3)$  with  $u \in Z_N^*$ . Since  $d_i = 1$ , without loss of generality, we assume that i = 1, there are two nonnegative integers u and v such that  $ua_1 + vN \equiv 1$ . Clearly, gcd(u, N) = 1 and  $ua_1 \equiv 1$ . Let  $b \equiv ua_2$  and  $c \equiv ua_3$ ,  $TL(N; a_1, a_2, a_3) \cong TL(N; ua_1, ua_2, ua_3) \cong TL(N; 1, b, c)$ .

### 3 Main results

In this section, we consider the upper bounds of page number of tripleloop networks and some multi-loop networks.

**Theorem 3.1.** If  $d_i$  is even,  $\frac{d_i}{2}$  is odd, and  $a_j = (\frac{d_i}{2})a_l$ , where i, j and l are distinct, and  $i, j, l \in \{1, 2, 3\}$ , then  $pn(TL(N; a_1, a_2, a_3)) \leq 6$ . In particulars,  $pn(TL(N; a_1, a_2, a_3))$  is reduced one if  $d_ia_l \equiv 0$ . Further more,  $pn(TL(N; a_1, a_2, a_3))$  can be reduced two if  $N = 2a_j$ 

**Proof.** Without loss of generality, we assume that  $d_1$  is even,  $\frac{d_1}{2}$  is odd, and  $a_3 = (\frac{d_1}{2})a_2$ . Next we derive the method of book embedding.

Let  $C_i (i \in \{0, 1, ..., d_1 - 1\})$  be an ordered  $\frac{N}{d}$ -element array (mod N is omitted) and

$$C_0 = (0, a_1, 2a_1, \dots, (\frac{n}{d_1} - 1)a_1),$$

. . . . . .

$$\begin{split} C_i &= \left(0+ia_2, a_1+ia_2, 2a_1+ia_2, \ldots, (\frac{N}{d_1}-1)a_1+ia_2\right), \ i \text{ is even and } i < \\ &\frac{d_1}{2}, \\ C_i &= \left((\frac{N}{d_1}-1)a_1+ia_2, (\frac{N}{d_1}-2)a_1+ia_2, (\frac{N}{d_1}-3)a_1+ia_2, \ldots, ia_2\right), \ i \text{ is odd and } i < \frac{d_1}{a}, \end{split}$$

.....

$$\begin{split} C_i &= \left(0 + (\frac{3d_1}{2} - i - 1)a_2, a_1 + (\frac{3d_1}{2} - i - 1)a_2, 2a_1 + (\frac{3d_1}{2} - i - 1)a_2, \dots \right. \\ &\quad , (\frac{N}{d_1} - 1)a_1 + (\frac{3d_1}{2} - i - 1)a_2\right), \ i \text{ is even and } i \geq \frac{d_1}{2} + 1, \\ C_i &= \left((\frac{N}{d_1} - 1)a_1 + (\frac{3d_1}{2} - i - 1)a_2, (\frac{N}{d_1} - 2)a_1 + (\frac{3d_1}{2} - i - 1)a_2, (\frac{N}{d_1} - 3)a_1 + (\frac{3d_1}{2} - i - 1)a_2, \dots, 0 + (\frac{3d_1}{2} - i - 1)a_2\right), \ i \text{ is odd and } i \geq \frac{d_1}{2}, \end{split}$$

. . . . .

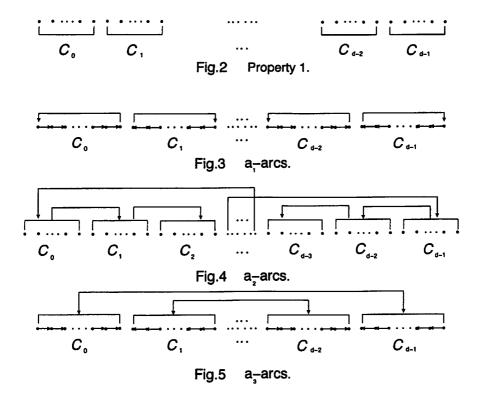
$$C_{d_1-1}=\left(\left(\frac{N}{d_1}-1\right)a_1+\frac{d_1}{2},\left(\frac{N}{d_1}-2\right)a_1+\frac{d_1}{2},\left(\frac{N}{d_1}-3\right)a_1+\frac{d_1}{2},\ldots,0+\frac{d_1}{2}\right),$$

Thus  $\bigcup_{i=0}^{d-1} C_i = V(G)$ , because  $|C_i| = \frac{N}{d_1}$  and  $C_i \cap C_j = \emptyset$ .

Put  $C_i$  in the line with the ordering of  $C_0, C_1, \ldots, C_{d-1}$ , then all vertices of V(G) are assigned. Use  $E(C_i)$  to denote an arc set containing all arcs induced by vertex set  $C_i$  and use  $E(C_i, C_j)$  to denote an arc set containing all arcs from  $C_i$  to  $C_j$ .

There are some properties as follows.

- 1. The ordering of  $V(TL(N; a_1, a_2, a_3))$  is  $C_0 \to C_1 \to \cdots \to C_{d_1-1}$ .
- 2. The arc set  $\{E(C_i)|\ i=0,1,\ldots,d-1\}$  contains no  $a_2$ -arcs and  $a_3$ -arcs, and  $\{E(C_i,C_j)|\ i,j=0,1,\ldots,d-1,i\neq j\}$  contains no  $a_1$ -arcs.
- 3. Arc set  $(\bigcup_{i=0}^{\frac{d_1}{2}-2} E(C_i, C_{i+1})) \bigcup E(C_{\frac{d_1}{2}-1}, C_{d_1-1}) \bigcup (\bigcup_{i=\frac{d_1}{2}}^{d_1-2} E(C_{i+1}, C_i))$  contains no  $a_3$ -arcs. Arc set  $(\bigcup_{i=0}^{\frac{d_1}{2}-1} E(C_i, C_{d_1-i-1})) \bigcup (\bigcup_{i=\frac{d_1}{2}}^{d_1-1} E(C_i, C_{d_1-i-1}))$  contains no  $a_2$ -arcs.



For an easier understanding of the Property, it is helpful to have a look at Fig.2-5.

By Property 1 and each ordering of  $C_i$  for  $i \in \{0, 1, ..., d_1 - 1\}$ , we have that  $a_1$ -arcs is embedded in one page. Thus we only need to embed  $a_2$ -arcs and  $a_3$ -arcs in book.

Claim 1. Arc set  $a_2$ -arcs can be embedded in three pages with out crossing. In particular, it only need two pages to be embedded if  $d_1a_2 \equiv 0$ .

**Proof.** In the ordering of  $V(TL(N; a_1, a_2, a_3))$ , if i is even and  $i < \frac{d_1}{2} - 1$ , then  $E(C_i, C_{i+1})$  contains  $\frac{N}{d_1}$   $a_2$ -arcs and they are  $\{(ja_1 + ia_2, ja_1 + (i + 1)a_2)|j$  from 0 to  $\frac{N}{d_1} - 1\}$  which can be embedded in one page denoted by page-I without crossing. If i is odd and  $i < \frac{d_1}{2}$ , then arcs of  $E(C_i, C_{i+1})$  are  $\{(ja_1 + ia_2, ja_1 + (i+1)a_2)|j$  from  $\frac{N}{d_1} - 1$  to 0} which can be embedded in another page denoted by page-II without crossing.

Similarly, when  $i \geq \frac{d_1}{2}$ . If i is even, then  $E(C_{i+1}, C_i)$  can be embedded in one page without crossing. Since  $E(C_{i+1}, C_i)$  does not cross with  $E(C_j, C_{j+1})$  for  $j < \frac{d_1}{2}$ ,  $E(C_{i+1}, C_i)$  can be embedded in page-I. If i is odd, then  $E(C_{i+1}, C_i)$  can be embedded in one page. Since  $E(C_{i+1}, C_i)$  does

not cross with  $E(C_j, C_{j+1})$  for  $j < \frac{d_1}{2}$ ,  $E(C_{i+1}, C_i)$  can be embedded in page-II.

Arc set  $E(C_{\frac{d_1}{2}-1}, C_{d_1-1})$  contains  $\frac{N}{d_1}$   $a_2$ -arcs, and they are  $\{(ja_1+(\frac{d_1}{2}-1)a_2, ja_1+\frac{d_1}{2}a_2)|j \text{ from } 0 \text{ to } \frac{N}{d_1}-1\}$  which can be embedded in page-I.

Arc set  $E(C_{\frac{d_1}{2}},C_0)$  contains  $\frac{N}{d_1}$   $a_2$ -arcs, and they are  $\{(ja_1+(d_1-1)a_2,ja_1+d_1a_2)|j$  from  $\frac{N}{d_1}-1$  to  $0\}$  which can be embedded in two pages. We assign  $\{((d_1-1)a_2+ia_2,d_1a_2+ia_2)|i$  from 0 to  $\frac{N-d_1a_2}{a_1}\}$  in page-II, and the other arcs of  $E(C_{\frac{d_1}{2}},C_0)$  can be embedded in another page. Clearly, this is an arrangement without crossing. So  $a_2$ -arcs can be embedded in three pages. In particular, if  $N|d_1a_2$ , then  $E(C_{\frac{d_1}{2}},C_0)=\{((d_1-1)a_2,0),((d_1-1)a_2+a_1,a_1),\ldots,((d_1-1)a_2+(\frac{N}{d_1}-1)a_1,(\frac{N}{d_1}-1)a_1)\}$  only need one page. That is  $a_2$ -arcs can be embedded in two pages.

Claim 2. Arc set  $a_3$ -arcs can be embedded in two page without crossing. In particulars, it can be embedded in one page if  $N = 2a_3$ .

**Proof.** Since  $a_3 = \frac{d_1}{2}a_2$ , and  $\frac{d_1}{2}$  are odd, in the vertex ordering of  $TL(N; a_1, a_2, a_3)$ ,  $E(C_i, C_{d_1-1-i}) = \{(ja_1 + ia_2, ja_1 + (i + \frac{d_1}{2})a_2)|0 \le j \le \frac{N}{d_1} - 1, 0 \le i \le \frac{d_1}{2} - 1\}$  can be embedded in one page. Arc set  $E(C_i, C_{d_1-1-i}) = \{(ja_1 + ia_2, ja_1 + (i + \frac{d_1}{2})a_2)|0 \le j \le \frac{N}{d_1} - 1, \frac{d_1}{2} \le i \le d_1 - 1\}$  can be embedded in two pages, and  $\{(ja_1 + ia_2, ja_1 + (i + \frac{d_1}{2})a_2)|0 \le j \le \frac{N-2a_3}{a_1}, \frac{d_1}{2} \le i \le d_1 - 1\}$  can be embedded in one page and other arcs need another one. For  $i, j \in \{0, 1, \dots, \frac{d_1}{2} - 1\}$  and  $i \ne j$ , arcs in  $E(C_i, C_{d_1-1-i})$  do not cross with arcs in  $E(C_j, C_{d_1-1-j})$ . Since any  $a_3$ -arcs belong to  $(\bigcup_{i=1}^{\frac{d_1}{2}-1} E(C_i, C_{d_1-1-i})) \bigcup (\bigcup_{i=1}^{\frac{d_1}{2}-1} E(C_{d_1-1-i}, C_i))$ ,  $a_3$ -arcs can be embedded in two pages.

When  $N=2a_3$ , in the vertex ordering of  $TL(N;a_1,a_2,a_3)$ , for  $i,j \in \{0,1,\ldots,\frac{d_1}{2}-1\}$  and  $i \neq j$ , arcs in  $E(C_i,C_{d_1-1-i})$  and arcs in  $E(C_{d_1-1-i,C_i})$ , where these arcs have same end vertices, have reverse direction, and they can be embedded in one page.

Combining Claim 1 and Claim 2, we have that  $pn(TL(N; a_1, a_2, a_3)) \leq$  6. In particulars,  $pn(TL(N; a_1, a_2, a_3))$  is reduced one if  $d_i a_l \equiv 0$ . Further more,  $pn(TL(N; a_1, a_2, a_3))$  can be reduced two if  $N = 2a_j$ .

Let N and  $a_i$  are even, and assume  $a_i \equiv q_i$  for i = 1, 2, 3. When  $q_i | N$ , let  $s_i = \frac{q_i}{2}$ . When  $q_i \nmid N$ , let  $s_i = \frac{q_i}{2} + 1$ . When  $q_i \nmid N$ , assume  $N = kq_i + t$ , where k and t are positive integer. Thus let  $s_i = \frac{q_i - t}{2}(l + 1)$ , where l is the minimum positive integer such that  $q_i | lN$ . For arc set E, we use G[E] to denote induced subgraph by E. Since symmetry of triple-loop networks,  $G[a_i - \operatorname{arcs}] \cong G[(N - a_i) - \operatorname{arcs}]$ . Thus we can assume  $q_i \leq \frac{N}{2}$ , so  $s_i \leq \lceil \frac{N}{2} \rceil$ .

**Lemma 3.2.** For positive integers N, l,  $a_1$  and  $a_2$ , if N and  $a_1$  are even,  $a_1 \nmid lN$  (l > 1),  $a_2$  is odd, and  $gcd(N, a_1) = d \neq 2$ , then single-loop

 $(SL(N; a_1))$  can be embedded in  $s_1$  pages in vertex ordering  $(0, 2, 4, ..., N-2, a_2-2, ..., a_2+4, a_2+2, a_2)$ .

**Proof.** Let the vertex ordering of single-loop  $SL(N;a_1)$  be  $(0,2,\ldots,N-2,a_2-2,\ldots,a_2+2,a_2)$ , where  $a_2$  is an arbitrary odd integer and  $a_2 < N$ . Assume  $a_1 \equiv q_1$ , if  $q_1|N$ , then  $s_1 = \frac{q_1}{2}$ , where s is an positive integer. If  $q_1 \nmid N$ , then  $s_1 = \frac{q_1}{2} + 1$ . Let  $V_1 = \{0,2,\ldots,N-2\}$  and  $V_2 = \{a_2-2,a_2-4,\ldots,a_2\}$ . Thus we have  $SL(N;a_1) = G[V_1] \cup G[V_2]$ ,  $G[V_1] \cong G[V_2]$  and  $G[V_1] \cap G[V_2] = \emptyset$ . When  $q_1|N$ , let  $N = kq_1$ , where k is an integer,  $E(G[V_1]) = \bigcup_{j=0}^{\frac{q_1}{2}-1} E_j$ , where  $E_j = \{(2j+iq_1,2j+(i+1)q_1)|i=0,1,\ldots,k-1\}$  and each  $E_j$  can be embedded in one page without crossing. For  $j_1 \neq j_2$ ,  $E_{j_1} \cap E_{j_2} = \emptyset$ , thus  $E(G[V_1])$  needs  $s_1$  pages to be embedded. So  $pn(SL(N;a_1)) \leq s_1$ .

When  $q_1 \in N$  and  $q_1 \nmid lN$  (l > 1), let  $N = kq_1 + t$  with t > 0,  $E(G[V_1]) = \{(0, q_1), (q_1, 2q_1), \ldots, (N - q, 0)\}$  can be embedded in  $\frac{q}{2} + 1$  pages. Staring from  $(0, q_1)$  up to  $((k - 1)q_1, kq_1)$ , every k arcs can be embedded in one page without crossing, total required  $\frac{q_1}{2}$  pages because  $|E(G[V_1])| = \frac{N}{2}$  and remain  $\frac{t}{2}$  arcs unassigned. The remain  $\frac{t}{2}$  arcs need another page to be embedded. So  $pn(G[V_1]) \leq s_1$ . Since  $G[V_1] \cong G[V_2]$  and  $G[V_1] \cap G[V_2] = \emptyset$ ,  $pn(SL(N;a_1)) \leq s_1$ .

When  $q_1 
leq N$  and  $q_1|lN(l>1)$ , let  $N = kq_1 + t$  with t>0,  $E(G[V_1]) = \bigcup_{j=0}^{\frac{q_1-t}{2}} E_j = \{(2j+ia_1,2j+(i+1)a_1)|0 \le i \le \frac{lN}{a_1}-1\}$ . Each  $E_j$  can be embedded in (l+1) pages because every arc set  $\{(mt+na_1,mt+(n+1)a_1)|0 \le m \le l-1,0 \le n \le k-1\}$  can be embedded in one page, and arc  $(2j-a_1,2j)$  with  $0 \le j \le \frac{q_1-t}{2}$  needs another page. So  $pn(G[V_1]) \le s_1$ . Since  $G[V_1] \cong G[V_2]$  and  $G[V_1] \cap G[V_2] = \varnothing$ ,  $pn(SL(N;a_1)) \le s_1$ .

In next lemma, we do not discuss these cases which are  $a_1 = a_3 = 1$ ,  $a_2 \neq 2$ , and  $a_1 \neq a_3$ ,  $a_1 = 1$  or  $a_3 = 1$  (mod N is omitted).

**Lemma 3.3.** For positive integer N,  $a_1$ ,  $a_2$  and  $a_3$ , if  $gcd(N, a_2) = 2$ , and  $a_1$ ,  $a_3$  are odd, then single-loop  $(SL(N; a_1))$  can be embedded in four pages or three pages or one page in vertex ordering  $(0, a_2, 2a_2, \ldots, N - a_2, N - a_2 + a_3, \ldots, 2a_2 + a_3, a_2 + a_3, a_3)$ .

**Proof.** Let the vertex ordering of  $SL(N; a_1)$  be  $(0, a_2, 2a_2, \ldots, N-a_2, N-a_2+a_3, \ldots, 2a_2+a_3, a_2+a_3, a_3)$ , where  $a_2$  is even, and  $a_3$  is odd.

 $+a_3, \ldots, 2a_2+a_3, a_2+a_3, a_3$ ), where  $a_2$  is even, and  $a_3$  is odd. If  $a_1=a_3=1$  and  $a_2=2$ , then 1-arcs can be embedded in two pages.

If  $a_1 \neq a_3$ ,  $a_1 \neq 1$  and  $a_3 \neq 1$ , then there is  $m_i$ , such that  $a_1 + m_i a_2 \equiv a_3$  and denote the minimum  $m_i$  by m. Likewise, there is also a  $n_i$ , such that  $a_3 + n_i a_2 + a_1 \equiv N - a_2$  and denote the minimum  $n_i$  by n. It is easily to see that all  $a_1$  -arcs can be embedded in to four pages as follows.

page-1: 
$$\{(ia_2, ia_2 + a_1)|i = 0, 1, \dots, m-1\}$$
.  
page-2:  $\{(ia_2, ia_2 + a_1)|i = m, m+1, \dots, \frac{N}{2} - 1\}$ .

```
page-3: \{(a_3 + ia_2, a_3 + ia_2 + a_1) | i = 0, 1, ..., n\}.
page-4: \{(a_3 + ia_2, a_3 + ia_2 + a_1) | i = n, n+1, ..., \frac{N}{2} - 1\}.
```

If  $a_1 = a_3 \neq 1$ , then there is a  $k_i$ , such that  $a_3 + k_i a_2 + a_1 \equiv N - a_2$  and denote the minimum  $k_i$  by k. Arc set  $a_1$ -arcs need only there pages to be embedded as follows.

```
page-1: \{(ia_2, ia_2 + a_1)|i = 0, 1, \dots, \frac{N}{2} - 1\}.

page-2: \{(a_3 + ia_2, a_3 + ia_2 + a_1)|i = 0, 1, \dots, k\}.

page-3: \{(a_3 + ia_2, a_3 + ia_2 + a_1)|i = k + 1, k + 2, \dots, \frac{N}{2} - 1\}.
```

**Theorem 3.4.** If  $d_i$  and  $d_j$  are even,  $d_i \neq 2$ ,  $d_j \neq 2$ , and  $d_l$  is odd, where i, j and l are distinct, and  $i, j, l \in \{1, 2, 3\}$ , then  $pn(TL(N; a_1, a_2, a_3)) \leq s_i + s_j + 3$ . In particular, b and c are positive integer, if  $d_l = 1$ , then  $TL(N; a_1, a_2, a_3) \cong TL(N; 1, b, c)$  and  $pn(TL(N; a_1, a_2, a_3)) \leq min\{s_i + s_j + 2, s_b + s_c + 2\}$ .

**Proof.** Without loss of generality, we assume that  $d_1$  and  $d_2$  are even,  $d_1 \neq 2$ ,  $d_2 \neq 2$  and  $d_3$  is odd. Let the vertex ordering of  $TL(N; a_1, a_2, a_3)$  is  $(0, 2, 4, \ldots, N-2, N-2+a_3, \ldots, a_3+4, a_3+2, a_3)$ . By Lemma 3.2,  $a_1$ -arcs can be embedded in  $s_1$  pages, and  $a_2$ -arcs can be embedded in  $s_2$  pages. By Lemma 3.3,  $a_3$ -arcs can be embedded in three pages. Furthermore, if  $d_3 = 1$ , by Lemma 2.3,  $TL(N; a_1, a_2, a_3) \cong TL(N; 1, b, c)$ . Clearly, b and c are even. By Lemma 3.3, 1-arcs can be embedded in two pages. So,  $pm(TL(N; 1, b, c)) \leq s_b + s_c + 2$ .

Above all, if  $d_i$  and  $d_j$  are even,  $d_i \neq 2$ ,  $d_j \neq 2$ , and  $d_l$  is odd, where i, j and l are distinct, and  $i, j, l \in \{1, 2, 3\}$ , then  $pn(TL(N; a_1, a_2, a_3)) \leq s_i + s_j + 3$ . In particular, if  $d_l = 1$ ,  $pn(TL(N; a_1, a_2, a_3)) \leq min\{s_i + s_j + 2, s_b + s_c + 2\}$ .

**Theorem 3.5.** If  $d_i$  and  $\frac{d_i}{2}$  are even,  $d_j$  and  $d_l$  are odd, where i, j and l are distinct, and  $i, j, l \in \{1, 2, 3\}$ , then  $pn(TL(N; a_1, a_2, a_3)) \leq s_i + 7$ . In particular, b is positive integer, if  $d_j = 1$ , then  $TL(N; a_1, a_2, a_3) \cong TL(N; 1, b, c)$  and  $pn(TL(N; a_1, a_2, a_3)) \leq min\{s_i + 6, s_b + 6\}$ .

**Proof.** Without loss of generality, we assume that  $d_1$  is even,  $d_1 \neq 2$ ,  $d_2$  and  $d_3$  are odd. Let the vertex ordering of  $TL(N; a_1, a_2, a_3)$  be  $(0, 2, \ldots, N-2, N-2+a_3, \ldots, a_3+2, a_3)$ . By Lemma 3.2,  $a_1$ -arcs needs  $s_1$  pages to be embedded. By Lemma 3.3,  $a_2$ -arcs need four pages to be embedded and  $a_3$ -arcs can be embedded in three pages. So,  $pn(TL(N; a_1, a_2, a_3)) \leq s_i + 7$ . Specially, if  $d_2 = 1$  (or  $d_3 = 1$ ), then  $TL(N; a_1, a_2, a_3) \cong TL(N; 1, b, c)$ , where b is even, and c is odd. Therefore,  $pn(TL(N; a_1, a_2, a_3)) \leq min\{s_i + 6, s_b + 6\}$ .

**Theorem 3.6.** If  $d_i = 2$ ,  $d_j$  and  $d_l$  are odd, where i, j and l are distinct, and  $i, j, l \in \{1, 2, 3\}$ , then  $pn(TL(N; a_1, a_2, a_3)) \leq 8$ . In particular, if  $d_j = 1$ , then  $pn(TL(N; a_1, a_2, a_3)) \leq 7$ .

**Proof.** Without loss of generality, we assume that  $d_1=2$ ,  $d_2$  and  $d_3$  are odd. Let the vertex ordering of  $TL(N;a_1,a_2,a_3)$  be  $(0,a_1,2a_1,\ldots,N-a_1,N-a_1+a_2,\ldots,2a_1+a_2,a_1+a_2,a_2)$ . Clearly,  $a_1$ -arcs can be embedded in one page. Next, we embed  $a_2$ -arcs and  $a_3$ -arcs. By Lemma 3.3,  $a_2$ -arcs need three pages to be embedded, and  $a_3$ -arcs can be embedded in four pages. Therefore,  $pn(TL(N;a_1,a_2,a_3)) \leq 8$ . In particular, if  $d_2=1$  (or  $d_3=1$ ), then  $TL(N;a_1,a_2,a_3) \cong TL(N;1,b,c)$ . By Lemma 3.3, 1-arc need two pages to be embedded. So,  $pn(TL(N;a_1,a_2,a_3)) \leq 7$ .

The next Corollary is a simple application of Theorem 3.6.

Corollary 3.7. In networks  $ML(N; a_1, a_2, ..., a_l)$ , if  $d_i = 2$  for  $i \in \{0, 1, ..., l\}$ , and  $d_j$  is odd for any  $j \in \{0, 1, ..., l\}$  with  $i \neq j$ , then  $pn(ML(N; a_1, a_2, ..., a_l)) \leq 4(l-1)$ . In particular, if  $d_j = 1$ , then  $pn(ML(N; a_1, a_2, ..., a_l)) \leq 4(l-1) - 1$ .

**Theorem 3.8.** If  $d_1$ ,  $d_2$  and  $d_3$  are odd, then  $pn(TL(N; a_1, a_2, a_3)) \le 11$ . In particular, if  $d_i = 1$  for  $i \in \{1, 2, 3\}$ , then  $pn(TL(N; a_1, a_2, a_3)) \le 10$ .

**Proof.** Let the vertex ordering of  $TL(N; a_1, a_2, a_3)$  be  $(0, 2, 4, ..., N-2, N-2+a_1, ..., a_1+4, a_1+2, a_1)$ . By Lemma 3.2,  $a_1$ -arcs can be embedded in three pages.  $a_2$ -arcs and  $a_3$ -arcs can be embedded in four pages respectively. So,  $pn(TL(N; a_1, a_2, a_3)) \leq 11$ . In particular, if  $d_1 = 1$  (or  $d_2 = 1$  or  $d_3 = 1$ ), by Lemma 2.4 and 3.3,  $pn(TL(N; a_1, a_2, a_3)) \leq 10$ . The next Corollary is a simple application of Theorem 3.8.

Corollary 3.9. In networks  $ML(N; a_1, a_2, ..., a_l)$ , if  $d_i$  is odd for any  $i \in \{0, 1, ..., l\}$ , then  $pn(ML(N; a_1, a_2, ..., a_l)) \le 4l - 1$ . In particular, if  $d_i = 1$ , for  $i \in \{1, 2, 3\}$ , then  $pn(ML(N; a_1, a_2, ..., a_l)) \le 4l - 2$ .

## 4 Concluding remarks

In this work, we give the upper bounds of tipple-loop networks with even cardinality. For  $TL(N; a_1, a_2, a_3)$ , double-loop network  $DL(N; a_1, a_2)$  is its subgraph. So,  $pn(TL(N; a_1, a_2, a_3)) \geq pn(DL(N; a_1, a_2))$ . For example, DL(N; 18, 6, 5) is a subgraph of TL(18; 6, 5, 15). By Theorem 1.1,  $pn(DL(N; 18, 6, 5)) \leq 4$ . By Theorem 3.1,  $pn(TL(18; 6, 5, 15)) \leq 6$ . The difference between pn(DL(N; 18, 6, 5)) and pn(TL(18; 6, 5, 15)) is two. As triple-loop networks are more complicated than double-loop networks, the upper bounds we give here are not bad. We leave for future study seeing whether these bounds can be improved.

#### References

- F.R.K. Chung, F.T. Leighton, A.L. Rosenberg, Embedding graph in books: a layout problem with applications to VLSI design, SIAM J. Algebraic Discrete Mathematics, 8 (1987) 33-58.
- [2] F. Shahrokhi, W. Shi, On crossing sets, disjiont sets and pagenumber, Journal of Algorithms, 34 (2000) 40-53.
- [3] F. Bemhart, B. kainen, The book thickness of a graph, Journal of combinatorial theory, Series B, 27 (1979) 320-331.
- [4] L.S. Heath, F.T. Leighton, A.L. Rosenberg, Compariting queues and stacks as mechanisms for laying out graphs, SIAM Journal on Discrete Mathematics, 5 (1992) 398-412.
- [5] A.L. Rosenberg, The Diogenes approach to testable fault-tolerant arrays of processors, IEEE Transactions on Computers, C-32 (1983) 902-910.
- [6] R.E. Tarjan, Sorting using networks of queues and stacks, Journal of the ACM, 19 (1972) 341-346.
- [7] L.T. Ollmann, On the book thicknesses of various graphs, Proc. 4th southeastern conference on combinatorics, Graph throrey and computing, Congressus Numerantium, VIII (1973) 459.
- [8] W.H. Yang, J.X. Meng, Embedding connected double-loop networks with even cardinality in books, Applied Mathematics Letters, 22 (2009) 1458-1461.
- [9] F.K. Hwang, A surveyon multi-loop networks, Theoretical Computer Science, 299 (2003) 107-121.
- [10] J.F. Fang, K.C. Lai, Embedding the incomplete hypercube in books, Information Processing Letters, 96 (2005) 1-6.
- [11] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, (2001) 48-49.