A Note on the Adjacent Vertex Distinguishing
Total Chromatic Number of Some Cubic
Graphs

Qin Chen,

College of Science, China Jiliang University,
Hangzhou 310018, P.R. China

Abstract

An adjacent vertex distinguishing total coloring of a graph G is
a proper total coloring of G such that no two adjacent vertices are
incident to the same set of colors. The minimum number of colors
needed for such a coloring is denoted by xa:(G). In this note, we
prove that xq¢(G) = 5 for some cubic graphs.
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1 Introduction

Let G = (V, E) be a simple graph. The maximum degree of G is written
as A(G), or A for short. A proper k-total coloring of G is a mapping f :
V(G)U E(G) = {1,2,...,k} such that no two adjacent vertices, no two
incident edges, and no vertex and incident edge receive the same color. The
total chromatic number x.(G) of G is the smallest integer k¥ for which G
admits a k-total coloring. For a vertex v € V(G), we set C¢(v) = {f(v)}U
{f(wv)|uv € E(G)} and Cy(v) = {1,2,...,k} \ Cs(v). The coloring f is
called an adjacent vertex distinguishing total coloring (avd-total coloring)
if Cy(u) # Cy(v) for any pair of adjacent vertices u and v. The adjacent
vertex distinguishing total chromatic number, denoted by X.:(G), is the
least k such that G has a k-avd-total coloring. Obviously, Xxa:(G) = x:(G).
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Zhang et al.[9] first introduced the notion of avd-total coloring. They
determined the exact values of xq¢(G) for several classes of graphs, includ-
ing paths, cycles, complete graphs, complete bipartite graphs and trees. In

addition, they put forward the following challenging conjecture.

Conjecture 1.1 (9] Let G be a connected graph with at least two vertices.
Then xa:(G) < A+ 3.

This conjecture was confirmed by Chen [4] and Wang [6], independently,
for graphs with A < 3. Later, Hulgan (5] presented a much shorter proof
for this result. The adjacent vertex distinguishing total chromatic number
for K4-minor free graphs was characterized completely in Wang et al.[8].
Recently, a similar characterization for plane graphs with A > 14 was given
in Wang [7].

The following two results were obtained in Zhang et al.[9].

Lemma 1.1 If G is a graph with two adjacent vertices of mazimum degree,
then xqt(G) 2 A +2.

Lemma 1.2 Let K,, be a complete graph on n vertices. Then

etk ={ 117 221 et )

A graph is cubic if the degree of each vertex is 3. Snarks are cubic
bridgeless graphs with chromatic index 4 which had their origin in the
search of counterexample to the Four Color Theorem. The Petersen graph
is the smallest and earliest known snark. Two infinite families of snarks,
Flower and Goldberg snark, were discovered by Isaacs (3] and Goldberg
[2], respectively. Total coloring for these two families of snarks has been
discussed in {1].

A Halin graph is a plane graph G = T'U C constructed as follows. Let
T be a tree with no vertex of degree 2, and at least one vertex of degree 3
or more. Let C be a cycle connecting all leaves of T in such a way that C
forms the boundary of the unbounded face. C is called the adjoint cycle of
G.
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(a) Link graph Ls

(b) Graph F3
Figure 1: Link graph Ls and graph F3

In this note, we show that x,:(G) = 5 for Flower and Goldberg snarks,
and cubic Halin graphs. Note that x,¢(G) 2 5 holds for any cubic graph
by Lemma 1.1. So to prove our result, it suffices to provide a 5-avd-total

coloring for these cubic graphs.

2 5-avd-total coloring of snarks

Following an argument similar to that used in [1] to prove the total chro-
matic number of snarks, we determine the avd-total coloring chromatic
number of Flower and Goldberg snarks in this section. Graphs in these
two families have a common property that they can be built from a suit-

able glueing of some basic graphs.

2.1 Flower snarks

For this family, we define the basic graph B; as the graph with vertex set
V(B;) = {ui,vi, T, v} and edge set E(B;) = {u;vi, ziv;, yivi}. Define the
link graph L; as the union of B;_;, B; and the graph spanned by E(;_1);,
where E;; = {u;u;, 2ixj,¥:iy;}. In other words, V(L;) = V(Bi-1) UV (B)
and E(L;) = E(B;—1) U E(B;) U E(;—1):- Figure 1(a) shows Ls.

The first Flower snark, Fs, is formed by graphs B;, Bz, B3, and the
graph spanned by Ej3 U E31 U {ujug, Z1y2, y122}(see Figure 1(b)). For
each odd i > 5, let F; be constructed from graphs F;_; and L; as follows:
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Figure 2: A coloring for graphs L; and Fj3, respectively

V(F;) = V(Fi-2) UV(L;), and E(F;) = (E(Fi—2) \ EZ*,) U E(L;) U Ei~,
where E°"2 = E(,_g)l, and E = E(i—2)(i—l) UE;.
Theorem 2.1 Let F; be a Flower snark with odd i > 3. Then xq:(F;) = 5.

Proof. We prove it by showing that each F; allows a 5-avd-total coloring
such that all edges of E?%! receive the same color 5. It is proceeded by
induction based on the recursive procedure described above. We begin
with a 5-avd-total coloring of L; and F3, as depicted in Figure 2. Notice
that edges of E$“* have the same color 5.

Now assume that 7 is odd and 7 > 5. By induction, F;_5 has a 5-avd-
total coloring such that the edges of EZ*, have the same color 5. Let us
construct a 5-avd-total coloring f of F; in the following ways. Assign color
5 to the edges of E{". Elements of (V(F;) U E(F;)) \ Ei* have the same
color as their corresponding parts in F;_5 or L;.

We complete the proof by showing that f is proper. First, it is easy
to check that the ends of edges in Ei" have distinct colors. And no edge
in L; has color 5. So f is a proper 5~tota.l coloring. Furthermore, observe
thet Ty(z1) = {1}, Cs(wn) = {4}, Cy(us) = {1} and Cy(wis) = {2},
Cy(ui-1) = {3}, Cs(wi) = {2}. For Fs, Cy(zs) = {4}, Cy(ys) = {2},
Cy(za) = {1}, Csua) = (4} Ortes) = (2}, Ce) = (1), When ; >
7, Op(zia) = {2}, Cslwia) = {1}, Cr(zios) = {1}, Trlti-) = {4},
Cy(zi) = {2}, Cr(w:) = {1} Therefore f is adjacent vertex distinguishing.
This ends the proof. |

2.2 Goldberg snark

We now consider the second family of snarks, Goldberg snarks. For this

family, we define the basic graph B; as the graph with vertex set V(B;) =
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Figure 3: Link graph L; and graph G3

{wi, vi, T, ¥i, 2i, Wi, Siy ti} and edge set E(B;) = {wivi, Tiyi, Tizi, Yiws, 2ivi,
zit;, viwi, wiSi, it;}. The link graph L; is the union of B;_,, B; and the
graph spanned by E(;_);, where E;; = {tis;,¥:%;, uju;}. That is, V(L;) =
V(Bi-1) U V(B;) and E(L;) = E(Bi-1) U E(B;) U E(;_1)i, as shown in
Figure 3(a).

The first Goldberg snark, G3, is defined as the union of B,, By, B3,
and the graph spanned by E)s U Ea3 U E3;. For each odd ¢ > 5, let G; be
constructed from graphs G;_; and L; as follows: V(G;) = V(G;_2)UV(L;),
and E(G;) = (E(Gi-2) \ Ef**) U E(L;) U E¥*, where E{*t = E(;_g),, and
E{* = E-2)i-1) Y Ba.

Theorem 2.2 Let G; be a Goldberg snark with oddi > 3. Then xq:(G;) =
5.

Proof. Our proof also proceeds by induction. A 5-avd-total coloring of G3
and L; is described as in Figure 4 (a) and (b), respectively. For each odd
i > 5, a 5-avd-total coloring f of G; is obtained from the coloring of G;_»
and L; as follows:

f(ti—2si—1) = f(tis1) = 5;

fyi-2miz1) = f(yiz1) = 4;

flui—gui—1) = fluiwy) =3. .

Now we show that f is proper. First, note that edges of E}™ do not
join vertices with the same color. By induction, we have f(t;_2s1) = 5,
f(yi-2z1) = 4, and f(ui—ou1) = 3 in Gi_3. Therefore, for graph G;
spanned by E(G;) \ E{", color 5 does not appear on vertices ¢;_2, s, color
4 does not appear on vertices y;2, 1, and color 3 does not appear on
vertices u;_2, #;. So f is a 5-total coloring.
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Figure 5: A 5-avd-total coloring of GF 1gure 6: Around the end of a longest

It remains to check that . f is adjacent vertex distinguishing. For each
odd i > 5, Cf(sl) = {4}, C (:121) = {5}, C’Lul) = {5} Cf t;) = {1}
ff}(yt) = {3}, Cp(w) = {1}, Cf(se—l)— {4}, Cy(zi-1) = {5}, Cy(ui-1) =

For Gs, C_f(ta) = {1} Cf(y3) = {3} C’f(u,; {4} When i > 7,
Cy(tica) = {1}, Cs(yi-2) = {3}, C(ui~2) = {1}. This ends the proof. l

3 b5-avd-total coloring of cubic Halin graphs
Theorem 3.1 If G is a cubic Halin graph, then x,(G) = 5.

Proof. Our proof proceeds by induction on the length m of the adjoint
cycle C. For m = 3, G is a complete graph on 4 vertices. So the result
follows from Lemma 1.2. For m = 4, the unique cubic Halin graph together
with its avd-total 5-coloring is shown in Figure 5.

Now assume that m > 5. In the following inductive steps, we shall
use two basic operations to reduce a cubic Halin graph G to another cubic
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Figure 7: Two cases of induction step

Halin graph G’ such that the length of the adjoint cycle of G’ is shorter
than that of G. Then by the inductive hypothesis, we have x,:(G’) = 5.

Let P = up,u1,...,u;, | > 4, be a longest path in T. Due to the
maximality of P, all neighbors of u;, except uy, are leaves of T. We rename
the first four vertices of P by setting w = u3, u = ug, v = u; and v; = uo.
Denote by vy the other neighbor of v on C, as depicted in Figure 6.

Due to deg(v) = 3, there is a path Q from u to x; or y;, with PNQ =
{u}. By symmetry, we may assume that Q is a path from u to y;. Since
P is a longest path in T, the length of @ is at most two. We consider the
following two cases:

Case 1. The length of @ is two.

In this case, uys € E(T) and yoys € E(T). Now let G’ be the graph
obtained from G by deleting v, v1, va, ¥1, ¥2, ¥3 and adding two new edges
uz) and uz (see the left graph in Figure 7). By the induction hypothesis,
there is a 5-avd-total coloring f of G'. Without loss of generality, we
may assume that f(uzi) = 1, f(uw) = 2, f(uz) = 3 and f(u) = 4. So
Ct(u) = {5}; Cs(z1) # 5 and f(z1) # 4; Cs(2) # 5 and f(z) # 4. Next we
shall extend f to the remaining edges and vertices of G to get a 5-avd-total
coloring of G by setting

flw) = f(z1n) = fyiye) = 1,

flvv) = f(y2ys) = 2,

fluys) = f(viv2) = f(y22) =3,

flvayn) = 4,

f(vve) = f(y1ys) =5,

flv2)=flya) =1, fy1) =2, f(v) =3, f(vi) = fly2) =4 _
Obviously, f is a proper total 5-coloring of G. And since C¢ (v) =Cy(ys3) =
4,C¢(v1) = Cy(y2) =5, Cs(va) = 2and Cy(yy) = 3, f is also a 5-avd-total
coloring.
Case 2. The length of @ is one.
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In this case, u = y3 and hence uy; € E(T). Let G’ be the graph
obtained from G by deleting v, vi, vs, ¥1, and adding two new edges uz,
and uy, (see the right graph in Figure 7). By the induction hypothesis,
there is a 5-avd-total coloring f of G’. Without loss of generality, we
may assume that f(uz)) = 1, f(uw) = 2, f(uyz) = 3 and f(u) = 4. So
Cy(u) = {5}; Cs(z1) # 5 and f(z1) # 4; Cy(y2) # 5 and f(yz) # 4. Now
we extend f to the remaining edges and vertices of G to get a 5-avd-total
coloring of G. If Cy(y2) = {2} or Cys(y2) # {2} and f(y2) # 5, first we
let f(uy1) = f(z1v1) = 1, f(uv) = f(v1y2) = 3. Next we distinguish two
subcases.

(i) I Cy(y2) = {2}, thenlet f(vvr) = 2, f(v192) = 3, f(vav) = 4, f(vaw1) =
5, and f(v2) = 1, f(y1) = 2, f(v1) = 4, f(v) = 5. Since f(y2) # 2, it
is easy to check that f is a proper total 5-coloring of G. Furthermore,
since C¢(v) = {1}, Cs(v1) = {5}, Cy(vz) = {2} and Cy(y1) = {4}, f
is also a 5-avd-total coloring.

(i) If Cs(y2) # {2} and f(y2) # 5, then let f(vvy) = 2, f(vivp) =
3, f(vay1) = 4, f(vvz) =5, and f(v) = 1, f(v2) =2, f(v1) = 4, f(n) =
5. Since Cf(v) = {4}, Cf(vl) = {5}, Cs(v2) = {1} and Cs (1) = {2},
it is easy to see that f is a 5-avd-total coloring of G.

Finally, we consider the case when Cy(y2) # {2} and f(ys) = 5. First,
let f(z1v1) =1, f(y1y2) = 3 and f(v;) = 4. Since Cy(y2) # {2} or {5},
and f(y1y2) = 3 we have C(y,) = {1} or {4}.

(i) If f(w) # 3, then recolor vertex u by color 3. Let f(uv) =
and f(uy1) = 1. Note that after the recoloring procedure, we still
have Cy(u) = {5}. Define f(vv;) = 2, f(v1v3) = 3, f(vzv) = 1 and
f(van1) = 5; f(v2) = 2, f(11) = 4 and f(v) = 5. Since Cy(v) = {3},
Ci(v1) = {5} Cy(v2) = {4} and C(y1) = {2}, f is a 5-avd-total
coloring.

(ii) If f(w) = 3, then let f(uv) = 3, f(vv;) = 2, f(vivg) = 3, flvgv) =4
and f(vay1) = 5; f(v) = 5, f(v2) =1 and f(y1) = 2. Hence Cs(v) =
{1}, Ts(v) = {5} and Cy(vz) = {2}. When Cy(yz) = {1}, then
set f(uy1) = 1; when Cy(y2) = {4}, then recolor vertex u by color 1
and set f (uyl) = 4. It is easy to check that in both cases we have
Cy(u) = {5} and C;(y1) # C(y2), so f is a 5-avd-total coloring.
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