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Abstract
A graph is said to be equitably k-colorable if the vertex set V(G)
can be partitioned into k independent subsets V;, Va, - --, Vi such

that ||Vi] — |Vi]] < 1 (1 £ 4,5 < k). A graph G is equitably k-
choosable if, for any given k-uniform list assignment L, G is L-
colorable and each color appears on at most [%ﬁu] vertices. In
this paper, we prove that if G is a graph such that mad(G) < 3,
then G is equitably k-colorable and equitable k-choosable where
k > max{A(G),5}.
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1 Introduction

The terminology and notation used but undefined in this paper can be
found in [1]. Let G = (V, E) be a graph. We use V(G), E(G), F(G), A(G)
and §(G) to denote the vertex set, edge set, face set, maximum degree, and
minimum degree of G, respectively. Let dg(z) or simply d(z), denote the
degree of a vertex (face) = in G. A vertex z is called a k-vertez, k*-vertez,
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ifd(z) = k, d(z) > k. Let n;(v) denote the number of i-vertices incident to
v for each v € V(G). The girth of a planar graph is the length of a smallest
cycle in the graph, denote the girth of a graph G by g(G). The average

degree of a graph G is zﬁ?{%@, denote it by ad(G). The mazimum

average degree mad(G) of G is the maximum of the average degree of its
subgraphs.

A proper k-coloring of a graph G is a mapping 7 from the vertex set
V(G) to the set of colors {1,2,--- ,k} such that 7 (z) # n(y) for every edge
zy € E(G). A graph G is equitable k-colorable if G has a proper k-coloring
such that the size of the color classes differ by at most 1. The equitable
chromatic number of G, denoted by x.(G), is the smallest integer k such
that G is equitably k-colorable. The equitable chromatic threshold of G,
denoted by x:(G), is the smallest integer k such that G is equitably I-
colorable (I > k). It is obvious that x.(G) < x%(G) for any graph G. They
might not be equal. For example, if Ksn41,2n41 (n is a positive integer) is
a complete bipartite graph, then xe(Kont12n+1) = 2, X5 (Kont1,2n+1) =
2n 4+ 2.

In many application of graph coloring, it is desirable that the color
classes are not too large. For example, when using a coloring model to
find an optimal final exam schedule, one would like to have approximately
equal number of final exams in each time slot because the whole exam pe-
riod should be as short as possible and the number of classrooms available
is limited. Recently, Pemmaraju [14] and Janson and Ruciniski [7] used eq-
uitable colorings to derive deviation bounds for sums of dependent random
variables that exhibit limited dependence. In all of these applications, the
fewer colors we use, the better the deviation bound is. Equitable coloring
has a well-known property that restricts the size of each color class by its
definition.

In 1970, Hajnél and Szemerédi proved that x%(G) < A(G) + 1 for any
graph G [6]. This bound is sharp as shows the example of Kapy 2ny1.
In 1973, Meyer introduced the notion of equitable coloring and made the
following conjecture {12].

Conjecture 1 IfG is a connected graph which is neither a complete graph
nor odd cycle, then x.(G) < A(G).

In 1994, Chen et al. put forth the following conjecture [2].
Conjecture 2 For any connected graph G, if it is different from a com-

plete graph, a complete bipartite graph and an odd cycle, then x%(G) <
A(G).
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Chen et al. proved the conjecture for graphs with A(G) < 3 or A(G) >
J—‘ﬁzﬂl or a tree (2, 3]. Yap and Zhang proved that the conjecture holds
for outer planar graphs and planar graphs with A(G) > 13 (17, 18]. Lih
and Wu verified x2(G) < A(G) for bipartite graphs other than a complete
bipartite graph [10]. Wang et al. proved the conjecture for line graphs [16],
and Kostochka et al. proved it for d-generate graphs with A(G) > 14d + 1
(9].

For a graph G and a list assignment L assigned to each vertex v € V(G)
a set L(v) of acceptable colors, a L-coloring of G is a proper vertex coloring
such that for every v € V(G) the color on v belongs to L(v). A list
assignment L for G is k-uniform if |L(v)| = k for all v € V(G). A graph
G is equitably k-choosble if, for any k-uniform list assignment L, G is
L-colorable and each color appears on at most [Jl%gﬂ] vertices.

In 2003, Kostochka, Pelsmajer and West investigated the equitable list
coloring of graphs. They proposed the following conjecture{8].

Conjecture 3 Every graph G is equitably k-choosable whenever k > A(G).

Conjecture 4 If G is a connected graph with mazimum degree at least
3, then G is equitably A(G)-choosable, unless G is a complete graph or is
Ky i for some odd k.

It is proved that Conjecture 3 holds for graphs with A(G) < 3 in
(13, 15]. Kostochka, Pelsmajer and West proved that a graph G is eq-
uitably k-choosable if either G # Kiy1,Kix (with k odd in Kix) and
k > max{A, L‘.’izgll}’ or G is a connected inteval graph and k > A(G) or G
is a 2-degenerate graph and k& > max{A(G),5} [8]. Pelsmajer proved that
every graph is equitably k-choosable for any k > M—A%Q:—l—) + 2 [13].
There are several results for planar graphs without short cycles [11, 19, 4].

In this paper, we show that if G is a graph such that mad(G) <
3, then G is equitably k-colorable and equitable k-choosable where k >
max{A(G), 5}.

2 Graphs with mad(G) <3
First let us introduce some important lemma.
Lemma 2.1 ({19]) Let S = {v1,vq, - ,Ux} be a set of k different vertices

in G such that G — S has an equitable k-coloring. If |[Ng(v;) — S| < k-1
for1 < i<k, then G has an equitable k-coloring.
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Lemma 2.2 (/8]) Let G be a graph with a k-uniform list assignment L.
Let S = {v1,va,--- ,ux}, where {v1,v2,--- ,u} are distinct vertices in G.
If G— S has an equitable L-coloring and |Ng(v;)— S| < k—i for1 <i <k,
then G has an equitable L-coloring.

Lemma 2.3 (/6]) Every graph has an equitable k-coloring whenever k >
A(G) +1.

Lemma 2.4 (/13, 15]) Every graph G with mazimum degree A(G) < 3 is
equitably k-choosable whenever k > A(G) + 1.

Lemma 2.5 Let G be a graph with mad(G) < 3. Then G is 3-degenerate.

Proof. By contradiction, there is subgraph G’ of G such that §(G’) > 4.
It is clear that mad(G’) > 4, a contradiction. [ |

Lemma 2.6 Let G be a connected graph with order at least 5 and mad(G) <
3. Then G has at least one of the structures in Figure 1.

Proof. Let G be a counterexample. Then G does not contain H; ~ Hyz
in Figure 1.

X,

k P.\' L
New o | X N _
o~ /9 \ . > s 0.
L Nz k4 TN A o]
¢ =K : o’ N
[ N v 3
¢ © X,
H o1 sdx )d(x, .} £3 H,1<d(x, ). d(x,_.) <3 .
1sdlx, )4 s
X; /'p\‘ X2 Xy
et / . Y
Vi . X, & X X, “
2 N ! \I o o o
Y, \) o/ N Nes X, , s
$ b RS X
‘.,;-,\ X o/\ ) //O oy,
° o o VYpo2—0 °
H,:22d(x, ). d(x,_,) <3 H 1<d(x,_,)s2 H. 1<dix,_ ) <4
X,
o1 :
. / AN
LYo X/ \ X,
y e/ . Mo
o X, N P \0 k) A >
. / °© I\ X ' 4o
d [N x, N k-2
X * Lo k “{ >\\0 s x, . . pel
[s) o o o o] - X500 o N,
:22d(x, )3
H H, H, dix, 2) H,,

Figure 1

306



./.» ')/ wk o /ﬁ \‘ o b
Ny d \3 Xio—mc ¥,
A 3 °
o g 2 % 0o
.\‘, :o;', . —0 .\k_l.'..' - O ;\I "‘k.2.' —0 2
-2< Y <
H,:22d(x,,)=4 H H,,:25d(x,,)s4
12
X, % .
. o X, e——oX X
BN Ny ! //7(\‘\\0 A
) I % ° g J Voo, /N
- Xy b X, ‘ /.\“\')
7 d
° R %, )
LYY o o \l e N I.-——u
H, H, :1<d(x,)s2 Hy:28d(x,)s4 H,

Figure 1

Each configuration in Figure 1 represents subgraphs for which: (1)hol-
low vertices may be not distinct while solid vertices are distinct. (2)the
degree of the solid vertices is fixed, and (3)except for special pointed, the
degree of a hollow vertices may be any integer from [d, A(G)], where d is
the number of edges incident to the hollow vertex in the configuration.

We use a discharging procedure. For every v € V(G), we define the
original charge of v to be w(v) = d(v) — 3. The total charge of the vertices
of G is equal to

)" (d(v) - 3) = |V(G)| x (ad(G) = 3) £ [V(G)| x (mad(G) — 3) < 0.
veV(G) .

In the following, we can redistribute the charge according to the given
discharging rules. Let w’(v) be the new charge of a vertex v € V(G). If
2 vev(c) W' (v) > 0 can be deduced, we can show that the assumption is

wrong.
We divide the proof into the following three cases by Lemma 2.5.

Case 1 6(G) = 3.
Since mad(G) < 3, it is clear that G is a 3-regular graph. A contradic-
tion for G contains no structure H;.

Case 2 §(G) = 2.
Suppose §(G) = 2 and there is only one 2-vertex.
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For the reason that G contains no structure Hp, we have A(G) > 4.
Since mad(G) < 3, we have A(G) = 4 and there is only one 4-vertex in G.
So G must contain the structure H;, a contradiction.

Suppose §(G) = 2 and there are two 2-vertices in G.

For the reason that G contains no structure Hy, we have A(G) > 4.

If A(G) = 4, from mad(G) < 3, we deduce that there are at most two
4-vertices in G. Since G contains no structures Hy, H3, G must contain
the structure Hy, a contradiction.

If A(G) > 5, from mad(G) < 3, we have A(G) = 5 and there is only
one 5-vertex in G, the other vertices of G are 3-vertices. So G must contain
the structure Hy, a contradiction.

Suppose §(G) = 2 and there are at least three 2-vertices in G.

Since G contains no structure Hy, we have A(G) > 4.

If A(G) = 4, from mad(G) < 3, we deduce that the number of 4-vertices
is no less than the number of 2-vertices. For the reason that G contains no
structure H3, G must contain the structure Hy, a contradiction.

If A(G) > 5, we redistribute the charge according to the following
discharging rule.

R1 Each 2-vertex receive charge 1 from its adjacent 4+-vertices.

In the following, we check the new charge of the vertex v € V(G).

If d(v) = 2, then w(v) = —1. Since G contains no structure Hy, the
vertex v is adjacent to at least one 4*-vertex. So w'(v) > ~14+1 =0 by
R1.

If d(v) = 3, then w'(v) = w(v) = 0.

If d(v) = 4, from G contains no structure Hj, the vertex v is adjacent
to at most one 2-vertex. We have w'(v) >1—-1=0 by Rl.

If d(v) > 5, then w(v) = d(v)—3. Since G contains no structure Hs, the
vertex v is adjacent to at most one 2-vertex. We have w’(v) > d(v)-3—1 >
5-3-1=1>0by RL.

From the above discussion, we have ZveV(G) w'(v) > 0, a contradiction.

Case 3 §(G) =1.

Suppose §(G) = 1 and there is one 1-vertex and no 2-vertex in G.

For the reason that G contains no structure H;, we have A(G) > 4.

If A(G) = 4, then there are at most two 4-vertices in G for the reason
that mad(G) < 3. Since G contains no structure Hg, i.e. the 1-vertex
is not adjacent to any 3-vertex, then G must contain the structure H, a
contradiction.

If A(G) > 5, then there is at most one 5-vertex and no 4- and 6%-vertex
in G for the reason that mad(G) < 3. Since G contains no structure Hg,
then G must contain the structure Hg, a contradiction.

Suppose §(G) =1 and there is one 1-vertex and one 2-vertex in G.

For the reason that G contains no structure Hj, we have A(G) > 4.
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If A(G) = 4, then there are at most three 4-vertices in G for the reason
that mad(G) < 3. Since G contains no structure Hy and Hg, i.e. the
1-vertex is not adjacent to the 2-vertex and any 3-vertex, then G must
contain the structure H, a contradiction.

If A(G) > 5, then there is at most one 5%-vertex and at most one 4-
vertex in G for the reason that mad(G) < 3. Since G contains no structure
Hy, Hg, then G must contain the structure Hyp, a contradiction.

Suppose §(G) = 1 and there is one 1-vertex and at least two 2-vertices
in G.

For the reason that G contains no structure H,, we have A(G) > 4.

If A(G) = 4, for the reason that G contains no structure Hpy, i.e. the
1-vertex is not adjacent to any 2-vertex, then the 1-vertex must be adjacent
to a 3- or 4-vertex. Then G must contain the structure Hj,, a contradiction.

If A(G) > 5, for the reason that G contains no structure Hg and Hy;,
i.e. the 1-vertex is not adjacent to any 2-, 3- or 4-vertex, then the 1-vertex
must be adjacent to a 5t-vertex. Since G contains no structure Hjs and
H,3, i.e. any 2-vertex is not adjacent to any 2-, 3- or 4-vertex, then 2-
vertices must be adjacent 5*-vertices.

Define discharging rules as the following statements.

D1 Every 1-vertex receives charge 2 from its neighbors of degree 5-
vertex.

D2 Every 2-vertex receives charge 1 from its neighbors of degree 5*-
vertex.
In the following, let’s check the charge of each element v for v € V(G).

If d(v) = 1, then w(v) = —2. From the above discussion, we have
w'(v) > -2+2=0by D1.
If d(v) = 2, then w(v) = —1. From the above discussion, we have

w(v) >-14+1x2=1>0by D2

If d(v) = 3, then w'(v) = w(v) = 0.

If d(v) = 4, then w'(v) = w(v) = L.

If d(v) = 5, then w(v) = d{v) — 3 and v is adjacent to at most one
1-vertex or 2-vertex for the reason that G contains no structure Hi4. We
have w'(v) 2 d(v) —3-22>5-3-2=0by D1 and D2.

From the above discussion, we have }° (g, w'(v) > 0, a contradiction.

Suppose 6(G) = 1 and there are at least two 1-vertices in G.

Since G contains no structure H;s, there are at most two 1-vertices and
no 2-vertex in G.

For the reason that G contains no structure Hyg, we have A(G) > 5.
There are at most two 5*-vertices in G from mad(G) < 3. Since G contains
no structure H;g, we can obtain that G must contain the structure Hy7, a
contradiction.

In the following, let us give the proof of the main theorems.
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Theorem 2.7 If G is a graph such that mad(G) < 3, then G is equitably
k-colorable where k > max{A(G),5}.

Proof. Let G be a counterexample with fewest vertices. If each com-
ponent of G has at most 4 vertices, then A(G) < 3. So G is equitably
k-colorable by Lemma 2.3. Otherwise, there is at least one component
with at least five vertices. By Lemma 2.6, G has one of the structures H;
~ Hi7, taking one and the vertices are labeled as they are in Figure 1. If
there are vertices labeled repeatedly, then we take the larger (z; is larger
than z;_;). In the following, we show how to find S in Lemma 2.1. If G has
H,, H3, Hg, H7, Hg, Hyz, Hys ~ Hy7, then let §' = {zx,zk_1, k-2, 71}
If G has Hg, Hyg, Hy4, then let §' = {zk,xk_l,xk_g,xz,xl}. If G has H,,
H,, Hg, Hyy, Hi3, then let §' = {z,2x—1,Zk-2, Tk—3,71}. By Lemma 2.5,
G is 3-degenerate, then we can find the remaining unspecified positions in
S from highest to lowest indices by choosing a vertex with minimum degree
in the graph obtained from G by deleting the vertices already being chosen
for S at each step. By the minimality of [V(G)| and k > A(G) > A(G-S),
G -8 is equitably k-colorable. So G is also equitably k-colorable by Lemma
2.1. [ |

Corollary 2.8 Let G be a graph such that mad(G) < 3. If A(G) > 5, then
Xe(G) < A(G).

Corollary 2.9 Let G be a graph such that mad(G) < 3. If A(G) > 5, then
xz(G) < A(G).

Theorem 2.10 IfG is a graph such that mad(G) < 3 and k > max{5, A(G)},
then G is equitably k-choosable.

Proof. Let G be a counterexample with the fewest vertices. If each
component of G has at most 4 vertices, then A(G) < 3. So G is equitably
k-choosable by Lemma 2.4. Otherwise, the proof is similar to the proof of
Theorem 2.7 by Lemma 2.5 and Lemma 2.2. |

Corollary 2.11 Let G be a graph such that mad(G) < 3. If A(G) > 5,
then G is equitable A(G)-choosable.

For a planar graph with girth g, by mad(G) < 2%

=3, We have the follow-
ing corollary.

Corollary 2.12 Let G be a planar graph with girth g > 6. If A(G) > 5,
then G is equitably A(G)-colorable and equitable A(G)-choosable.
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