Antimagic labelings of cycle powers

Pak Ching Li*
Dept. of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada R3T 2N2

Abstract

An antimagic labeling of a graph with n vertices and m edges is a bijection from the set of edges to the integers 1, 2, ..., m such that all n vertex sums are pairwise distinct. For a cycle C_n of length n, the k^{th} power of C_n , denoted by C_n^k , is the supergraph formed by adding an edge between all pairs of vertices of C_n with distance at most k. Antimagic labelings for C_n^k are given where k = 2, 3, 4.

1 Introduction

In this paper, all graphs are finite, undirected, and simple. Let G = (V, E) be a graph with n vertices and m edges. Suppose the edges of G are labeled using distinct values from $\{1, 2, ..., m\}$. For each vertex v, define its vertex sum be the sum of the labels of the edges incident on v. A labeling is an antimagic labeling of G if all n vertex sums are pairwise distinct. If a graph has an antimagic labeling, then the graph is antimagic. For a vertex v, denote its vertex sum by S_n .

In 1990, Hartsfield and Ringel [3] introduced the notion of antimagic labelings and antimagic graphs. They conjectured that every connected graph, other than K_2 , is antimagic. In 2004, Alon et al. [1] validated this conjecture for graphs having minimum degree $\Omega(\log n)$. They also showed that graphs with maximum degree at least n-2 are antimagic, as well as complete k-partite graphs, for any $k \geq 2$. In 2005, Hefetz [4] showed that a graph with 3^k vertices admitting a K_3 -factor is antimagic. Also in 2005, Wang [6] showed that the Cartesian product of a finite number of cycles is antimagic. In addition, Wang showed that the Cartesian product of an

^{*}Research supported by NSERC Discovery Grant 250389-06

antimagic regular graph and a cycle is antimagic. In 2008, Wang and Hsiao [7] showed that toroidal grids are antimagic.

Suppose $C_n = (V, E)$ is a cycle of length n and k is a positive integer. The k^{th} power of C_n , denoted by C_n^k , is the supergraph of C_n formed by adding an edge between all pairs of vertices of C_n with distance at most k. In 2010, Lee, Lin, and Tsai [5] showed that if n is odd, then C_n^2 is antimagic. Other results can be found in the dynamic survey by Gallian [2].

In this report, We extended the work of Lee, Lin and Tsai [5] by giving an alternate proof of their result on C_n^2 , where n is odd. We also showed that, for n even, C_n^2 is antimagic by constructing an antimagic labeling for C_n^2 . Then, We extended the antimagic labelings for C_n^2 to obtain antimagic labelings for C_n^3 , whenever $n \geq 6$. Finally, We showed that the antimagic labelings for C_n^3 , where n is odd, extend to antimagic labelings for C_n^4 .

2 The Graph C_n^2

In this section, We will show that C_n^2 is antimagic for all $n \geq 4$. Note that when n = 3, $C_n^2 = C_n$. We begin by providing an antimagic labeling of C_n^2 that differs from the one given in [5].

Theorem 2.1 ([5]) If n > 3 is an odd integer, then C_n^2 is antimagic.

Proof: The vertices of C_n^2 will be $V = \{0, 1, 2, ..., n-1\}$. The edges of C_n^2 will be denoted by E. We note that C_n^2 has 2n edges. Define a bijection $L: E \to \{1, 2, ..., 2n\}$ that labels the edges of the graph as follows:

$$L(\{i,j\}) = \left\{ \begin{array}{rcl} i+1 & : & 0 \leq i \leq n-2 \text{ and } j=i+1 \\ n & : & i=n-1 \text{ and } j=0 \\ n+1 & : & i=n-1, j=1 \\ 2n & : & i=n-2, j=0 \\ n+i+2 & : & 0 \leq i \leq n-3 \text{ and } j=i+2 \end{array} \right.$$

We claim that the labeling L is an antimagic labeling of C_n^2 . Observe that $S_1=1+2+(n+1)+(n+3)=2n+7$ and $S_2=2+3+(n+2)+(n+4)=2n+11$, which is 4 greater than S_1 . In fact, it is easy to verify that for $1 \le i \le n-3$, $S_{i+1}=S_i+4$. Since S_1 is odd, then so is every S_i , for $1 \le i \le n-2$. In addition, they are pairwise distinct. The vertex n-1 has vertex sum $S_{n-1}=(n-1)+n+(n+1)+(2n-1)=5n-1$ which is even. Finally, vertex 0 has vertex sum $S_0=1+n+2n+(n+2)=4n+3$, which is odd. All that remains is to show S_0 does not appear in the set of vertex sums $\{S_1, S_2, ..., S_{n-2}\}$. To see this, note that if S_0 is the same as the vertex sum of some vertex in $\{1, 2, 3, ..., n-2\}$, then S_0-S_1 must be divisible by 4. But this difference is 4n+3-(2n+7)=2n-4=2(n-2). As n is odd,

then n-2 is odd. Therefore 2(n-2) is not divisible by 4 which implies $S_0 \notin \{S_1, S_2, ..., S_{n-2}\}$. Therefore, all the vertex sums of this labeling are pairwise distinct.

Figure 1: antimagic labeling of C_{11}^2

Figure 1 shows the antimagic labeling of C_{11}^2 using the labeling given in the proof of Theorem 2.1. Consider the graph C_n^2 , where the number of vertices is even. We now describe a construction for an antimagic labeling of C_n^2 which can be extended to an antimagic labeling for C_n^3 .

Theorem 2.2 If n > 6 is an even integer, then C_n^2 is antimagic.

Proof: The vertices of C_n^2 will be $V = \{0, 1, 2, ..., n-1\}$. Let E denote the edges of the graph. Define a bijection $L: E \to \{1, 2, ..., 2n\}$ that labels the edges of the graph as follows:

$$L(\{i,j\}) = \begin{cases} 2 & : i = 0, j = 1\\ 1 & : i = 1, j = 2\\ n-1 & : i = n-3, j = n-2\\ n-2 & : i = n-2, j = n-1\\ n & : i = n-1, j = 0\\ i+1 & : j = i+1 \text{ and } i \notin \{0,1,n-3,n-2,n-1\}\\ n+1 & : i = n-1, j = 1\\ 2n & : i = n-2, j = 0\\ n+i+2 & : 0 \le i \le n-3 \text{ and } j = i+2 \end{cases}$$
By definition of the labeling L , $S_0 = 2 + n + 2n + (n+2) = 4n + 1$

By definition of the labeling L, $S_0=2+n+2n+(n+2)=4n+4$, $S_1=1+2+(n+1)+(n+3)=2n+7$, $S_2=1+3+(n+2)+(n+4)=2n+10$, $S_3=3+4+(n+3)+(n+5)=2n+15$. It can be verified that $S_{i+1}=S_i+4$

for $3 \le i \le n-5$. Since S_3 is odd, S_i is odd for $3 \le i \le n-4$. In addition, they are pairwise distinct. Also, $S_{n-3} = 6n-8$, $S_{n-2} = 6n-5 = S_{n-4}+8$ and $S_{n-1} = 5n-2$. Note that S_1, S_{n-2} are both odd. In fact $S_1 = S_3 - 8$ and $S_{n-2} = S_{n-4} + 8$. This implies S_1 and S_2 are distinct and do not belong in the set of vertex sums $\{S_3, S_4, ..., S_{n-4}\}$. By the labeling L, $S_2 < S_0 < S_{n-1} < S_{n-3}$ and they are all even. Therefore all the vertex sums are distinct.

Figure 2 shows the antimagic labeling of C_{11}^2 using the labeling given in the proof of Theorem 2.2. Theorems 2.1 and 2.2 give antimagic labelings of C_n^2 for all n, except when n=4,6. Figures 3 and 4 shows that C_4^2 and C_6^2 are antimagic, respectively. This along with Theorems 2.1 and 2.2 gives the following result.

Corollary 2.3 For every $n \geq 4$, C_n^2 is antimagic.

Figure 2: Antimagic labeling of C_{12}^2

3 The Graph C_n^3

In the previous section, we constructed an antimagic labeling of C_n^2 , for every $n \geq 4$. In this section, we will extend those constructions to give antimagic labelings for C_n^3 . We will consider the two cases of n odd and n even separately.

Theorem 3.1 If $n \geq 7$ is an odd integer, then C_n^3 has an antimagic labeling.

Proof: Recall that that the labeling L, which was used to prove Theorem 2.1, has the following properties. We will use S_i^L to denote the vertex sum of vertex i under the labeling L, of C_n^2 .

Figure 3: antimagic labeling of C_4^2

Figure 4: antimagic labeling of C_6^2

- 1. $S_0^L = 4n + 3$,
- 2. $S_1^L = 2n + 7, S_2^L = 2n + 11, S_3^L = 2n + 15$
- 3. $S_{i+1}^L = S_i^L + 4$ for $1 \le i \le n-3$, and $S_{n-1}^L = 5n-1$.

In addition, recall that every vertex sum S_i^L is odd except for S_{n-1}^L , which is even. We now show how to extend the antimagic labeling L for C_n^2 to an antimagic labeling M for C_n^3 such that $M|C_n^2=L$. For each edge $e\in C_n^2$, assign M(e)=L(e). For the edge $e=\{i,i+3\}$ where $0\leq i< n-3$, assign M(e)=2n+i+1. For the edge $e=\{n-3,0\}$, we assign M(e)=3n-2. For the edge $e=\{n-2,1\}$, we assign M(e)=3n-1. Finally, for the edge $e=\{n-1,2\}$, we assign M(e)=3n. This gives a

labeling M for C_n^3 , which extends the labeling L. We now show that it is an antimagic labeling of C_n^3 .

Consider the vertices 0, 1, 2, n-1. They have vertex sums $S_0 = (4n+3)+(2n+1)+(3n-2)=9n+2$, $S_1 = (2n+7)+(2n+2)+(3n-1)=7n+8$, $S_2 = (2n+11)+(2n+3)+(3n)=7n+14$, and $S_{n-1} = (5n-1)+(3n-3)+(3n)=11n-4$. Since n is odd, these four vertex sums are odd. Since $n \geq 7$, these four vertex sums are distinct. As M(e) = 2n+i+1 for edges of the form $e = \{i, i+3\}$, where $0 \leq i < n-3$ and $S_{i+1}^L = S_i^L + 4$, for $3 \leq i \leq n-3$, then $S_{i+1} = S_i + 6$, for $3 \leq i \leq n-3$. Therefore, it suffices to show that S_3 is even. But $S_3 = (2n+15)+(2n+1)+(2n+4)=6n+20$, which is even.

Figure 5 shows the labeling of the edges of $C_n^3 \setminus C_n^2$ as given in the proof of Theorem 3.1.

Figure 5: antimagic labeling of edges of $C_{11}^3 \setminus C_{11}^2$

We now consider the case where n is even. Again, we will extend the antimagic labeling L stated in the proof of Theorem 2.2.

Theorem 3.2 If n > 6 is a even number that is not a multiple of 6, then C_n^3 has an antimagic labeling.

Proof: Consider the labeling L used in the proof of Theorem 2.2. Recall that it has the following properties, where we use S_i^L to denote the vertex sum of vertex i under the labeling L.

1.
$$S_0^L = 4n + 4$$
, $S_1^L = 2n + 7$, $S_2^L = 2n + 10$, $S_3^L = 2n + 15$,

2.
$$S_{i+1}^L = S_i + 4$$
 for $3 \le i \le n - 5$,

3.
$$S_{n-3}^L = 6n - 8$$
, $S_{n-2}^L = S_{n-4} + 8$, and $S_{n-1}^L = 5n - 2$.

We now show how to extend the antimagic labeling L for C_n^2 , as given by the construction in the proof of Theorem 2.2, to an antimagic labeling M for C_n^3 such that $M|C_n^2=L$. For each edge $e\in C_n^2$, assign M(e)=L(e). For the edge $e=\{i,i+3\}$, where $0\leq 0\leq i< n-3$, we assign M(e)=2n+i+1. For the edge $e=\{n-3,0\}$, we assign M(e)=3n-2. For the edge $e=\{n-2,1\}$, we assign M(e)=3n-1. Finally, for the edge $e=\{n-1,2\}$, we assign M(e)=3n. This gives a labeling M for C_n^3 . We now show that it is an antimagic labeling of C_n^3 .

By the definition of M, $S_0 = (4n+4) + (2n+1) + (3n-2) = 9n+3$, $S_2 = (2n+10) + (2n+3) + (3n) = 7n+13, S_{n-3} = (6n-8) + (3n-2) +$ (3n-5) = 12n-15 and $S_{n-1} = (5n-2) + (3n-3) + (3n) = 11n-5$. These numbers are odd and pairwise distinct because of the assumptions on n is even and n > 6. Also, $S_1 = (2n+7) + (2n+2) + (3n-1) = 7n+8$ and $S_3 = (2n+15) + (2n+1) + (2n+4) = 6n + 20$, which are both even and are distinct, as $n \neq 12$. As M(e) = 2n + i + 1 for edges of the form $e = \{i, i+3\}$, where $0 \le i < n-3$, and $S_{i+1}^L = S_i^L + 4$, for $3 \le i \le n-5$, it follows that $S_{i+1} = S_i + 6$, for $3 \le i \le n-5$. Therefore, S_i is even, for $3 \le i \le n-4$, and they are pairwise distinct. Thus, S_{n-2} , which equals $S_{n-4} + 12$, is also even as $S_{n-2} = 12n - 10$. So it remains to show that S_1 is not in the set $\{S_3, S_4, ..., S_{n-4}, S_{n-2}\}$. Consider $S_1 - S_3 = n - 12$. If the vertex sum S_1 appears again as one of $\{S_3, S_4, ..., S_{n-4}, S_{n-2}\}$, then n-12must is be a multiple of 6. But n-12 is a multiple of 6 if and only if n is a multiple of 6. As we assume n is not a multiple of 6, then the vertex sum S_1 occurs only once. Therefore all the vertex sums for the labeling M are distinct.

As it turns out, a slight modification to labeling M of Theorem 3.2 gives an antimagic labeling for C_n^3 where n > 6 is even and a multiple of 6.

Theorem 3.3 If n > 6 is a even number that is a multiple of 6, then C_n^3 has an antimagic labeling.

Proof: In the labeling M given in the proof of Theorem 3.2, make the following two modifications.

- 1. For the edge $e = \{n-2, 1\}$, we assign M(e) = 3n, and
- 2. for the edge $e = \{n 1, 2\}$, we assign M(e) = 3n 1.

With this modification, we have $S_0=9n+3$ (odd), $S_1=7n+9$ (odd), $S_2=7n+12$ (even), $S_{n-3}=12n-15$ (odd), $S_{n-2}=12n-9$ (odd), $S_{n-1}=11n-6$ (even). The vertex sums S_i , for $3 \le i \le n-4$ have the same values as in the proof of theorem 3.2 and therefore are all even and pairwise distinct. The values S_0, S_1, S_{n-3} , and S_{n-2} are all odd and distinct. All that remains to show is that S_2 and S_{n-1} are not the vertex

sums of some other vertex. Clearly $S_2 \neq S_{n-1}$. To show that S_2 and S_{n-1} do not appear in $\{S_3, S_4, ..., S_{n-4}\}$, it suffices to show that $S_2 - S_3$ and $S_{n-4} - S_{n-1}$ are not divisible by 6. If $S_2 - S_3 = n - 8$ is divisible by 6, then n must be of the form n = 6k + 2. As we assume that n is a multiple of 6, n - 8 cannot be divisible by 6. Similarly, if $S_{n-4} - S_{n-1} = n - 16$ is divisible by 6, then n must be of the form 6k + 4. As we assume that n is a multiple of 6, n - 16 cannot be divisible by 6. Thus, all the vertex sums are distinct, and M is a antimagic labeling for n > 6 and a multiple of 6.

Figures 6 and 7 gives the antimagic labelings of the edges of $C_{12}^3 \setminus C_{12}^2$ and $C_{16}^3 \setminus C_{16}^2$ respectively. Figure 8 gives an antimagic labeling for C_6^3 . Theorems 3.1, 3.2 and 3.3 along with Figure 8 implies that C_6^3 is antimagic, for all $n \ge 6$.

Figure 6: antimagic labeling of edges of $C_{12}^3 \setminus C_{12}^2$

Corollary 3.4: For $n \geq 6$, C_n^3 is antimagic.

4 The graph C_n^4

In this section, We will prove that C_n^4 has an antimagic labeling. We will do this by extending the labeling given in Section 2 for C_n^3 .

Theorem 4.1 If $n \geq 7$ is an odd integer, then C_n^4 has an antimagic labeling.

Proof We will show how to extend the labeling M for C_n^3 , as given in the proof of Theorem 3.1, to an antimagic labeling N for C_n^4 such that $N|C_n^3 = M$. For each edge $e \in C_n^3$, assign N(e) = M(e). For the edge

Figure 7: antimagic labeling of edges of $C_{16}^3 \setminus C_{16}^2$

Figure 8: antimagic labeling of C_6^3

 $e=\{i,i+4\}$, where $0\leq i< n-4$, assign N(e)=3n+i+1. For the edge $e=\{n-4,0\}$, assign N(e)=4n-3. For the edge $e=\{n-3,1\}$, assign N(e)=4n-2. For the edge $e=\{n-2,2\}$, assign M(e)=4n-1. Finally, for the edge $e=\{n-1,3\}$, we assign N(e)=4n. We claim that N is an antimagic labeling of C_n^4 .

Based on the labeling N, $S_0=16n$, $S_1=14n+8$, $S_2=14n+16$, $S_3=13n+24$, $S_4=12n+32$, $S_{i+1}=S_i+8$, for $4\leq i\leq n-3$, and $S_{n-1}=19n-8$. It is easy to see that S_0,S_1,S_2,S_4 are even. As n is odd, the vertex sums S_0,S_1,S_2 and S_4 are pairwise distinct. As S_4 is even, so is S_i , for $4\leq i\leq n-2$ and these vertex sums are distinct. As S_3 and S_{n-1} are odd, they are distinct from all the other vertex sums. They are also different from each other. It remains to show that the vertex sums S_0,S_1,S_2

are not one of the vertex sums $S_4, S_5, ..., S_{n-2}$. For $S_0, S_0 - S_4 = 4(n-8)$ is divisible by 8 if and only if n is even. As n is odd, the vertex sum S_0 is unique. For $S_1, S_1 - S_4 = 2(n-12)$ is divisible by 8 implies n is even. So S_1 is unique also. For $S_2, S_2 - S_4 = 2(n-8)$ is divisible by 8 implies n is even. So S_2 is also unique. Therefore, all the vertex sums are distinct and N is an antimagic labeling of C_n^4 .

Theorem 4.2 Let $n \geq 8, n \neq 12, 14$ be an even integer. Then C_n^4 is antimagic.

Proof We begin be handling the special case where n = 8. To show that C_8^4 is antimagic, start with the labeling M for C_n^3 , as given in the proof of Theorem 3.2. Now label the edge $\{0,4\}$ with 15, the edge $\{1,5\}$ with 16, the edge $\{2,6\}$ with 18, and the edge $\{3,7\}$ with 17. It is easy to show that this is an antimagic labeling for C_8^4 .

We now suppose that n > 8. We will show how to extend the labeling M for C_n^3 , as given in the proof of Theorem 3.3, to an antimagic labeling N for C_n^4 such that $N|C_n^3 = M$. Note that when n is not a multiple of 6, the labeling M may not be an antimagic labeling of C_n^3 . For each edge $e \in C_n^3$, assign N(e) = M(e). For the edge $e = \{i, i+4\}$, where $0 \le i < n-4$, assign N(e) = 3n+i+1. For the edge $e = \{n-4,0\}$, assign N(e) = 4n-3. For the edge $e = \{n-3,1\}$, assign N(e) = 4n-2. For the edge $e = \{n-2,2\}$, assign M(e) = 4n. Finally, for the edge $e = \{n-1,3\}$, we assign N(e) = 4n-1. We claim that N is an antimagic labeling of C_n^4 .

Based on the labeling N, $S_0 = 16n + 1$, $S_1 = 14n + 9$, $S_2 = 14n + 15$, $S_3 = 13n + 23$, $S_4 = 12n + 32$, $S_{i+1} = S_i + 8$, for $4 \le i \le n - 5$, $S_{n-3} = 20n - 23$, $S_{n-2} = 20n - 14$ and $S_{n-1} = 19n - 11$. It is easy to see that S_4 is even, and therefore S_4 , S_5 , S_6 , ..., S_{n-4} are all even and distinct. In since $S_1 = S_3$ only when n = 14 and $S_{n-3} = S_{n-1}$ only when n = 12, S_0 , S_1 , S_2 , S_3 , S_{n-3} , S_{n-1} are all odd and pairwise distinct. It remains to show that S_{n-2} is not in the set $S = \{S_4, S_5, S_6, ..., S_{n-4}\}$. This is true, since $S_{n-2} - S_{n-4} = (20n - 14) - (20n - 32) = 18 > 0$. Therefore, all the vertex sums are distinct.

At this point, we could handle the remaining cases n = 12, 14 separately. Instead, we give another general construction that will deal with these two cases.

Theorem 4.3 Let n > 8 be an even integer of the form 8k, 8k+4 or 8k+6. Then C_n^4 is antimagic.

Proof We will show how the extend the labeling M for C_n^3 , as given in the proof of Theorem 3.2, to an antimagic labeling N for C_n^4 such that $N|C_n^3=M$. Note that when n is a multiple of 6, the labeling M may not

be an antimagic labeling of C_n^3 . For each edge $e \in C_n^3$, assign N(e) = M(e). For the edge $e = \{i, i+4\}$, where $0 \le i < n-4$, assign N(e) = 3n+i+1. For the edge $e = \{n-4,0\}$, assign N(e) = 4n-3. For the edge $e = \{n-3,1\}$, assign N(e) = 4n. For the edge $e = \{n-2,2\}$, assign M(e) = 4n-1. Finally, for the edge $e = \{n-1,3\}$, we assign N(e) = 4n-2. We claim that N is an antimagic labeling of C_n^4 .

Based on the labeling labeling N, $S_0=16n+1$, $S_1=14n+10$, $S_2=14n+15$, $S_3=13n+22$, $S_4=12n+32$, $S_{i+1}=S_i+8$, for $4\leq i\leq n-5$, $S_{n-3}=20n-21$, $S_{n-2}=S_{n-4}+16$ and $S_{n-1}=19n-11$. It is easy to see that S_4 is even, and therefore $S_5, S_6, ..., S_{n-4}, S_{n-2}$ are all even and pairwise distinct. In addition, S_0, S_2, S_{n-3} and S_{n-1} are all odd and pairwise distinct, as n>8. It remains to show that S_1 and S_3 , which are both even and distinct from each other, cannot be in the set $S=\{S_4, S_5, S_6, ..., S_{n-4}, S_{n-2}\}$. To see this, suppose S_1 is in the set S. Then $S_1-S_4=14n+10-(12n+32)=2(n-11)$ must be divisible by 8. But since n is even, this is not possible. Therefore, S_1 is not in the set S. Now, suppose S_3 is in the set S. Then, $S_3-S_4=13n+22-(12n+32)=n-10$ must be divisible by 8. But n-10 is divisible by 8 if and only if n is of the form 8k+2. Since we assumed n is not of this form, S_3 cannot be in the set S. Therefore, all the vertex sums are distinct.

References

[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty, R. Yuster, Dense graphs are antimagic, J. of Graph Theory 47(4) (2004), 297-309.

П

- [2] J. A. Gallian, Graph Labeling, Electronic Journal of Combinatorics, DS6 (2010).
- [3] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press Inc., Boston, (1990), 108-109.
- [4] D. Hefetz, Antimagic graphs via the combinatorial nullstellensatz, J. of Graph Theory 50(4) (2005), 263-272.
- [5] M. Lee, C. Lin, W. Tsai, On antimagic labeling for power of cycles, Ars Combinatoria 98(2011), 161-165.
- [6] T. Wang, Toroidal graphs are antimagic, Lecture Notes in Computer Science (LNCS) 3595 (2005), 671-679.
- [7] T. Wang and C. Hsiao, On antimagic labeling for graph products, Discrete Mathematics 308(16) (2008), 3624-3633.