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Abstract: A book-embedding of a graph G consists of placing the
vertices of G on a spine and assigning edges of the graph to pages so
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1 Introduction

In this paper, we investigate embedding of graph in structures called
books. Let G be a graph, denote the vertex set of G by V(G) and edge set
by E(G). A book consists of a spine which is just a line and some number
of pages each of which is a half-plane with the spine as boundary. A book-
embedding of a graph G consists of placing the vertices of G on the line in
order and assigning edges of the graph to pages so that edges are assigned
to same pages without crossing. Page number, denoted by pn(G), is a
measure of the quality of a book embedding which is the minimum number
of pages in which G can be embedded. For an easier understanding of page
number, it is helpful to have a look at the example in Fig. 1.

Ollmann (7] first introduce the page number problem and the problem
is NP-complete, even if the order of nodes on the spine is fixed ({1, 2}).
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@k, (b) Embedding of K 4

Fig.1 Embedding of Ky, pn(K,) = 2. Ordering of V(G) = {v1,va,v3, v4}.
In (b), dashed line represents one page, black lines represent another.

The book embedding problem has been motivated by several areas of com-
puter science such as sorting with parallel stacks, single-row routing, fault-
tolerant processor arrays and turning machine graphs, see [1|. Book em-
beddings have applications in several contexts, such as VLSI design, fault-
tolerant processing, sorting networks and parallel matrix multiplication
(1, 4, 5, 6]).

A multi-loop network, denoted by ML(N;a,,as,...,a;), can be repre-
sented by a directed graph with N nodes, 0,1,...,N — 1 and IN links of {
types, where the type -a; links (we call the type -s; links s;-arcs if there is
no confusion) are

v—=v+aimod N),v=0,1,...,N-1and i=0,1,...,L.

A triple-loop networks are denoted by TL(N; a, a2, a3). In [8], Yang embed
double-loop networks with even cardinality in books.

Theorem 1.1. [8] Let gcd(N;s) = dy,ged(N,t) = dp. Then DL(N;s,t)
can be embedded in a {-page-book if dy (or dg) is even. In particular,
DL(N;s,t) can be embedded in a 3-page-book if N|dyt (or N|dat).

Theorem 1.2. [8] Let gcd(N;s) = di,ged(N,t) = d2. Then DL(N;s,t)
can be embedded in a 7-page-book if di and dy are odd. Furthermore,
DL(N;s,t) can be embedded in a 6-page book if dy =1 (or dy = 1).

In this paper, we propose schemes to embed the connected triple-loop
networks with even cardinality in books, then we give upper bounds of page
number of some multi-loop networks.
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2 Preliminaries

Theorem 2.1. [9] ML(N;s1,s2,...,81) is strongly connected if and only
if ged(N,s1,82,...,8) = 1.

If ged(N, al,ag,ag) d then we can decompose TL(N; a3, az,a3) to d
copies of TL(&; 8,9, %). Since if G, and G are two components of G,
then pn(G; N G’g) = maz{pn(G1),pn(G2)} ([10]). So, we always assume
that ged(N,a1,a2,a3) =1 in the following.

C. Godsil and G. Royle[11] have shown the next theorem. We use this
theorem to prove a lemma which is important to this paper.

Theorem 2.2. [11] If 8 is an automorphism of the group G, then X(G,C)
and X(G,6(C)) are isomorphic.

In Theorem 2.3, X is a Cayley graph, and C is an inverse-closed subset
of G\e. We use a = b to denote a = b (mod N) if there is no confusion. Let
ged(N,a;) = d; for i = 1,2,3. By Theorem 2.3, we can draw the following
lemma.

Lemma 2.3. Ifd; =1 for some i € {1,2,3}, then there are two integers b
. and ¢ such that TL(N;a,,a3,a3) = TL(N;1,b,c).

Proof. Since Zj is an automorphism of Zy, by Theorem 2.3, we have
TL(N;ay,a3,a3) = TL(N;ua,uaz, uaz) with v € Zy. Since d; = 1,
without loss of generality, we assume that ¢ = 1, there are two nonnegative
integers v and v such that ua; +vN = 1. Clearly, ged(u, N) =1 and ua; =
1. Let b = uaz and ¢ = uaz, TL(N;a1,a2,a3) = TL(N,;ua,,uas, uaz) =
TL(N;1,b,¢). ]

3 Main results

In this section, we consider the upper bounds of page number of triple-
loop networks and some multi-loop networks.

Theorem 3.1. If d; is even, 421 is odd, and a; = (%)al, where 1,5 and
l are distinct, and i,4,1 € {1,2,3}, then pn(TL(N;a1,az2,a3)) < 6. In
particulars, pn(TL(N; a1, a2, a3)) is reduced one if dia; = 0. Further more,
pn(TL(N;a1,a2,a3)) can be reduced two if N = 2a;

Proof. Without loss of generality, we assume that d; is even, %1 is odd,
and a3 = (—’-)ag Next we derive the method of book embedding.

Let C;(é € {0,1,...,d; — 1}) be an ordered & -element array (mod N is
omitted) and
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Co = (0,01,201 oo ,(% - 1)(11),

......

= (0 + iaz, a1 + iag, 2a; + iay, .. —1)ey +iap), % is even and i <

dy
2’ N
C; = ((E — 1)a1 + tas, (E - 2)01 + iaq, (— - 3)0.1 +ias... ,iag), 1is
dy dy d;

N
.,(El—

odd and i < ﬂ,

2
d dy 3d,
~—-(0+(3——1—z—l)az,a1+(——z—1)a2,2a1+(——z-1)a2,
,(——1) 1+(%—z—1)a2), iisevenandi2%+1,
3d 3d
Ci= (( 1)01+(—1~1 1)02,(— 2)a1+(—2—1~% l)az,(——3
)‘11+(T—i—1)02, 0+(%—z—1)a2), i is odd andiz%,
d N d d
Cd;-l—((——l) 1+ 1 ( —2)a 1+ ,( 3)a1+-2l,...,0+—21—),
Thus U{=) C; = V(G), because |Ci| = & and C;nC; = 0.

Put C; in the line with the ordering of Co,C1, .. Cd_l, then all vertices
of V(G) are assigned. Use E(C;) to denote an arc set containing all arcs

induced by vertex set C; and use E(C;, C;) to denote an arc set containing
all arcs from C; to Cj.
There are some properties as follows.

1. The ordering of V(T'L(N;a1,a2,a3)) is Co - Cy = --- = Cy, 1.

2. The arc set {E(C;)| i =0,1,...,d — 1} contains no az-arcs and as-
arcs, and {E(C;,Cj)| 4,5 =0,1,...,d—1,i # j} contains no a,-arcs.

3. Arcset (Uz—o E(Ctacﬂ'l))UE(C.,l pCd;—l)U(U:-i;zi;E(Ci+1’Ci))

contains no as-arcs. Arc set (ut_0 E(Ci, Cay-i—1)) U(U?;%]l_ E(C;,
C4,-i—1)) contains no ap-arcs.
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Co C, o C.: C 4
Fig.2 Property 1.

f | 1 — ] 1
Co C| Cd—z Cc-|
Fig3 ar-arcs.
| ] | ) ] 1] 1}
S N S I SR S A I
Co C| Cz Cu-a Ca-z Cu—i

Co C 1 o C d-2 C d-1
Fig.5 a;arcs.

For an easier understanding of the Property, it is helpful to have a look at
Fig.2-5.

By Property 1 and each ordering of C; for i € {0,1,...,d; —1}, we have
that a;-arcs is embedded in one page. Thus we only need to embed aq-arcs
and ag-arcs in book.

Claim 1. Arc set as-arcs can be embedded in three pages with out crossing.
In particular, it only need two pages to be embedded if djap = 0.

Proof. In the ordering of V(T'L(N;a,,a2,a3)), if  is even and 7 < %l -1,
then E(C;,Ciy1) contains % aq-arcs and they are {(ja1 + iaz,ja; + (i +
1)az)|j from 0 to % — 1} which can be embedded in one page denoted by

page-I without crossing. If ¢ is odd and i < °—’21, then arcs of E(C;, Cit1)
are {(ja1 +iaz, ja; + (i+1)az)|j from % —1 to 0} which can be embedded
in another page denoted by page-II without crossing.

Similarly, when ¢ > %’-. If i is even, then E(C;41,C;) can be embed-
ded in one page without crossing. Since E(C;+1,C;) does not cross with
E(C;,Cj41) for j < %l, E(C;41,C;) can be embedded in page-I. If ¢ is odd,
then E(Ci41,C:) can be embedded in one page. Since E(Ciy1,C:) does
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not cross with E(C;,Cj41) for j < ‘—‘21, E(C;41,C;) can be embedded in
page-II.
Arc set E(C%,__l, C4,-1) contains H!% ag-arcs, and they are {(ja; +(%’~ -

1)ay, jai + %laz)| j from O to 3’% — 1} which can be embedded in page-I.

Arc set E(C%,Co) contains &L ap-arcs, and they are {(ja; + (di —

1)as, jay + d1as)|j from TA: — 1 to 0} which can be embedded in two pages.
We assign {((d1—1)az+iag, d1az+iaz)|i from 0 to £=4192} in page-II, and
the other arcs of E(C 4 Cp) can be embedded in another page. Clearly, this

is an arrangement without crossing. So az-arcs can be embedded in three
pages. In particular, if N|d;az, then E(C%,Co) {((d1 — 1)az,0), ((d1 —

)az +ay,a1),.-..,((d1 —1)az + (.T —1)ax, (4 —1)a1)} only need one page.
That is as-arcs can be embedded in two pages.

Claim 2. Arc set az-arcs can be embedded in two page without crossing.
In particulars, it can be embedded in one page if N = 2a3.

Proof. Since a3 = %"0.2, and %- are odd, in the vertex ordering of
TL(N'G1,02,¢Z3) E(Cn Cdl—l—i) = {(jal + ’iOQ,jal + (7' + %l)a2)|o <

j < dﬂ —1,0 £ i £ & -1} can be embedded in one page Arc set

E(Chcdl-l—i) = {(Jal +iag,ja; + (’L + gl)a'2)|0 <J < 1 i<
d1—1} can be embedded in two pages, and {(ja; +iag, ja; +(z+—1)a2)|0 <
j < N=2ea 2“ 521 < i < d; — 1} can be embedded in one page and other

arcs need another one. For 4,5 € {0,1,..., 2 — 1} and 7 # j, arcs in
E(C;, Cd,_l..,) do not cross with arcs m E(C,, C4,-1-4). Since any as-arcs

belong to (U,-=1 E(C,-, Cay—1-i)) U(U.-=1 E(C4,-1-i, Ci)), az-arcs can be
embedded in two pages.

When N = 2a3, in the vertex ordering of TL(N;ay,az,a3), for i,j €
{0,1,...,9% -1} and i # j, arcsin E(C;,C4y-1-¢) and arcsin E(Cy,_1-:.c,),
where these arcs have same end vertices, have reverse direction, and they
can be embedded in one page.

Combining Claim 1 and Claim 2, we have that pn(TL(N;ay, az,a3)) <
6. In particulars, pn(TL(N; a4, a2,a3)) is reduced one if d;a; = 0. Further
more, pn(T'L(N;a1,a2,a3)) can be reduced two if N = 2a;. a

Let N and a; are even, and assume a; = ¢; for i =1, 2 3. When ¢;|N,
let s; = 4. Wheng; { NV, let s; = 4 +1. When ¢; { N, assume N = kg; +t¢,
where k and t are positive integer. Thus let s; = £=t(1 + 1), where ! is the
minimum positive integer such that ¢;|lN. For arc set E, we use G[E] to
denote induced subgraph by E. Since symmetry of triple-loop networks,
Gla;-arcs] = G[(N — a;)-arcs]. Thus we can assume ¢; < &, so s; < [4].

Lemma 3.2. For positive integers N, I, ay and az, if N and ay are even,
a1 t IN (1 > 1), ag is odd, and ged(N,a;) = d # 2, then single-loop
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(SL(N;a3)) can be embedded in sy pages in vertez ordering (0,2,4,...,N—
2,82 —2,...,a2+4,a2 + 2,0a2) .

Proof. Let the vertex ordering of single-loop SL{N;a;) be (0,2,...,N —
2,a2 —2,...,as + 2,a2), where a; is an arbitrary odd integer and a2 < N.
Assume a; = ¢qi, if 1| N, then s; = % where s is an positive integer. If
g1 1 N, then sy = 4 4+ 1. Let V; = {0,2,...,N — 2}andVg—{a2—
2,00 — 4,...,a2}. Thus we have SL(N;a1) = G[Vi} U G[V2], G[V}] =
G[Vg] and G[Vl] N G[Vg] = @. When ¢i|N, let N = kg, where k is an
integer, E(G[V}]) = Uio E;, where Ej = {(2j +iq1,2j + (i + 1)q)}i =
0,1,...,k—1} and each E; can be embedded in one page without crossing.
For j1 9é Jj2, Bj, N Ej, = @, thus E(G[V1]) needs s; pages to be embedded.
So pn(SL(N;a1)) < s1.

When ¢q; + N and g 1IN (I > 1), let N = kqy +t with ¢t > 0, E(G[W1]) =
{(0,41),(g1,2q1),...,(N —¢,0)} can be embedded in  + 1 pages. Staring
from (0,41) up to ({(k — 1)q1, kq1), every k arcs can be embedded in one
page thhout crossing, total required % pages because |E(G[V1))| =
and remain 5 arcs unassigned. The remam -5 arcs need another page to be
embedded. So pn(G[W;]) < s1. Since G[V4] & G[V2] and G[V1|NG[V2] =
pn(SL(N;ay)) < s1.

When g1 + N and 1INV (I > 1), let N = kqy +t with ¢t > 0, E(G[W1]) =

l:"‘O—E = {(2j + 121,25 + (4 + 1)a1)|0 < i < X _1}. Each E; can be
embedded in (I + 1) pages because every arc set {(mt + nal,mt +(n+
1)a;)|[0 £ m <1-1,0 < n < k—1} can be embedded in one page, and arc
(24 — a1,27) with O < j < 8% needs another page. So pr(G[Vi)) < s1.
Since G[V1] & G[V2] and G[Vi| N G[V;] = @, pn(SL(N;a1)) < s1. O
In next lemma, we do not discuss these cases which are ay = a3 =
1,02 # 2, and a) # a3, a1 =1 or a3 =1 (mod N is omitted).

Lemma 3.3. For positive integer N, a1, a2 and agz, if ged(N, a2) = 2, and
a1, ag are odd, then single-loop (SL(N;a1)) can be embedded in four pages

or three pages or one page in vertez ordering (0, az,2as2,...,N —ag, N —
as + as,...,2as +as, az + a3, as).

Proof. Let the vertex ordering of SL(N;a1) be (0, az,2as,...,N—az, N -
az +as,...,2a2 + as,az + as, a3), where az is even, and a3 is odd.

If a; = a3 =1 and a; = 2, then 1-arcs can be embedded in two pages.

Ifa; # a3, a; # 1 and a3 # 1, then there is m;, such that a;+m;a2 = a3
and denote the minimum m; by m. Likewise, there is also a n;, such that
a3z + njas + a; = N — as and denote the minimum n; by n. It is easily to
see that all a; -arcs can be embedded in to four pages as follows.

page-1: {(iaz,iaz + a1)[i =0,1,...,m —1}.

page-2 : {(iaz,iaz + a1)[i=mm+1,..., ¥ - 1}.
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page-3 : {(a3 + iaz,a3 + iaz +a;)[i =0,1,...,n}.

page-4 : {(as +iaz,a3 +iaz +a1)li=n,n+1,..., ¥ —1}.

If a; = a3 # 1, then there is a k;, such that a3 + kijaz +a; = N —a,
and denote the minimum k; by k. Arc set a;-arcs need only there pages to
be embedded as follows.

page-1: {(iag,ia3 + a;)¢ =0,1,..., % -1}

page-2: {(a3s + iaz,a3 + iaz +a;1)[i =0,1,...,k}.

page-3: {(as +iaz,a3 +iay +ay)[i=k+1,k+2,..., & —1}. m)

Theorem 3.4. Ifd; and d; are even, d; # 2, d; # 2, and d; is odd, where
i,j and ! are distinct, and 1,5, € {1,2,3}, then pn(TL(N;a,,a2,a3)) <
s; + 8; + 3. In particular, b and ¢ are positive integer, if di = 1, then
TL(N;a1,az2,a3) = TL(N;1,b,c) and pn(TL(N;a1,a2,a3)) < min{s; +
8j + 2,85 + sc +2}.

Proof. Without loss of generality, we assume that d; and dy are even,
di # 2, d2 # 2 and d3 is odd. Let the vertex ordering of TL(N;a;,az,a3)
is (0,2,4,...,N-2,N—2+ag3,...,a3+4,a3+2,a3). By Lemma 3.2, a;-arcs
can be embedded in s; pages, and aj-arcs can be embedded in s; pages.
By Lemma 3.3, az-arcs can be embedded in three pages. Furthermore, if
d3 = 1, by Lemma 2.3, TL(N;a,,a3,a3) = TL(N;1,b,c). Clearly, b and
c are even. By Lemma 3.3, 1-arcs can be embedded in two pages. So,
pn(TL(N;1,b,¢)) < sp + 8. + 2.

Above all, if d; and d; are even, d; # 2, d; # 2, and d, is odd, where
1,7 and ! are distinct, and 1,4, € {1,2,3}, then pn(TL(N;a1,a2,a3)) <
8i +8; + 3. In particular, if d; = 1, pn(TL(N;a1,03,03)) < min{s; + s; +
2,8+ s. +2}. 0

Theorem 3.5. If d; and %ﬂ are even, d; and d; are odd, where i,j and
l are distinct, and 4,35,1 € {1,2,3}, then pn(TL(N;a,az,a3)) < s; + 7.
In particular, b is positive integer, if d; = 1, then TL(N;a1,a3,a3) =
TL(N;1,b,c) and pn(TL(N;a,,az,a3)) < min{s; + 6, sp + 6}.

Proof. Without loss of generality, we assume that d; is even, d; # 2, d3 and
d3 are odd. Let the vertex ordering of TL(N;a,, az,a3) be 0,2,...,N —
2,N—2+as,...,a3 +2,a3). By Lemma 3.2, a)-arcs needs s, pages to be
embedded. By Lemma 3.3, as-arcs need four pages to be embedded and as-
arcs can be embedded in three pages. So, pn(T'L(N;ai,a2,a3)) < s; + 7.
Specially, if dp = 1 (or d3 = 1), then TL(N;ai,a2,a3) = TL(N;1,b,c),
where b is even, and c is odd. Therefore, pn(TL(N;ay,a2,a3)) < min{s; +
6, s, + 6}. ]

Theorem 3.6. If d; = 2, d; and d; are odd, where i,j and | are distinct,
and i,5,l € {1,2,3}, then pn(TL(N;a,,a2,a3)) < 8. In particular, if
dj =1, then pn(TL(N;a1,0a2,a3)) < 7.
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Proof. Without loss of generality, we assume that d) = 2, d» and d3 are
odd. Let the vertex ordering of TL(N;ai,az,a3) be (0,a1,2a1,...,N —
ay, N —ay +as,...,2a1 +az,a; +ag,az). Clearly, a;-arcs can be embedded
in one page. Next, we embed as-arcs and az-arcs. By Lemma 3.3, as-arcs
need three pages to be embedded, and az-arcs can be embedded in four
pages. Therefore, pn(TL(N;a1,a2,a3)) < 8. In particular, if d = 1 (or
d3 = 1), then TL(N; a1, a2,a3) = TL(N;1,b,¢c). By Lemma 3.3, 1-arc need
two pages to be embedded. So, pn(TL(N;ay,a2,a3)) < 7. m]
The next Corollary is a simple application of Theorem 3.6.

Corollary 3.7. In networks ML(N;ay,as,...,a;), if di = 2 for i €
{0,1,...,1}, and d; is odd for any j € {0,1,...,1} with i # j, then
pn(ML(N;ay,az,...,a1)) < 4(1-1). In particular, if d; = 1, then pn(ML
(N;a1,az,...,a1)) <4(1-1)-1.

Theorem 3.8. Ifd;, dz and d3 are odd, then pn(TL(N; a1, az,a3)) < 11.
In particular, ifd; =1 for i € {1,2,3}, then pn(TL(N;a1,a2,a3)) < 10.

Proof. Let the vertex ordering of TL(N;a;,as,a3) be (0,2,4,...,N —

2,N —-2+ay,...,a1 +4,a1 + 2,a1). By Lemma 3.2, a;-arcs can be em-

bedded in three pages. az-arcs and ag-arcs can be embedded in four pages

respectively. So, pn(T'L(N;ai,a2,a3)) < 11. In particular, if dy = 1 (or

d2 =1 or d3 = 1), by Lemma 2.4 and 3.3, pn(TL(N;a;,62,a3)) <10. O
The next Corollary is a simple application of Theorem 3.8.

Corollary 3.9. In networks ML(N;a1,ay,...,a1), if d; is odd for any
i€ {0,1,...,1}, then pn(ML(N;a1,az,...,a;)) < 4l — 1. In particular, if
d; =1, forie€ {1,2,3}, then pn(ML(N;ay,aq,...,a;)) <4 —2.

4 Concluding remarks

In this work, we give the upper bounds of tipple-loop networks with
even cardinality. For TL(N;a1,as,a3), double-loop network DL(N;a1,a3)
is its subgraph. So, pn(T'L(N;ea,,a2,a3)) = pn(DL(N;a,;,a;)). For ex-
ample, DL(N;18,6,5) is a subgraph of T'L(18;6,5,15). By Theorem 1.1,
pn(DL(N;18,6,5)) < 4. By Theorem 3.1, pn(T'L(18;6,5,15)) < 6. The
difference between pn(DL(N;18,6,5)) and pn(TL(18;86,5,15)) is two. As
triple-loop networks are more complicated than double-loop networks, the
upper bounds we give here are not bad. We leave for future study seeing
whether these bounds can be improved.
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