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Abstract

An antimagic labeling of a graph with n vertices and m edges is
a bijection from the set of edges to the integers 1,2,...,m such that
all n vertex sums are pairwise distinct. For a cycle Cy, of length n,
the k** power of Cn, denoted by C¥, is the supergraph formed by
adding an edge between all pairs of vertices of C,, with distance at
most k. Antimagic labelings for C¥ are given where k = 2,3,4.

1 Introduction

In this paper, all graphs are finite, undirected, and simple. Let G = (V, E)
be a graph with n vertices and m edges. Suppose the edges of G are labeled
using distinct values from {1,2,..,m}. For each vertex v, define its vertezx
sum be the sum of the labels of the edges incident on v. A labeling is an
antimagic labeling of G if all n vertex sums are pairwise distinct. If a graph
has an antimagic labeling, then the graph is antimagic. For a vertex v,
denote its vertex sum by S,,.

In 1990, Hartsfield and Ringel [3] introduced the notion of antimagic
labelings and antimagic graphs. They conjectured that every connected
graph, other than Kj, is antimagic. In 2004, Alon et al. [1] validated this
conjecture for graphs having minimum degree Q(logn). They also showed
that graphs with maximum degree at least n — 2 are antimagic, as well as
complete k-partite graphs, for any k > 2. In 2005, Hefetz [4] showed that
a graph with 3% vertices admitting a K3-factor is antimagic. Also in 2005,
Wang (6] showed that the Cartesian product of a finite number of cycles
is antimagic. In addition, Wang showed that the Cartesian product of an
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antimagic regular graph and a cycle is antimagic. In 2008, Wang and Hsiao
[7) showed that toroidal grids are antimagic.

Suppose C,, = (V, E) is a cycle of length n and & is a positive integer.
The k** power of C,, denoted by C¥k, is the supergraph of C, formed by
adding an edge between all pairs of vertices of C,, with distance at most k.
In 2010, Lee, Lin, and Tsai [5] showed that if n is odd, then C2 is antimagic.
Other results can be found in the dynamic survey by Gallian [2].

In this report, We extended the work of Lee, Lin and Tsai [5] by giving
an alternate proof of their result on C2, where n is odd. We also showed
that, for n even, C2 is antimagic by constructing an antimagic labeling for
C2. Then, We extended the antimagic labelings for C? to obtain antimagic
labelings for C3, whenever n > 6. Finally, We showed that the antimagic
labelings for C3, where n is odd, extend to antimagic labelings for C4.

2 The Graph C?

In this section, We will show that C2 is antimagic for all n > 4. Note that
when n = 3, C2 = C,. We begin by providing an antimagic labeling of C?2
that differs from the one given in [5].

Theorem 2.1 ([5]) If n > 3 is an odd integer, then C? is antimagic.

Proof : The vertices of C2 will be V = {0,1,2,...,n —1}. The edges of C2
will be denoted by E. We note that C2 has 2n edges. Define a bijection
L:E - {1,2,..,2n} that labels the edges of the graph as follows:

i+l @ 0<i<n—2andj=i+1
n : i=n—-landj=0
L({i,5}) = n+l : i=n-1,7=1
2n : i=n-2,5=0
n+i+2 : 0<i<n-—3andj=i+2

We claim that the labeling L is an antimagic labeling of C2. Observe
that S; = 1424+ (n+1)+(n+3) = 2n+7and S; = 2+3+(n+2)+(n+4) =
2n + 11, which is 4 greater than S;. In fact, it is easy to verify that for
1 <i<n-3, Siy1 = Si+4. Since S is odd, then so is every S;, for
1 £i £ n—2. In addition, they are pairwise distinct. The vertex n — 1 has
vertex sum S,_3 =(n—1)+n+(n+1)+(2n —1) = 51 — 1 which is even.
Finally, vertex 0 has vertex sum Sp =1+ n+2n+ (n+2) = 4n + 3, which
is odd. All that remains is to show Sy does not appear in the set of vertex
sums {5y, 52, ..,Sn—2}. To see this, note that if Sy is the same as the vertex
sum of some vertex in {1,2,3,...,n — 2}, then Sg — S; must be divisible by
4. But this difference is dn+3 — (2n+7) = 2n—4 =2(n—2). As nis odd,
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then n — 2 is odd. Therefore 2(n — 2) is not divisible by 4 which implies
So & {51,852, ..., Sn—2}. Therefore, all the vertex sums of this labeling are
pairwise distinct. O

Figure 1: antimagic labeling of C}

Figure 1 shows the antimagic labeling of CZ, using the labeling given
in the proof of Theorem 2.1. Consider the graph C2, where the number of
vertices is even. We now describe a construction for an antimagic labeling
of C? which can be extended to an antimagic labeling for C3.

Theorem 2.2 Ifn > 6 is an even integer, then C? is antimagic.

Proof : The vertices of C2 will be V = {0,1,2,...,n — 1}. Let E denote
the edges of the graph. Define a bijection L : E — {1,2,...,2n} that labels
the edges of the graph as follows:

( 2 : i=0,j=1
1 @ i=1,j=2
n—-1: i=n-3,j=n-2
n—2 : i=n—-2,j=n-1
L({i,j})=J n : i=n-1,j=0
i+1 : j=i+landig {0,1,n-3,n-2,n -1}
n+l : i=n-1,j=1
2n : i=n—2,7=0
(| n+i+2 : 0<i<n-—-3andj=i+2

By definition of the labeling L, So = 2+ n + 2n + (n + 2) = 4n + 4,
S1=142+(n+1)+(n+3) = 2n+7, S2 = 1+3+(n+2)+(n+4) = 2n+10,
S3 =3+4+(n+3)+(n+5) = 2n+15. It can be verified that S; 1 = S;+4
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for3<i<n-—35. Since S3isodd, S;isodd for 3<i<n-—4. In addition,
they are pairwise distinct. Also, S,_3 =6n—8,8, 2=6n—-5=S,_,1+8
and S,_; = 5n — 2. Note that S),S,_5 are both odd. In fact S; = S5 — 8
and S,_2 = Sn—4 + 8. This implies S; and S are distinct and do not
belong in the set of vertex sums {S3,Sy,...,Sqn—4}. By the labeling L,
Sy < Sg < Sp—1 < Sp_3 and they are all even. Therefore all the vertex
sums are distinct.

Figure 2 shows the antimagic labeling of C}, using the labeling given in
the proof of Theorem 2.2. Theorems 2.1 and 2.2 give antimagic labelings
of C2 for all n, except when n = 4,6. Figures 3 and 4 shows that C? and
C} are antimagic, respectively. This along with Theorems 2.1 and 2.2 gives
the following result.

Corollary 2.3 For every n > 4, C2 is antimagic.

Figure 2: Antimagic labeling of C},

3 The Graph C}

In the previous section, we constructed an antimagic labeling of C2, for
every n > 4. In this section, we will extend those constructions to give
antimagic labelings for C3. We will consider the two cases of n odd and n
even separately.

Theorem 3.1 Ifn > 7 is an odd integer, then C3 has an antimagic label-
ing.

Proof : Recall that that the labeling L, which was used to prove Theorem
2.1, has the following properties. We will use S¥ to denote the vertex sum
of vertex i under the labeling L, of C2.
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2

Figure 3: antimagic labeling of C?

0o

Figure 4: antimagic labeling of C?

1. S¥ =4n+3,
2. Sf=2n+75F=2n+11,5F =2n+15
3.8k, =SF+4for1<i<n-3,and S, =5n—1.

In addition, recall that every vertex sum S¥ is odd except for SZ_,,
which is even. We now show how to extend the antimagic labeling L for
C? to an antimagic labeling M for C3 such that M|C2 = L. For each
edge e € C2, assign M(e) = L(e). For the edge e = {i,i + 3} where
0<i<n-3, assign M(e) = 2n+1i+ 1. For the edge e = {n — 3,0}, we
assign M(e) = 3n—2. For the edge e = {n—2, 1}, we assign M(e) = 3n—1.
Finally, for the edge e = {n — 1,2}, we assign M(e) = 3n. This gives a
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labeling M for C3, which extends the labeling L. We now show that it is
an antimagic labeling of C3.

Consider the vertices 0,1,2,n — 1. They have vertex sums Sy = (4n +
3)+(2n+1)+(3n—-2) =9n+2, Sy = 2n+7)+(2n+2)+(3n—1) = Tn+8,
So=(2n+11)+(2n+3)+(3n)=Tn+14,and S,_; = (5n — 1) + (3n —
3) + (3n) = 11n — 4. Since n is odd, these four vertex sums are odd. Since
n > 7, these four vertex sums are distinct. As M(e) = 2n + i+ 1 for edges
of the form e = {i,i + 3}, where 0 < i < n—3 and S§, = SF + 4, for
3<i<n-3, then 5;41 = 85; +86, for 3 <i <n— 3. Therefore, it suffices
to show that S3 is even. But S3 = (2n+15)+(2n+1) + (2n+4) = 6n+20,
which is even.

Figure 5 shows the labeling of the edges of C3\ C? as given in the proof
of Theorem 3.1.

Figure 5: antimagic labeling of edges of C3, \ C},
We now consider the case where n is even. Again, we will extend the
antimagic labeling L stated in the proof of Theorem 2.2.

Theorem 3.2 Ifn > 6 is a even number that is not a multiple of 6, then
C3 has an antimagic labeling.

Proof : Consider the labeling L used in the proof of Theorem 2.2. Recall
that it has the following properties, where we use S¥ to denote the vertex

sum of vertex ¢ under the labeling L.
1. Sf=4an+4,5F =2n+7, S§ =2n+10, S¥ = 2n + 15,
2. S5, =Si+4for3<i<n-5,
3. 8 ,=6n—-8,SL ,=5,_4+8,and S£_, =5n-2.
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We now show how to extend the antimagic labeling L for C?2, as given by
the construction in the proof of Theorem 2.2, to an antimagic labeling M for
C3 such that M|C2? = L. For each edge e € C2, assign M(e) = L(e). For
the edge e = {%,i+3}, where 0 < 0 < i < n—3, we assign M(e) = 2n+i+1.
For the edge e = {n — 3,0}, we assign M(e) = 3n — 2. For the edge
e = {n—2,1}, we assign M(e) = 3n—1. Finally, for the edge e = {n—1,2},
we assign M(e) = 3n. This gives a labeling M for C3. We now show that
it is an antimagic labeling of C3.

By the definition of M, So = (4n4+4)+ (2n+ 1)+ (3n —2) =9n + 3,
S =02n+10)+(2n+3)+(8n)=Tn+13, Sp_3 = (6n—8) + (3n —2) +
(3n—5) =12n—15 and Sp,—; = (5n — 2) + (3n — 3) + (3n) = 11ln — 5.
These numbers are odd and pairwise distinct because of the assumptions
onnisevenand n > 6. Also, S;=2n+7)+(2n+2)+(3n—-1) =Tn+8
and S3 = (2n + 15) + (2n + 1) + (2n + 4) = 6n + 20, which are both even
and are distinct, as n # 12. As M(e) = 2n + 1 + 1 for edges of the form
e={i,i+3}, where0<i<n-3,and Sf, =Sf +4,for3<i<n-5,
it follows that S;;; = S; + 6, for 3 < i < n — 5. Therefore, S; is even, for
3 < i < n—4, and they are pairwise distinct. Thus, S,_2, which equals
S,_4 +12, is also even as S,_s = 12n — 10. So it remains to show that 5;
is not in the set {S3,S4, ..., Sn—4, Sn—2}. Consider S; — 83 =n —12. If the
vertex sum S; appears again as one of {S3, Sy, ..., Sp—4, Sn—2}, then n — 12
must is be a multiple of 6. But n — 12 is a multiple of 6 if and only if n is a
multiple of 6. As we assume n is not a multiple of 6, then the vertex sum
S, occurs only once. Therefore all the vertex sums for the labeling M are
distinct.

As it turns out, a slight modification to labeling M of Theorem 3.2 gives
an antimagic labeling for C3 where n > 6 is even and a multiple of 6.

Theorem 3.3 If n > 6 is a even number that is a multiple of 6, then C3
has an antimagic labeling.

Proof : In the labeling M given in the proof of Theorem 3.2, make the
following two modifications.

1. For the edge e = {n — 2,1}, we assign M(e) = 3n, and
2. for the edge e = {n — 1,2}, we assign M(e) =3n —1.

With this modification, we have So = 9n + 3 (0odd), S; = Tn + 9 (odd),
Sy = Tn + 12 (even),Sp—3 = 12n — 15 (odd), Sn-2 = 12n — 9 (odd),
Sn—1 = 11n — 6 (even). The vertex sums S;, for 3 < i < n — 4 have
the same values as in the proof of theorem 3.2 and therefore are all even
and pairwise distinct. The values Sp, S1,S,-3, and S,_o are all odd and
distinct. All that remains to show is that S, and S,_; are not the vertex
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sums of some other vertex. Clearly S; # S,,_;. To show that S, and S,_;
do not appear in {S3, 54, ..., Sn—4}, it suffices to show that S, — S3 and
Sn-4 — Sp—1 are not divisible by 6. If S; — S3 = n — 8 is divisible by 6,
then n must be of the form n = 6k + 2. As we assume that n is a multiple
of 6, n — 8 cannot be divisible by 6. Similarly, if Sp_4 — Sp,1 =n — 16 is
divisible by 6, then n must be of the form 6k + 4. As we assume that n is
a multiple of 6, n — 16 cannot be divisible by 6. Thus, all the vertex sums
are distinct, and M is a antimagic labeling for n > 6 and a multiple of 6.

Figures 6 and 7 gives the antimagic labelings of the edges of C3, \ C%,
and Cj; \ C¥; respectively. Figure 8 gives an antimagic labeling for C3.
Theorems 3.1, 3.2 and 3.3 along with Figure 8 implies that C3 is antimagic,
for all n > 6.

Figure 6: antimagic labeling of edges of C3, \ C},

Corollary 3.4 : For n > 6, C3 is antimagic.

4 The graph C?

In this section, We will prove that C2 has an antimagic labeling. We will
do this by extending the labeling given in Section 2 for C3.

Theorem 4.1 If n > 7 is an odd integer, then CA has an antimagic label-
ing.

Proof We will show how to extend the labeling M for C3, as given in
the proof of Theorem 3.1, to an antimagic labeling N for C2 such that
N|C3 = M. For each edge e € C3, assign N(e) = M(e). For the edge
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Figure 8: antimagic labeling of C3

e = {i,i+ 4}, where 0 <i < n — 4, assign N(e) = 3n+1+ 1. For the edge
e = {n — 4,0}, assign N(e) = 4n — 3. For the edge e = {n — 3,1}, assign
N(e) = 4n —2. For the edge e = {n — 2,2}, assign M(e) = 4n— 1. Finally,
for the edge e = {n — 1,3}, we assign N(e) = 4n. We claim that N is an
antimagic labeling of C3.

Based on the labeling N, Sp = 16n, S; = 14n + 8, Sz = 14n + 16,
Sy =13n+24, Sy = 12n+ 32, S;41 = S; +8,for 4 < ¢ < n -3, and
Sn—1 = 19n — 8. It is easy to see that Sp, S1, 52,54 are even. As n is odd,
the vertex sums Sp, S, 52 and S, are pairwise distinct. As Sy is even, so is
S;, for 4 € ¢ € n — 2 and these vertex sums are distinct. As S3 and S,,_;
are odd, they are distinct from all the other vertex sums. They are also
different from each other. It remains to show that the vertex sums Sy, Sj, S2
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are not one of the vertex sums Sy, Ss, ..., Sn—z. For Sp, So — Sy = 4(n—8)
is divisible by 8 if and only if n is even. As n is odd, the vertex sum Sy is
unique. For Sj, §; — Sy = 2(n — 12) is divisible by 8 implies n is even. So
S) is unique also. For S3, Sa — S4 = 2(n — 8) is divisible by 8 implies n is
even. So S is also unique. Therefore, all the vertex sums are distinct and
N is an antimagic labeling of C2.

a

Theorem 4.2 Let n > 8,n # 12,14 be an even integer. Then C} is an-
timagic.

Proof We begin be handling the special case where n = 8. To show that
C§ is antimagic, start with the labeling M for C3, as given in the proof of
Theorem 3.2. Now label the edge {0,4} with 15, the edge {1,5} with 16,
the edge {2, 6} with 18, and the edge {3, 7} with 17. It is easy to show that
this is an antimagic labeling for C§.

We now suppose that n > 8. We will show how to extend the labeling
M for C3, as given in the proof of Theorem 3.3, to an antimagic labeling N
for C3 such that N|C2 = M. Note that when = is not a multiple of 6, the
labeling M may not be an antimagic labeling of C3. For each edge e € C3,
assign N(e) = M(e). For the edge e = {i,i+4}, where 0 < i < n—4, assign
N{e) = 3n+i+1. For the edge e = {n—4, 0}, assign N(e) = 4n—3. For the
edge e = {n—3,1}, assign N(e) = 4n—2. For the edge e = {n—2,2}, assign
M (e) = 4n. Finally, for the edge e = {n — 1,3}, we assign N(e) = 4n — 1.
We claim that N is an antimagic labeling of C3.

Based on the labeling N, So = 16n+1, S; = 14n +9, S, = 14n + 15,
S3=13n+23,5,=12n+32, S;;, =S5;+8,ford <i<n-5,S,_3 =
20n - 23, Sp,_2 = 20n — 14 and S,_; = 19n — 11. It is easy to see that
Sy is even, and therefore Sy, Ss, S, ..., Sn—q are all even and distinct. In
since S; = S3 only when n = 14 and S,—3 = S,_; only when n = 12,
So, 51, 52, 53, Sn—3, Sn—1 are all odd and pairwise distinct. It remains to
show that S,,_2 is not in the set S = {S4, S5, Ss, ..., Sn—4}. This is true,
since Sp—3 — Sp—q4 = (20n — 14) — (20n — 32) = 18 > 0. Therefore, all the
vertex sums are distinct.

At this point, we could handle the remaining cases n = 12, 14 separately.
Instead, we give another general construction that will deal with these two
cases.

Theorem 4.3 Letn > 8 be an even integer of the form 8k, 8k+4 or 8k+6.
Then C3 is antimagic.

Proof We will show how the extend the labeling M for C3, as given in
the proof of Theorem 3.2, to an antimagic labeling N for C3 such that
N|C3 = M. Note that when n is a multiple of 6, the labeling M may not
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be an antimagic labeling of C3. For each edge e € C3, assign N(e) = M(e).
For the edge e = {7,i+4}, where 0 < i < n—4, assign N(e) = 3n+i+1. For
the edge e = {n — 4,0}, assign N(e) = 4n — 3. For the edge e = {n — 3,1},
assign N(e) = 4n. For the edge e = {n — 2,2}, assign M(e) = 4n — 1.
Finally, for the edge e = {n — 1,3}, we assign N(e) = 4n — 2. We claim
that NV is an antimagic labeling of C;.

Based on the labeling labeling NV, So = 16n+ 1, S; = 14n + 10, S; =
14n + 15, S3 = 13n+ 22, Sy, = 12n 4+ 32, S;4, = S;+ 8, for 4 < i <
n—25 S—_3=20n-21, S,_2 =S,_4+16and S,_; = 19n —11. It
is easy to see that S; is even, and therefore Ss, Ss, ..., Sp—4, Sn—2 are all
even and pairwise distinct. In addition, Sg, S2,Sn_3 and S,_; are all odd
and pairwise distinct, as n > 8. It remains to show that S; and S3, which
are both even and distinct from each other, cannot be in the set S =
{S4, S5, 6, -y Sn—a,Sn—2}. To see this, suppose 5 is in the set S. Then
S} — Sy = 14n + 10 - (12n + 32) = 2(n — 11) must be divisible by 8. But
since 7 is even, this is not possible. Therefore, S is not in the set S. Now,
suppose S3 is in the set S. Then, S3—S; =13n+22—-(12n+32) =n—10
must be divisible by 8. But n — 10 is divisible by 8 if and only if n is of the
form 8k + 2. Since we assumed n is not of this form, S3 cannot be in the
set S. Therefore, all the vertex sums are distinct.

O
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