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ABSTRACT. The aim of this paper is to introduce the notions of f-derivation
and symmetric bi-derivation in c—subtraction algebras and to study some prop-

erties of these derivations.

1. INTRODUCTION

B. M. Schein [19] considered systems of the form (®; o, \), where @ is a set
of functions closed under the composition "o" of functions (and hence (®; o) is
a function semigroup) and the set theoretic subtraction "\" (and hence (®;\) is a
subtraction algebra in the sense of [1]). He proved that every subtraction semi-
group is isomorphic to a difference semigroup of invertible functions. B. Zelinka
[22] discussed a problem proposed by B. M. Schein concerning the structure of
multiplication in a subtraction semigroup. He solved the problem for subtraction
algebras of a special type, called the atomic subtraction algebras. Y. B. Jun, H. S.
Kim and E. H. Roh [9] introduced the notion of ideals in subtraction algebras and
discussed characterization of ideals. In [10], Y. B. Jun and H. S. Kim established
the ideal generated by a set, and discussed related resuits. In [4], Y. Ceven and M.
A. Ozturk introduced some additional concepts on subtraction algebras, so called
subalgebra, bounded subtraction algebra and union of subtraction algebra.

It is very interesting and important that the similar properties of derivation
which is the one of the basic theory in analysis and applied mathematics are also
satisfied in the ring theory. The commutativity of prime rings with derivations
was initiated by E. Posner in [18]. Over the last two decades, a lot of work has
been done on this subject. In [16] M. A. Oztlirk and Y. Ceven defined derivation
on subtraction algebras and examined some properties of derivation. In [13] and
[14], Gy. Maksa defined bi-derivation in ring theory mutually to partial derivations
and examined some properties of derivation. After this studied, many observers
studied symmetric bi-derivation as derivation in ring theory.
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The aim of this paper is to introduce the notions of f—derivation and symmet-
ric bi-derivation in c—subtraction algebras and to study some properties of these
derivations.

2. PRELIMINARIES

An algebra (X; —) with a single binary operation "—" is called subtraction
algebra if for all z,y, z € X the following conditions hold:
(SYz-(y-=z)=gz,
(82)z—(z-y)=y-(y—x),
($3) (z-y)—z2=(z—2)—y.
The subtraction determines an order relation on X as the following:
a<bsa-b=0

where 0 = a — a is an element of X and this property does not depend on the
choice of a € X. The ordered set (X; <) is a semi-Boolean algebra in the sense
of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a
Boolean algebra with respect to induced order. Here a A b = a — (@ — b) and the
complement of an element b € [0,a] isa — b.
In a subtraction algebra, the following are true [9], [12]:
() (z-y)—y=z-y,
(a2)z-0=zand0— z =0,
@) (z=-y)—z=0,
(a4)z-(z—-y) <y,
(a5) (z-~y)-(y—2z)=7z-1y,
(@B)z—(z—(z-y)=z-y,
(a7 (z-y)—(z-y) <z -2
(a8) z < yifand only if £ = y — w for some w € X,
(@9)z<yimpliesz —z2<y—zandz—y < z-—zforall z € X,
(210) z,y < zimpliesz —y = z A (2 — y),
(ell) (zAy)—(xA2) <z A(y-—2),
(a12) (z-y) - z=(z - 2) - (y - 2).
Definition 1. [9]4 nonempty subset A of a subtraction algebra X is called an
ideal of X if it satisfies
(1)0€ 4,
2 (VreX)(VyeA)(z-yeA=>zc A)
forallz,y,ze X.

Lemma 1. [9]A4n ideal A of a subtraction algebra X has the following property
VzeX)(Vye A)(z<y=ze€ A).

Definition 2. [11]Let X be a subtraction algebra. For anya,b € X, letG (a,b) =
{z € X : 2 — a < b}. X issaidto be complicated subtraction algebra (c—subtraction
algebra) if the set G (a, b) has the greatest element for any a,b € X.
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Note that 0, a, b € G (a, b). The greatest element of G (a, b) is denoted a + b.

Proposition 1. [11}/f X be a c—subtraction algebra, then for all z,y € X
(@()z<z+y,y<z+y,

()z+0=z=0+z,

()z+y=y+z

(Wz<y=>z+z2<y+z2

Wz<y=>z+y=y,

(vi) = + y is the least upper bound of = and y.
Theorem 1. [11)If X is a c—subtraction algebra, then (X, +,0) is a commutative
monoid.

Definition 3. [16]Let X be a c—subtraction algebra andd : X — X be a func-
tion. We call d a derivation on X if it satisfies the following condition

d(zAy) = (d(z) Ay)+(zAd(y))
Jorallz,ye X.
3. f—DERIVATIONS IN SUBTRACTION ALGEBRAS

The following definition introduces the notion of f—derivation for a subtrac-
tion algebra.

Definition 4. Let X be a c—subtraction algebra. A functiond; : X — X is
called f—derivation on X if there exists a function f : X — X such that

dy (z Ay) = (ds () A F (1) + (f (x) Ady (v))
Jorallz,y € X.

It is obvious in the Definition 4 that if f is an identity function, then dy is a
derivation on X.

Example 1. Let X = {0,a,b,c} be a c—subtraction algebra with the following
Cayley table [11].

—IO a b c
00 0 0 O
ala 0 a 0
blb b 0 0
cle b a 0
Define functions on X,
0, z=0,b
de: X - X , df(:z:)—{c C r=ac
and 0 0b
y T=0U,
f: X-X , f(:z:)—{c  r=ac
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Then we can see that dj is a f —derivation on X. But dy isn’t a derivation on X.

Example 2. Let X be the c—subtraction algebra in Example 1 and define func-
tions

0, z=0,b

dr: X =X d;(:c)={c , T=a,c

and 0 0,b
px-x o, g@={0 0 1

Then we can see that dy is a f—derivation on X. But, dy is a derivation on X.

Proposition 2. Let X be a c—subtraction algebra and dy be a f—derivation on
X. Then the following properties hold:
(@A) ds(z)=ds(x)A f(x) < f(z), forallz € X.
() df(zAy) < f(z)+ f(y)forallz,y € X.
(#44) If £ (0) =0, thend; (0) = 0.
(iv) If I is an ideal of a subtraction algebra X, then f (I) C I implies
de(I)C I
Proof. (%) Since z A z = z and from (a4), we get
ds (z) = dy (z A7)
= (df (z) A f () + (f (z) A dy (2))
=ds (z) A f (2)
=d;s(z) - (ds (z) - f(z)) < f (z)
forallz € X.
(i) From (ad), ds (x)A f (y) < f (y) and df (y)A f (z) < f (z) forall z,y €

X. Since f (z), f (v) € G (f (z), f (y)), wehave ds (z) A f (y) < f (z)+ f ()
and dy (y) A f(z) < f(z) + f(y). Since ds (z Ay) is the least upper bound
ds(2) A f (y) and dy (y) A f (z), we obtaindy (z Ay) < f(z) + f(y).

(#4%) Suppose that f(0) = 0. From (), we have d; (0) < f(0) = 0. Since,
from (a2), 0 < dy (0), we get df (0) = 0.

(tv) From (i), we know that ds (z) < f(z) for all z € I. Then 0,d; () —
f(z) = 0 € I. From the definition of an ideal of X, we obtaind; (z) ¢ I. O

Theorem 2. Let X be a c—subtraction algebra and ds be a f—derivation on X.
Then
dy (z) Ndy (y) < dg (z Ay) < dj (2) +dy ().

Proof. Since ds (y) < f(y), we have dy (z) — f(y) < ds(z) — d (y) and
dy (z) - (ds (z) = ds (¥)) < dy (&) - (dy (2) - f (), thatis, dy (x) Ady () <
ds () A f (y)-

Similarly, since dy () < f (), we obtain dy (z) A df (y) < dy (y) A f (2).
Then we get

ds (z) Ads (y) < (df () A F () + (f (z) + df (v)) = df (z AY).
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Furthermore, since ds (z) A f (y) < df(z) < df (z) + df (y) and dy (y) A
f(z) <ds(y) <dg(2) +ds(y), wehaveds (z Ay) < dy (z) +ds (). O

Proposition 3. Let X be a c—subtraction algebra and dy be a f—derivation on
X. If f is an increasing function on X, then

(1) f(z) < ds(z +y) = f(z) =ds (z) forall z,y € X,
() f(z) 2 dy(z+y) =>ds(z) 2ds(x+y) forall z,y € X.

Proof. (i) Since z = z A (z + y), we obtain
ds (z) =ds (z A (z+Y))
= (ds () A f(z+) + (f(z) Adf(z +))

From Proposition 2(¢) and since f is an increasing function, dy (z) < f(z) <
f (z + y). Therefore

ds (z) =ds (z) + f(z) = f (z)

forallz € X.
(%) Since z = = A (z + y), we get

dr (z) =ds (z A (z +Y))
=(ds @) A f(z+9) +(f(z) Nds (z +))
=dy (z) +ds (z+Y)-
Hence ds (z +y) < ds (z) forall z,y € X. m]

Let X be a c—subtraction algebra and d; be a f—derivation on X . Define a set
F:={zeX: f(z)=ds(z)}.

Proposition 4. Let X be a c—subtraction algebra and dy be a f—derivation on
X. If f is an increasing functionon X, theny < xandz € F implyy € F.

Proof. Lety < z and x € F. Since f is an increasing function, we obtain
ds (y) £ f(y) < f (x) = dy (z). Note that,

dy (y) =ds(z Ay) = (ds () A F (1) + (f (z) Ady (v))
=f(y) +ds ().
Therefore f (y) < dy (y), thatis, ds (v) = f (v). 0

Definition 5. Let X be a c—subtraction algebra and dy be a f—derivation on X.
Ifz < y implies dy (z) < dy (y), then dy is called an isotone mapping.

Proposition 5. Let X be a c—subtraction algebra and dy be a f—derivation on
X. If dy is an isotone mapping and f is decreasing function on X, then z,y € F
impliesx +y € F.
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Proof Sincez <z +yandy<z+y,wehave f(z+y) < f(z), f(z+y) <
f(y) and dy (z) < df (z +y), df (y) < dy (x +y). From the definition of set
F, we get

f+y) S f(@)+ f(y) =ds(x) +ds (y) < ds (z+).

Alsods(z+y) < f(z+y). Thusds(z+y) = f(z+y), thatis,z +y €
F. O

4. SYMMETRIC BI-DERIVATIONS IN SUBTRACTION ALGEBRAS

Definition 6. Let X be a c—subtraction algebra. A mapping D : X x X — X is
called symmetric if it is satisfies following condition

D (z,y) = D (y,z)
forallz,y e X.
A mapping d : X — X defined by d(z) = D (z,z) is called the trace of D,
where D is a symmetric mapping.

Definition 7. Let X be a c—subtraction algebra. A symmetric mapping D :
X x X — X is called symmetric bi-derivation if it is satisfies following condition

D(zAzy)=(D(z,y)A2)+ (xAD(z,5))
forallz,y,z € X.
It is obvious that if D is a symmetric bi-derivation, then
D(z,yAz)=(D(z,y) A2) + (y A D(z,z))
forall z,y,z € X.

Example 3. Let X be the c—subtraction algebra in Example 1 and define function
onX,

(0 (z,9) = (0,0)

0o, (x,y)=(0’a) or (xay)=(a:0)

0, (22, )=(O’b) or (:r:,y)=(b,0)

0, (w,y)=20,0)) or ((m,y))=(c,0)
. _ a , x,y)=(a,a
D:XxX—->X , D(zy) =1 b (©.3) = (5.b)
c , (z,9) = (c, )

0 , (z,9)=(a,b) or (z,y) = (b,a)

a , (z,9)=(a,c)or (z,9) = (c,a)

[ b, (z,9)=(bc) or (z,9) = (c,b)

Then we can see that D is a symmetric bi-derivation on X.

Remark 1. Let X be a c—subtraction algebra and D be a symmetric bi-derivation
on X. Inthis case, for any fixeda € X andfor allx € X, amappingd, : X — X
defined by d, (x) = D (z, a) is a derivation on X.
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Proposition 6. Let X be a c—subtraction algebra and D be a symmetric bi-
derivation on X with the trace d. Thend (z) < z forall z € X.

Proof. Since x A x = z, we have
d(z) =D (z,z)
=D(zAz,z)
= (D(z,z) Az) + (z A D (z,z))
=D(z,z)ANz=d(z) Az
forall z € X. Therefore d (z) < z forall z € X by (S2) and (a4). a

Proposition 7. Let X be a c—subtraction algebra and D be a symmetric bi-
derivation on X with the trace d. Then D (z,y) < z, D(x,y) < y for all
T,y € X.

Proof. Since x A z = z, we obtain
D(z,y)=D(zAzy)
= (D(z,y) Az) +(z AD(z,y))
=D(z,y) Az

for all z € X. Therefore D (z,y) < z for all z,y € X by (S2) and (ad).
Similarly, we see that D (z,y) < y forall z,y € X. O

Proposition 8. Let X be a c—subtraction algebra and D be a symmetric bi-
derivation on X with the trace d. Then
(i) d(G (a,b)) € G (a, ),
(i) G (d(a),d (b)) € G (a,b),
(W) d(z+y) <z +yforalz,ycX,
(w)d(z)+dy) <z +yforalz,yec X,
(v) If I is an ideal of a subtraction aigebra X, thend (I) C I.

Proof. (¢) For all z € G (a,b), we have z — a < b. From Proposition 6, we get
d(z) < zandd(z) — a < z— a < bby (a9). Hence we obtain d (z) € G (a, b).

(i?) For all z € G(d(a),d (b)), z —d(a) < d(b) < b. Hence we have
z=b<d(a)<aorz-—a<b Thenwegetzec G(a,b).

(74) and (iv) are straightforward from Proposition 6.

(v) For all z € I, we know that d (z) < z, that is, d(z) — z = 0 € I. From
the definition of an ideal of X, we obtain d (z) € I. ]

Theorem 3. Let X be a c—subtraction algebra and D be a symmetric bi-derivation
on X with the trace d. Then

d(z Ay) = (d(z) Ay) + D (z,y) + (2 Ad(y))
Jorallz,y € X.
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Proof. Note that
d(zAy)=D(zAy,zNy)
=(D(z,zAy)Ay)+(zAD(y,zAy))

= {[(D (z,z) Ay) + (z A D (z,9))] Ay}
+{z A (D (y,x) Ay) + (z A D (y,9)]}

={[d=)Ay) +D(z,y)] Ay} +{zA[D(z,y) + (z Ad(y))}}
forall z,y € X. Since d (z) Ay < y by (a4) and D (z,y) < y by Proposition 7,
we have (d (z) Ay)+D (z,y) < y. Similarly, we get D (z,y) +(z A d(y)) < z.
Therefore we obtain

d(zAy) =[(d(z) Ay) + D (z,y)] + [D(z,9) + (z Ad(¥))].
From Theorem 1, we have
d(zAy)=(d(z) Ay)+ D(z,y) +(zAd(y)).
O

Corollary 1. Let X be a c—subtraction algebra and D be a symmetric bi-derivation
on X with the trace d. Then
(?) D(z,y) < d(zAy)

(i) z Ad(y) < d(zAy),

(i) d(2) Ay < d(z Ay),

() d(z) Ad(y) < d(z Ay).
Proof. (i), (i%) and (%) are straightforward from Theorem 3.

(i) Since d (y) < y, wegetd (z)—y < d(z)—d(y)andd (z)-(d(z) —d(y)) <

d(z) — (d(x) — y), that is, d (z) A d (y) < d(z) Ay. Therefore, from (ii), we
obtain thatd (z) Ad(y) < d(z Ay). ]

Corollary 2. Let X be a c—~subtraction algebra and D be a symmetric bi-derivation
on X with the trace d. Then D(z,z+y) < d(zA(z+y)) = d(z) and
zAd(z+y) <d(@A(z+y)) =d(z)forall z,y € X.

Corollary 3. Let X be a c—subtraction algebra and D be a symmetric bi-derivation
on X with the trace d. Then
()z2d(z+y)=>d(z)2d(z+y)
()z<d(xz+y)=>z=d(z+y)
(@) z Lyandd(y) =y =z =d(z).
Proof. (i)Letz >d(z +y)forallz,y € X. Sinced(z +y) =zAd(z+y) <
d(z), we have d (z +y) < d(z) forall z,y € X.
(W) Letz < d(z+y)forallz,y € X. Sincex =z Ad(z +y) <d(z)and
d(z) < z,wegetz =d(x).
(¢id) Letz < yandd(y) =yforallz,y € X. Since z < y, z Ay = z. Hence

d(z) =d(zAy)
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=(@d(@)Ay)+D(z,9) +(zAd(y)) ==
forall z,y € X. O

Definition 8. Let X be a c—subtraction algebra and D be a symmetric bi-derivation
on X with the trace d. If x < y implies d (z) < d(y), then d is called an isotone
mapping.

Remark 2. Let X be a c—subtraction algebra and D be a symmetric bi-derivation
on X with the trace d. Denote Fizy(X) = {z € X : d(z) = =}. From Corol-
lary 3, we can see that Fizy(X) is down-closed set, that is, x € Fizq(X)
andy < z imply y € Fizg(X). If d is isotone, then d(z) < d(z+y) and
d(y) € d(z+y). Therefore d(z) + d(y) < d(z+y). Ifd is isotone and
z,y € Fizyg (X), thenx +y < d(x +y). Henced(z+y) =z +y.

Proposition 9. Let X be a c—subtraction algebra and D be a symmetric bi-
derivation on X with the trace d. Define d* (z) = d(d (z)) for all z € X. Then
d? = d, that is, d (z) € Fizq(X).

Proof. From Proposition 6, we obtain that d (z) A z = d (x). From Proposition 7
and Theorem 3, we have

@ (z) = d(d(z))
= d(d(z) Az)
— (@) Ag) + D(d(2), ) + (d(x) Ad (z)
= d(z)
since d? (z) < d(x) < zand D(d(z),z) < d(z)forallz € X. 0O

Proposition 10. Let X be a c—subtraction algebra, D, and Dy be symmetric
bi-derivations on X and dy and dy be their traces, respectively. If dy and da are
isotone, then dy = ds if and only if Fiza, (X) = Fizg4, (X).

Proof. (=) :1f dy = dy, then Fizgq, (X) = Fizg, (X).

(«) : Let Fizg, (X) = Fizg, (X)and z € X. Since d; (z) € Fizq, (X) =
Fizg4, (X) by Proposition 9, we obtain dz (d; (z)) = d; (z). Similarly, we can
get dy (d2 (z)) = dz (x). Since d; and d2 are isotone, we have dy (d; (z)) <
da (z) = d; (d2 (2)) and so dy (d; (z)) < di(dz(x)). Similarly, we can get
dy (d2 (z)) < da(dy(x)). This shows that dy (d; (z)) = di (d2 (z)). Hence
dl (:B) = d2 (d1 (Z)) = dl (dz (:c)) = dz (112), that iS, d] = dg. a

REFERENCES

[1] J. C. Abbott; Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston, 1969.

[2) H. E. Bell and G. Mason; On derivations in near-rings and near-fields, North-Holland Math.
Studies 137 (1987), 31-35.

[3] M. Bresar; On the distance of the compositions of two derivations to generalized derivations,
Glasgow Math. J. 33 (1991), 89-93.

275



[4] Y. Ceven and M. A. Oztitrk; Some results on subtraction algebras, Hacettepe Journal of Mathe-
matics and Statistics 38(3) (2009), 299-304.
[5] Y. Ceven and M. A. Oztiirk; On f—derivations of lattices, Bull. Korean Math. Soc. 45(4) (2008),
701-707.
[6] Y. Ceven; Symmetric bi-derivations of lattices, Quaestiones Mathematicae 32(2) (2009), 241-
245.
[71 L. Ferrari; On derivations of lattices, Pure Math. Appl. 12(4) (2001), 365-382.
[8) B. Hvala; Generalized derivation in rings, Comm. Algebra 26(4) (1998), 1147-1166.
[9] Y. B. Jun, H. S. Kim and E. H. Roh; /deal theory of subtraction algebras, Sci. Math. Jpn. Online
€-2004 (2004), 397-402.
(10) Y. B.Jun and H. S. Kim; On ideals in subtraction aigebras, Sci. Math. Jpn. Online e-2006 (2006),
1081-1086.
[11] Y. B. Jun, Y. H. Kim and K. A. Oh; Subtraction algebras with additional conditions, Commun.
Korean Math. Soc. 22(1) (2007), 1-7.
[12] Y. B. Jun and K. H. Kim; Prime and irreducible ideals in subtraction algebras, International
Mathematical Forum 3(10) (2008), 457-462.
(13] Gy. Maksa; 4 remark on symmetric bi-additive functions having non-negative diagonalization,
Glasnik Mat., IIL. Ser., 15(2) (1980), 279-282.
[14] Gy. Maksa; On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9
(1987), 1303-1307.
(15] Y. H.Kim and H. S. Kim; Subtraction algebras and BCK-algebras, Math. Bohemica 128 (2003),
21-24.
(16] M. A. Oztiirk and Y. Ceven; Derivations on subtraction algebras, Commun. Korean Math. Soc.
24(4) (2009), 509-515.
[17] M. A. Oztitrk, H. Yazarh and K. H. Kim; Permuting tri-derivation in lattices, Quaestiones Math-
ematicae 32(3) (2009), 415-425.
[18] E. Posner; Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
(19] B. M. Schein; Difference semigroups, Comm. Algebra 20 (1992), 2153-2169.
[20) G. Szisz; Derivations of lattices, Acta Sci. Math. (Szeged) 37 (1975), 149-154.
{21] X. L. Xin, T. Y. Li and J. H. Lu; On derivations of lattices, Information Sciences 178(2) (2008),
307-316.
[22] B. Zelinka; Subtraction semigroups, Math. Bohemica 120 (1995), 445-447.

ADIYAMAN UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMAT-
ICS, 02040 ADIYAMAN, TURKEY
E-mail address: maozturk@posta.adiyaman.edu.tr

CUMHURIYET UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHE-
MATICS, 58140 Sivas, TURKEY
E-mail address: hyazarli@cumhuriyet.edu.tr

ADIYAMAN UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMAT-
1Cs, 02040 ADIYAMAN, TURKEY
E-mail address: mackun@posta.adiyaman.edu.tr

276



