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Abstract. The Hosoya index 2(G) of G is defined as the total number
of the matchings of G and the Merrifield-Simmons index igG of a graph
G is defined as the total number of the independent sets of G. Although
there are many known results on these two indices, there exists few on
a given class of graphs with perfect matchings. In this paper, we first
introduce two new strengthened transformations. Then we characterize
the extremal unicyclic graphs with perfect matching which have minimal,
second minimal Hosoya index, and maximal, second maximal Merrifield-
Simmons index, respectively.
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1. Introduction

Let G = (V, E) be a simple connected graph. For a vertex v of G, denote
the degree of v by dg(v). Two edges of G are said to be independent if
they are not adjacent in G. A k-matching of G is a set of k mutually
independent edges. Two vertices of G are said to be independent if they
are not adjacent in G. An independent k-set is a set of k vertices, no two
of which are adjacent.

In 1971 the Japanese chemist Haruo Hosoya introduced a molecular-
graph based structure descriptor([5], which he named topological indez and
soon re-named into Hosoya indez. The Hosoya indez, denoted by 2(G), is

defined to be the total number of matchings, namely, z(G) = Z:,EZ,J) z(G, k),
where 2(G, k) is the number of k-matchings of G. Note that 2(G,0) =1
for any graph G. The Merrifield-Simmons index was introduced in 1982
in a paper of Prodinger and Tichy [6], although it is called Fibonacci
number of a graph there. The Merrifield-Simmons index, denoted by
i(G), is defined to be the total number of independent sets of G, that
is, i(G) = Y_p_o i(G, k), where i(G, k) is the number of k-independent sets
of G. Note that i(G,0) = 1 for any graph G. Hosoya indez was applied
to correlations with boiling point, entropies, calculated bond orders, as
well as for coding of chemical structures. Merrifield and Simmons devel-
oped a topological approach to structural chemistry. The cardinality of the
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topological space in their theory turns out to be equal i(G) of respective
molecular graph G.

Since then, many researchers have investigated these graphic invariants.
An important direction is to determine the graphs with maximal or min-
imal indices in a given class of graphs. As for n-vertex trees, it has been
shown that the path has the maximal Hosoya index and the star has the
minimal Hosoya index [13]. Hou [23] characterized the trees with a given
size of matching and having minimal and second minimal Hosoya index,
respectively. In [2] Yu and Lv characterized the trees with k pendant ver-
tices having minimal Hosoya index. In [8] Liu et al. studied trees with
a prescribed diameter with respect to the Merrifield-Simmons indices and
Hosoya indices. As for n-vertex unicyclic graphs, Deng and Chen [7] gave
the sharp lower bound on the Hosoya index of unicyclic graphs. Ou [14]
characterized extremal unicyclic molecular graphs with maximal Hosoya in-
dex. In [19], Li et al. characterized unicyclic graphs with minimal, second-
minimal, third-minimal, fourth-minimal, fifth-minimal and sixth-minimal
Hosoya index. In [20] Li and Zhu, studied the number of independent sets
in unicyclic graphs with a given diameter. Wang and Hua [12] character-
ized the extremal (maximal and minimal ) Merrifield-Simmons index of uni-
cyclic graphs with a given girth, Xu and Xu [17] determined all the unicyclic
graphs of order n and with given maximum degree maximizing the Hosoya.
index and minimizing the Merrifield-Simmons index. In particular, Yu and
Tian (3] characterized the extremal graphs with minimal Hosoya indices and
maximal Merrifield-Simmons indices , respectively, among all the connected
graphs of order n and size n+t—1 with 0 < ¢ < m—1, where m is the match-
ing number. We refer readers to survey papers [1, 10, 11, 15, 16, 21, 18, 22
for further information. .

Let U be a unicyclic graph. The base of U, denoted by U, is the minimal

unicyclic subgraph of U. Obviously, Uisa cycle, and U can be obtained

from U by planting trees to some vertices of U. Let % (2m, m) be the set
of all unicyclic graphs on 2m(m > 2) vertices with perfect matchings. Al-
though there are many known results on the Hosoya index and Merrifield-
Simmons index, there exists few on a given class of graphs with perfect
matchings. In this paper, we first introduce two new strengthened trans-
formations. Then the extremal graphs in % (2m,m) which have minimal,
second minimal Hosoya index, and maximal, second maximal Merrifield-
Simmons index, are characterized, respectively.

In order to state our results, we introduce some notation and terminol-
ogy. For other undefined notation we refer to Bollobds [4]. If W C V(G),
we denote by G — W the subgraph of G obtained by deleting the vertices of
W and the edges incident with them. Similarly, if E ¢ E(G), we denote b
G — E the subgraph of G obtained by deleting the edges of E. If W = {v
and E = ﬂxy , we write G —v and G — zy instead of G — {v} and G — {zy},
respectively. We denote by P,,C,, and S, the path, the cycle and the star
on n vertices, respectively. Set N(v) = {u|uv € E(Ggﬁ, Ny]=N (v}_‘u {v}.

Denote by F, the nth Fibonacci number. Recall that F, = F,_; +
F,_2,n > 2 with initial conditions Fy = F; = 1. Then i(P,) = Fn41, 2(P,)
= F),. For convenience, we let F,, =0 for n < 0.

Now we give some lemmas that will be used in the proof of our main
results.
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Lemma 1.1 ([13]). Let G = (V, E) be a graph.
(i) If wv € E(G), then 2(G) = 2(G — wv) + z(G — {u,v});
(i) Ifv e V(G), then z(G) = z(G — v) + L en(w) 2(G — {u,v});
(iil) If G1,Ga,...,Gy are the components of the graph G, then 2(G) =
H;':l Z(GJ)'
Lemma 1.2 ([13]). Let G = (V,E) be a graph.
(1g If wv € E(G), then i(G) = (G — uwv) — z(G N[u] U N[v]);
(ii) Ifve V( ), then i(Q) = i(G —v) +i(G —
(iii) If Gy,Ga,...,Gy are the components of the gmph G, then i(G) =

Lemma 1.3 ( [9] Let H X,Y be three connected graphs dzsyomt in pair.
Suppose that u,v are two vertices of H, v' is a vertez of X, u' is a 'uerte.'z:
of Y. Let G be the graph obtained from H, XY by zdentzfymg v with v’
and v with ', mspectwely Let G’; be the graph obtained from H, X,Y by
identifying vertices v, 'v u and G5 be the graph obtained from H X Y by
zder;tafyzng ziért)zces u, v, . Then (€3) < 2(C);

() z(G]) < z or z < z(G),

(it) (Gl) > zé g or i(G3) > i(G).

2. Main results

U'(2m,m) U*@2m,m)

Figure 1: The graphs U'(2m, m) and U?(2m, m)

Lemma 2.1. Let U(2m,m),U%(2m,m) be graphs as shown in Figure 1.
(i) For mtegerm > 2, z(U'(2m,m)) = (m+4)2™~2 and i(U'(2m, m))
=92. 3m—1 +2m—
(ii)For mtege'rm > 3, z2(U%(2m, m)) = (5m+13)2™* and i(U?(2m, m))
=16.3m"3 y 2m-1,

Proof. (i) By Lemma 1.1 and Lemma 1.2, we have

U 2m,m)) = (U'@m,m)-u)+ ) z(U'(2m,m)—u-z)
€N (u)
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= z(m-1)PRUP)+z((m-1)P)+

2z((m = 2)P, U2P,) + (m — 2)2((m — 2)P, U2P,)
(m +4)2™2,

iU (2m, m) — u) +i(U(2m,m) — N[u))
i((m—-1)P,UP) +i((m —2)P)=2.3m"1 4 2m-2,

Similarly, we can prove (ii). 0

(U (2m,m))

Let G be a connected graph with perfect matchings which, as shown in
Figure 2, consists of a connected subgraph H and a tree T such that T is
attached to a vertex r of H. The vertex r is called the root of the tree T,
or the root-vertex of G. The distance between the root r and the vertex of
T furthest from r is defined as the height of the tree T. Throughout the
paper, |[V(T)| is the number of vertices of an attached tree T not including
the root r of T. If v is the vertex of T furthest from the root r, since G
has perfect matchings, then v must be a pendant vertex and adjacent with
a vertex u of degree 2.

Transformation 1 First, take off the vertices u,v of G to obtain the
graph G — u — v; then attach a path of length 2, say ru'v/, to the root .
This procedure results in a graph G; which still has perfect matchings and
is displayed in Figure 2.

If V(T —u —v)| > 2, we can repeat above transformation on G;. And
finally we get a graph Go when |V(T)| is odd or a graph Ho when |V(T)|
is even. Both Gg and Hjy are shown in Figure 3.

v
u
w

G

Figure 2: The graphs G and G, in Transformation 1

H,

Figure 3: The graphs Gy and Hyp
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Lemma 2.2. Let G,Gy and Hy be graphs as shown in Figure 2 and Figure

H( ; Sz ) > Z(G°2z the equality holds zf and only if G = Go,; or 2(G) >
z( e equality holds if and only if G =

(u i(G) < i(Go) the equality holds if and only if G = Gy; ori(G) <
i(Ho), the equality holds if and only if G =
Proof. The proof is by induction on |V(T) - é| Let ]V(T) {'r}| = k.
For k = 1,2, the results hold obviously since Go when k = 1 and
G = Hy when k = 2. Now suppose further that the results hold for the
positive integers smaller than k. We have to distinguish the following two
cases.

Case 1. k is odd. By Lemma 1.1, we have

2(G) = 2(G-v)+2(G-u-v)
2(G—u—v—w)+22(G—-u-v),
2(Go — V') + 2(Go — v’ — ')
2(Go —u' —v' — 1) +22(Go — v’ — 7).

2(Go)

Obviously, Go — v/ — v —r=H —-rU %I-Pg U P, is a proper spanning
subgraph of G —u — v —w, then 2(G —u—v—w) 2 2(Go — v —v' — 7).
Further by the induction hypothesis, we have z(G—u—v) 2 2(Go—u'—7'),
then z(L ) = z(Go).

emma 1. 2 we have

i(G) = (G-v)+i(G-—u—v)
(G —u—v—w)+2{(G—u-v)
i(Go) = i(Go—v")+i(Go—u' —v')

= i(Go—u —v —7)+2i{(Go — v ~ )

Note that Go — v/ — v —r = H—-7rU "—;—I-Pz U P, is a proper spanning
subgraph of G —u — v — w, then i{(G —u —v —w) < i(Gp — v/ —v —r).
Further by the induction hypothesis, we have i(G —u—v) < i(Go — v’ —v’),
then i(G) < i(Go).

Hence the results hold by induction in this case.

Case 2. k is even. The proof is similar to case 1.

This completes the proof. O

Remark: Let G,Gp be the graphs as shown in Figure 2 and 3, if
H = K, by Lemma. 2. 2, Go must be the extremal graph with minimal
Hosoya index and maximal Merrifield-Simmons index among all trees with
perfect matchings.

As shown in Figure 4, let G2 € % (2m, m) be a unicyclic graph with
|V(G2)| > 4, it has only one root-vertex, say 7, attached to only some paths
of length 2, 'and the others root-vertices attached to only a pendant edge.
Then at least one of adjacent vertex v of r on G has degree 2. Let G3 be
the graph obtamed from G3 by contracting the edge rv, and then attaching
a pendant edge v’ to 7.
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Figure 4: The graphs G2 and G3

Lemma 2.3. Let G3,G3 be graphs as shown in Figure 4. Then 2(Gz) >
Z(G3) and i(Gz) < i(G3).

Proof. Let dg,(v) = {r,z}. By Lemma 1.1, we have
2(G2) = 2z(G2—rv)+2(G2—7 —v)
= 2(Gz—rv—1)+
Z 2(Gy—rv—1—-y)+2(G2 — T —)
yeNGz-rv(") '
= 2(Gea-mv—r—v)+2(Ge—rv—r—v—-1x)+

Y. #HGr—rv—r—y)+2(Ga—1-v),
yGNag-rv(T)

2(G3) 2(G3 — V) +2(G3 —v' —71)

= z(Gz3—v' —71)+ Z 2(G3—v' —r—y)+
yENGs_v:(r)-z
2(Gs—v —r—z)+2(Gs —v' —1).

Moreover, it is easy to see that we have
Ge—r—v=G—rv—r1—-v G-V —r,
Go—mv—rT—v—z2G3—v —r—az,

NGQ-—TV(T) = NGg—v’(T) -,
Gy—rv—-1-yDG3-v' —r—y,y € Ng,_v(r) -z,
then

2(Gg) — 2(G3) = Z 2(Ga—rv—r—Y)~
yeNGg—rv(r)

Z 2(Gz—v' —r—y)>0.

YENG,—y (r)=2
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Hence 2(G2) > 2(G3).
By Lemma 1.2,
i(Gs) = i(Gp—v)+i(Gs— N]b])
i(G3) = i(Gs—v')+i(Gs — N[V'])
= (G —v' —zr) —i(Gs —v' — N[z]UNJr]) +i(G3 — N[v'] — z)
+i(G3 — N[v'] — Niz}),

and

Gy —v =Gy —v —zr,

Gg—N['U] :G;;—N[‘U']—:L‘,

G3 — N[v'}| —= N[z] D G3 —v' — N[z] U N,
hence

i(Gs) —i(Ga) = i(Gs— N[v'] - Niz]) —i(Gs —v' — N[z] U N[r]) >0

Hence i(G3) < i(G3). .

Lemma 2.4. For any graph G € Z (2m,m wzth |V(G')| > 4, there exists
a graph Uy € % (2m,m 2‘ which satisfies z( éUo) and z(G) < i(Us),
where Uy is a graph with some root-vertex attache to a pendant edge and
all paths of length 2, and the others roots of Uy attached to only one pendant
edge. The equality holds if and only if G = U.

Proof. For any graph G € % (2m,m), it can be obtained from G by planting
trees to some vertices of G. Repeatedly by Transformation 1, G can be
transformed into a graph G, at each root-vertex of G attached toa pendant
edge and all paths of length 2, or only paths of length 2. Moving all
the paths of length 2 to some root-vertex, say r, then the others root-
vertices of G has at most a pendant edge, denote the resulted graph by G,.
Obviously, Gy € % (2m, mf by Lemma 1.3, 2(G) > z(G, ) > z(Gb) and
z(Gz <i Ga) < i(Gb), the equality holds if and only if G ='G, & Gy,

f there is a pendant edge at 7 in Gy, Gy is desu'able Otherwise, by
Lemma 2.3, G3 is desirable.

Let Up be the graph described in Lemma 2.4, we distinguish the follow-
ing two cases:

(i) Us & C3. Then Up must be one of two graphs U(2m,m) and
U?(2m, m).

(i) Up 2 Cs. Then we have |V(U0)I > 4. Assume that u is the vertex
adjacent to the root r on T, clockwise. If u is not a root-vertex, then u is

a vertex of degree 2, and so is its other adjacent vertex, say vg, on U, and
the edge uvp belongs to perfect matchings of Up.

Transformation 2 Assume that |V(Uo)| > 4. Let u be not a root-
vertex which is adjacent to the root r on Uo clockwise, and its other adjacent
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vertex on Up be vp. Contract uvp into a single vertex u(vp) and add a
pendant edge u(vo)v, denote the resulted graph by U,. If |V(U;)| > 4, we
continue to carry out the following transformation on U;: first, take off the
vertex v from U to obtain the graph U, — v; then contract the edge ru(v),
and attach a path of length 2, say ru'v/, to the root r. The resulted graph
is denoted by Us. This procedure is shown in Figure 5.

Figure 5: The graphs Up,U; and Us

Lemma 2.5. Let Uy, Uy and Uz be graphs as shown in Figure 5,
(i) z(Uo) > Z§Ulg and z%f;) > z{ifgf;
(1) i(Uo) < i(U1) and i(Uy) < i(U3).

Proof. (i) By Lemma 1.1, we have

z2(Uo) = z(Up—ur)+2(Up—u-—r)
2(U1) = 2z(Up —u(vo)r) + z2(Ur — u(wo) — 7)

Moreover, it is easy to see that we have
Up—ur=U, - u(vo)r,
Uo—u—r>DU; —u(w) -,

Hence z(Up) > z(U,).
Similarly,

z(Uy) 2(Uy — u(vo)) + 2(Uy — u(vo) — v) + 2(Uy — u(vo) — 7) +

z(Ur — u(vo) — 1)

= z(U1 - u(w)) + z(Ur — w(vo) — v) + 2(U; — u(vo) — 1) +
2((Uy — u(vo) —uy —v) U Py)

= z(Ur = w(w)) + 2(Uy — u(vo) — v) + 2(Uy — u(w) — ) +
z(Ur — u(vo) — w3 —v),

2(U2) = 2(Up—wr)+2z2(Us ~uy—7)

2Uy—uyr —v) +2(Ua —ugr —v' =o'y + 2(Up -y — 1)
2(Up—uyr —v' —u)+2(Up —wuyr —v' —v' —7) +

2(Us —uir —v' — ) + 2(Up — 4y — 1),
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and
U, - 'U.(’Uo) Uy —ur—v —u uUp,
Up—u(w) —relU;—ur—v —v —rUh,
Uy —u(w) —v 22Uy —uyr —v — o/,
Let W = U; — u(vp) — vy — v. Obviously, Uy —uy —r & (W —r)U P,.
By Lemma 1.1,
AW) = z(W-r)+ Y z2(W-r-y)
yENw (r)
Let rz be the pendant edge in Uj, then 2(W —r — z) = 2(W - 7), so
2(U)) —2(U3) = 2(Uy —u(v) —u1 —v)—2(Up—uy—7)
= 2(W)-2z2(W-r)

Z Z(W—-r—y)—2z(W-r)

yENw (r)

= Z (W-—r—y)+2z(W-r—-z)—2(W-r)
yeENw(r)—z

= >  zW-r-y)>0.
yENw (r)—=z

Hence z(U;) > 2(Us).
(ii) By Lemma 1.2, we have

i(Us) = iUy —ur)—i(Up — Nu] U Nfr]),
(Uh) = iU —u(vo)r) —i(Ur — Nlu(vg)] U N([r])
Moreover, it is easy to see that we have
Up — ur &2 Uy — u(vo)r,
Uo — N[u]U N[r] — u; = U — Nfu(v)] U N[r].
Then
i(Uo — N{u] U NTr]) > i(Uy — N{u(vo)] U N[r]).
Hence
iU1) —i(Uo) = i(Uo— N[u]UNI[r]) —i(Ur — N(u(w)] U N[r]) >0,

that is, i(Up) < i(Ui).
Furthermore,
i(UL) = (U1 —u(w)) +i(U1 — Nju(w))),
Z(Uz) = i(Ug - u') + 2(U2 - N[u'])
= (U —u' —uyr) —i(Uz — v — N[uy]UNJr]) +
i(Up — N[v'] — ) +i(Uz — N[u'] — N[w1]),
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and

Uy —u(vg) XUz — v/ —uyr,
U1 - N[u(vo)] & U2 - N[u'] —u,
Uz — N[u'] = N[u] D Uz — ' — N[u;] U Nr],

then
i(U2) —i(U1) = i(Uz— Nu'} = N[uw]) —i(Uz —v' — N[y JUNIr]) >0

Hence i(Us) > i(U,). -

In order to obtain the minimal Hosoya index and maximal Merrifield-
Simmons index in % (n, mk by Translation 1 and Lemma 2.2, 2.3, we only
want to consider the graph Uy described in Lemma 2.4. Furthermore, by
Translation 2 and Lemma 2.5, we only want to discuss the graph U in
% (n,m) with base Cs, then Uy = U!(2m,m) or Uy & U%2m,m). By
Lemma 2.1, we obtain our main results:

Theorem 2.6. Let G € (2m,m)(m > 2), z2(G) > (m + 4)2™~2 and
#(G) < 2-3m~142m-2, The equality holds if and only if G = U'(2m, m)).

Theorem 2.7. Let G € % (2m,m) \ U}(2m,m)(m > 3), then 2(G) >
(5m + 13)2™~4 and i(G) < 16 - 3™ 3 4 2™~1, The equality holds if and
only if G = U?(2m,m)).
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