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Abstract: In this paper, a generalized notion of the fixed point property,
namely the n-fixed point property, for posets is discussed. The n-fixed
point property is proved to be equivalent to the fixed point property in
lattices. Further, it is shown that a poset of finite width has the n-fixed
point property for some natural number 7 if and only if every maximal
chain in it is a complete lattice.
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1. INTRODUCTION

A partially ordered set (poset) P is a nonempty set together with a
binary relation, which is reflexive, antisymmetric and transitive. For basic
notions in posets refer to [7]. A map f of a poset P into itself is said to have
a fized point if there is an element a € P such that f(a) = a. If every order
preserving map f : P — P has a fixed point, then P is said to have the
fized point property. The famous results of Tarski [9] and Davis (4] assert
the equivalence of completeness and the fixed point property in lattices.
From then onwards there has been much interest among mathematicians
to characterize the fixed point property for more general posets. Recently,
this problem has been shown to be computationally intractable [5].

In this paper, a generalized notion of the fixed point property, called the
n-fixed point property, for posets is introduced and certain classes of posets
having this property are characterized. Even though, several sufficient
conditions for a poset to have the fixed point property have been discussed
by many, the only one notable necessary condition determined so far is that
every maximal chain in the poset is a complete lattice. In this context, an
interesting observation is made in this paper that in a poset of finite width,
the n-fixed point property for some n € N is equivalent to the completeness
of all maximal chains in it.

Let P be a poset. Two elements x,y € P are said to be comparable if
either z < y or ¥y < z and it is denoted by £ ~ y. A subset A of P is
called an antichain if no two distinct elements of A are comparable. The
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supremum of cardinalities of all antichains in P is called the width of P. A
nonempty subset C of P is called a chain if  ~ y for every z,y € C. A
poset is called (maximal) chain complete if every (maximal) chain in P has
a supremum. For chains C and D in P, C < D means that ¢ < d for all
c€Candde D. Theset {pe P:C < {p} < D} is called a (C, D) — core.
Sets C and D could be empty also. A subset W of P is said to be well
ordered if each nonempty subset A of W has a least element. Dually well
ordered sets are defined dually.

A subset R of P is said to be retract of P if there exists an order
preserving map 7 : P — R such that the restriction of r to R is the identity
map. The map r is called a retraction.

2. THE n-FIXED POINT PROPERTY

Let P be a poset and n be any fixed positive integer. Then P is said to
have the n-fized point property if for every order preserving map f : P — P,
the map f™ has a fixed point, where f™ denotes the composition of the map
f, n times. The existence of fixed points of the composition powers has
been intensively investigated in [8].

If f: P — P is order preserving, then so is the map f*. Therefore,
if P has the n-fixed point property, then there exists £ € P such that
(f*)*(z) = z. Since (f*)" = f*m, the poset P has the kn-fixed point
property for every natural number k. In particular, if P has the fixed point
property, then P has the n-fixed point property for every natural number
n.
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However, the n-fixed point property does not imply the (n + 1)-fixed
point property. For example, consider the poset P represented by Figure 1.
The function f given by f(a) = b, f(b) = a, f(c) = d and f(d) = c is order
preserving and does not fix any points. Moreover, we have f3 = f. Hence
P does not have the fixed point property and the 3-fixed point property.
On the other hand, let g : P — P be any order preserving map. If g does
not fix any element, then g = f. Thus P has the 2-fixed point property.

Proposition 2.1. Let P be a poset with n components. If each of the
components Py, Py, ..., P, has the fized point property, then P has the n!-
fized point property.
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Proof. Let f : P — P be an order preserving map and z € P. Then at
least two elements of {z, f(z), f?(z),..., f*(z)} must lay in P;, for some
1 < i < n. Thus there exists y € P such that y, f*(y) € P;, where
1 <k <n. Thus f"(P,-) C P,. Since P; has the fixed point property, it
follows that f*(z) = z for some z € P;. Thus P has the n!-FPP. O

Proposition 2.2. A poset has the n-fized point property if and only if
every retract of it has the n-fized point property.

Proof. The proof of sufficiency part is trivial as P is a retract of itself.
On the other hand, let P be a poset with the n-fixed point property and
R be a retract of P, with a retractionr : P -+ R. Let g : R — R be
an order preserving map. Then there exists an element z € P such that
(gor)*(z) = z. Clearly, z € R. Further, note that (g o 7)(y) = g(y) for
every ¥y € R. Thus by induction, it follows that (g or)"(z) = ¢™(z). Hence
R has the n-fixed point property. 0

Proposition 2.3. If a poset P has the n-fixed point property for some
natural number n, then every marimal chain in P is a complete lattice.

Proof. The proof of this theorem is an adaptation, with some modifications,
of the proof of Theorem 2.5 in [3]. Suppose there is a maximal chain §
which is not a complete lattice. Then there exists a dually well ordered
chain C in S that does not have an infimum in S. Let CV denote the set
of all lower bounds of C in S. Let p denote the set of all well ordered
chains in CV. Then p is a poset under the relation < defined by, X<Y if
X=YorX={yeY:y<z}forsomezeY. By Zorn's lemma, p has a
maximal element, say D.

Since S is 2 maximal chain in P, by Theorem 1 in [6], S is a retract of
P. Hence by Proposition 2.2, S has the n-fixed point property for some n.
Now, define a map f: S — S as follows:

f(x)={ min{de D:d>z} ifzxeCV;
maz{c€ C:c<z} otherwise.

Clearly, f is well defined and order preserving. Hence there exists z € P
such that f*(z) = z. As f(P) C CUD, either z € C or z € D. Suppose
z € C. Then z ¢ CV so that f(z) € C. But then z > f(z). Continuing
this procedure we get z > f(z) > ... > f*(x) = z, a contradiction. On
the other hand, if z € D, then by duality z < f(z) < ... < f*(z) ==z, a
contradiction.

Thus P does not have the n-fixed point property for any n. O

Since it is well known that a lattice is complete if and only if every
maximal chain is complete (Proposition 5.1.7, [7]), the following corollary
follows directly from Proposition 2.3.
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Corollary 2.4. If a lattice has the n-fized point property for some natural
number n, then the lattice is complete.

Thus we have the following theorem.

Theorem 2.5. The following statements are equivalent for a lattice L:
(a) L has the fized point property.
(b) L has the n-fized point property for every natural number n.
(¢) L has the n-fized point property for some natural number n.
(d) L is complete.

Proposition 2.6. Let P be a poset and f : P — P be any order preserving
map. If P has ezactly m minimal elements which form e mazimal an-
tichain, then there is a subset S = {xy,z9,...,z} of the minimal element
set M of P satisfying x4 < f(z:), i = 1,2,...,k =1 and 7, < f(zx),
where k < m.

Proof. Choose an element z;, € M. If z; < f(z), then the result follows
with & = 1. Otherwise there exists an element o € M, such that z; <
f(z1). Suppose z1,zs,...,T,—; are distinct elements chosen. Then there
exists £, € M such that z, < f(zn-1). If z; < f(z,), for some i =
1,2,...,n — 1, then relabeling the elements of the set {z;,zit+1,...,Za}, if
necessary, the result follows. As there are only m minimal elements, the
above procedure has to stop before m steps, to yield the required result. O

Corollary 2.7 (Corollary 5.3, (2]). Let P be a poset with finitely many
minimal elements M. Assume that

(a) for every nonempty subset S of M the subposet S® = {x € P:z >
s for all s € S} has the fized point property.
(b) for every x € P there there is an m € M such that m < z.

Then P has the fized point property.

Proof. Let f : P — P be an order preserving map. Note that condition
(b) of this corollory is equivalent to saying that M is a maximal antichain.
Hence by Proposition 2.6, there is a subset S = {z}, z2,...,zx} of M satis-
fying ;41 < f(z:),i=1,..,k— 1 and z; < f(zx). Then as f(S2) C S&,
by (a) there is an element £ € S2 such that f(z) = z. ]

Corollary 2.8. Let P be a chain complete poset with m minimal elements,
satisfying condition (b) of Corollary 2.7. Then P has the n-fized point
property where n = lem(1,2,3,...,m).

Proof. Let z be an element of the set S obtained in Proposition 2.6. Clearly,
z < f¥(z) so that z < f*(z). Thus the corollary follows from Theorem 1
in (1. D
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The following two theorems characterize the maximal chain completeness
for posets. Proof of the first theorem follows from Theorem 3.4.7 in (7] and
Theorem 1 in (1]

Theorem 2.9. Let P be a poset. Then every mazimal chain in P is a
complete lattice if and only if every order preserving map f : P — P
satisfying = ~ f(z) for all z € f(P), has a fired point.

Theorem 2.10. Let P be a poset of finite width. Then P has the n-fized
point property for some natural number n if and only if every mazimal
chain in P is a complete lattice.

Proof. Let P be a poset of width k. Necessity follows from Proposition 2.3.

To prove the converse, suppose that all maximal chains in P are com-
plete. Let f : P — P be an order preserving map. Then for an element
z € P, the set {z, f(z),..., f*(z)} cannot be an antichain. Thus z ~ f*(z)
for every element x € f*'(P). Hence by Theorem 2.9, it follows that
f*¥(y) = y for some y € P. Hence P has the k!-fixed point property. O

Corollary 2.11. Chain complete posets of width 2 have the 2-fized point
property.

Remark 2.12. In the proof of Theorem 2.10, k! can be replaced by lem(1,2, ..., k).

FIGURE 2

Denote by F,,, the set of all posets with the n-fixed point property. Let
I'={F.;n € N} and P = (N,|), where | denotes the usual divides relation.
If m is a multiple of n (ie njm), then F,, C F,,. On the other hand, ifn Jm,
then the 2n-crown shown in Figure 2 has the n-fixed point property, but
does not have the m-fixed point property. Thus the map f : P — I, defined
by f(n) = F,, is an isomorphism. In this connection we have the following
open problem.
Probem. Do the m-fixed point property and n-fixed point property imply
the ged(m, n)-fixed point property?

Remark 2.13. The poset represented by Figure 3 has neither the 2-fixed
point property nor the 3-fixed point property, but it has the 6-fixed point
property.
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FIGURE 3
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