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Abstract

In this paper, a new type of labeled graphs, called modular mul-
tiplicative graphs, is introduced and studied. Specifically we show
that every graph is a subgraph of a modular multiplicative graph.
Later we introduce k-modular multiplicative graphs and prove that
certain families of paths and cycles admit such a label.

We conclude with several open problems and areas of future pos-
sible research including a note on harmonious graph labels.

1 Introduction

In this paper, a new type of labeled graphs, called modular multiplicative
graphs, is introduced and studied. We show that every graph is an induced
subgraph of a modular multiplicative graph with prime number of edges.
Further, we introduce k-modular multiplicative graphs and provide labeling
schemes for certain cycles and paths and conclude with some open problems.
For a detailed survey of graph labels the reader is encouraged to read [2].

Definition 1.1. We define a tree in the usual way, i.e. a connected acyclic
graph. For notation we denote the set of trees on n edges to be 7,.

Furthermore, let V(G) denote the set of vertices of some graph G and
E(G) to be the set of edges of G. Elements in E(G) are of the form (v;v;)
representing an undirected edge between vertices v; and v; (v;,v; € V(G)).
Also all graphs considered in this paper are finite without multiple edges.
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2 Modular Multiplicative Labels

Definition 2.1. Let G be a graph on n edges. We say G is a modular
multiplicative graph if there exists a function f : V(G) — Z/nZ (called a
verter labeling function) such that:

1. f is injective (if G € 7,, then we permit one repeated vertex label)

2. The function F : E(G) — Z/nZ given by F(uv) = f(u)f(v) mod n
for all (uv) € E(G) is bijective (we call this function the multiplica-
tive edge label function induced by f or simply the induced edge label
function if the context is clear).

We denote the set of all multiplicative graphs with n edges by M.
Modular multiplicative labeling requires a graph on n edges to have distinct
edge labels in Z/nZ whereas a strongly multiplicative graph introduced in
(1] requires distinct edge labels in Z. Obviously if G € M,, then it is also
strongly multiplicative.

Definition 2.2. Let G be a graph on p edges and n vertices with E(G) =
{e1,€2,...,€p}. The edge label polynomial of G is defined to be the multi-
variate polynomial Eg € Z|zo,z1,...,Z,) given by:

p—1l p
EG(xO,:Ell'-'axn):H H (é'—é]) (1)
i=1 j=i+1
Where given e; = (vq,vg,;) then €; = z4,z4,

Example 2.1. Consider the path on three edges P;. Then we have:

E(Ps) = {(vov1), (v1v2), (vav3)}

And the edge label polynomial is:

Ep, (o, 1,2, T3) (zoz1 — 2172)(To%1 — T223) (T 172 — T223) )

= z1%2(xo — T2)(Tox1 — T223) (21 — 23)

Theorem 2.1. Let G be a graph on n + 1 vertices with prime number of
edges p. Then G € M, iff there exists {zo,z1, - ,Zn} C Z/pZ such that:

1. Each z; is distinct (with one exception if G € 7;,)

2. Eg(zo,x1, - yZn) ¥ 0 mod p where E¢ is the edge label polynomial
of G
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Furthermore, the vertex label function f : V(T) — Z/pZ is given by
f(vi) = z:.

Proof. We first show that G € M,, implies that there exists {zo, Z1," -+ ,Zn}
that satisfies the theorem. Since G is a modular multiplicative graph there
exists a function f : V(G) — Z/pZ as in Definition 2.1. Let z; = f(v;).
Clearly each z; is distinct in Z/pZ (with one exception if G € M,). We
show Eg(zg,21,:++ ,2n) Z 0 mod p.

Assume for contradiction that Eg(zo,z1, -+ ,Zn) = 0 mod p. Since p
is prime this implies that there exists edges of G call them e; = (va,vg;)
and e; = (vq;vg;) With 7 < j such that €; — €; = 0 mod p. Of course this
implies that z4, 25, = Za;75; = f(Va,)f(vs,) = f(va;)f(vs;) mod p which
contradicts the fact that G € M,,.

The other direction is similar. a

Hence determining whether or not a graph G with prime edges admits
a modular multiplicative label is equivalent to finding solutions to the edge
label polynomial given in equation 1. Of course the problem may seem
more complicated now, however we may use this to easily prove certain
facts about modular multiplicative graphs. We show that every graph is a
subgraph of a modular multiplicative graph. Also, for every graph G € M,
(with p a prime number) and k = 2,3,... there exists H € My« and
K € M, such that G is a subgraph of H and K.

Lemma 2.1. Given a graph G on n + 1 vertices then one can always find
distinet {zo,z1,-- ,z.} C NU {0} such that Eg(zo,z1,...,20) # 0

Proof. Begin by setting o = 1. Assume we have found appropriate num-
bers for zg,x1, -+ ,2;-1. Collect all terms of Eg containing z; in them
(there are of course finitely many of them). Then it is obvious there must
exist an unused natural number n such that if z; = n each of these factors
is not equal to 0.

Continue this process to find numbers for each zg, 21, ,Zn. It is clear
then that Eg(zo,z1,...,2,) #0. O

Lemma 2.2. Given a graph G on n edges along with an injective function
[ V(G) — Z/mZ for some m > n, such that f(u)f(v) #Z f(x)f(y) mod m
for every distinct edge (uv) and (zy) in G, we may construct a graph
H € M,, with vertex labeling function g : V(H) — Z/mZ such that:

1. G is a subgraph of H.
2. g(v) = f(v) for every v € V(G).
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Proof. Clearly if m = n then we're done. So assume m > n. There are
several ways to construct graph H. For one such construction, start with
H = G and let g = f. Let E be the set of unused edge weights and
V = Z/mZ — image(f) be the set of unused vertex labels. For every z € V
add a vertex v, to H and let g(v;) = z.

Now pick e € E. Then there must exist u,v € V(H) (not necessarily
distinct) such that g(u)g(v) = e mod m (such vertices always exist as for
every z € Z/mZ there exists v, € V(H) with g(v,) = z). So add the edge
(wv) to E(H). Remove e from E and repeat until £ = 0.

It is obvious that this process always results in a modular multiplicative
graph. ]

Theorem 2.2. Given graph G on n+1 vertices and distinct {zo, z1,- -+ ,Zn}
C Z such that Eq(zg, 1, ,25) #0, let:

n-1 n
¢ = Eg(zo,21,-++ ,za) [[ ] (& — =)

=0 j=i+1

then for every prime p > |E(G)| that does not divide ¢ we have that
there exists a graph H € M, with vertex labeling function f such that:

1. G is a subgraph of H
2. f(v;) = x; for every v; € V(G).

Proof. Let c be as above and p a prime number not dividing ¢. Define
f : V(G) — Z/pZ given by f(v;) = z;. This function is clearly injective.
If it weren’t, then there would exist distinct vertices v;,v; € V(G) with
i < j such that f(v;) = f(v;) mod p. But this would imply that z; — z; =
0 mod p which cannot be since p does not divide c.

Now since Eg(zo,z1,-- ,n) is not divisible by p it is clear that for
every distinct edge (uv), (zy) € E(G), we have f(u)f(v) # f(z)f(y) mod p.
Apply Lemma 2.2 with m = p to obtain the desired result.

O

Corollary 2.1. For every graph G on n edges there exists a graph H € M,
for some prime p > n such that G is a subgraph of H.

Proof. Apply Lemma 2.1 and Theorem 2.2 a

While the above corollary tells us every graph is an induced subgraph
of a modular multiplicative graph, it provides us with no information on
the size or shape of this supergraph. We show however that if G € M,
(p a prime number) then not only is G a subgraph of some larger modular
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multiplicative graph H but we also have some control over the number of
edges in H.
Before we show this, we require a small construction lemma:

Lemma 2.3. Let G € M,, with vertex label function f and define ¢.(z) =
az. Then for every a € Z/nZ with ged(a, n) = 1 we have ¢, 0f is a modular
multiplicative vertex label function (that is, multiplying by a unit of Z/nZ
yields a new modular multiplicative label of graph G).

Proof. Assume the contrary. Then there must be at least two edges with
the same label. Call these two edges (uv) and (zy) then we have:

($a 0 f(u))(Pa o f(¥)) = (fao f(z))(dao f(y)) modn
= af(waf(v) = af(z)af(y) (3)
= 2(f(u)f(v)) = A(f(2)f(v)

Since ged(a,n) = 1 we have that o~! exists hence the above implies
f(u)f(v) = f(z)f(y) but since f is a modular multiplicative vertex label
function this cannot be. O

Theorem 2.3. Let p be prime. Given T € T, N M, with vertex label
function f, then for every k = 2,3, ... there exists G € My and H € My,
such that T is a subtree of G and H.

Proof. Since T € T, there exists distinct vertices v;,v; € V(T') such that
f(vi) = f(vj) mod p. Let 8 = f(v;) = f(v;). Clearly 8 # 0 (a vertex label
of 0 can only appear once on a tree). Also, since p is prime, there exists
a multiplicative inverse ! € Z/pZ. Apply Lemma 2.3 with o = 8! to
change the repeated vertex label to 1.

So without loss of generality we may assume the repeated vertex label
is 1. Again, let v; and v; represent these repeat vertices (i.e. f(vi) =
f(v;) mod p). Furthermore, by reordering the vertices in V(T) we may
assume ¢ =0 and j = 1.

From Theorem 2.1, there exists {zo,Z1, -+ ,%p} C Z/pZ distinct with
one exception such that Ep(zo,z1, - ,Zp) # 0 mod p and f(v,) = z,.
We may change the value of zo to p + 1 then still Ex(p+1,x1, -+ ,2p) #
0 mod p. Of course, neither p* nor kp divide Er(p+1,z1,--- ,zp) which
implies that the edge weights of T are all distinct modulo p* and kp.

Let g: V(T) — Z/p*Z and h : V(T') — Z/kpZ given by:

_ _J p+1 ifa=0
9(va) = h(va) = { Ff(v,) otherwise
It is obvious that g and h are both injective. Since Er(p+1,z1,-+ ,p)

is not divisible by p* or kp we have g(u)g(v) # g(z)g(y) mod p* and
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h(u)h(v) # h(z)h(y) mod kp for every distinct edge (uv), (zy) € E(T).
Hence we may apply Lemma 2.2 twice (once for g and again for k) to
obtain the desired graphs.

O

Theorem 2.4. Let p be prime. Given graph G € M, with vertex label
function f, then for every k = 2,3, ... there exists H € M« and K € My,
such that G is a subgraph of H and K.

Proof. The proof is the same as in Theorem 2.3 except there is no need to
worry about a repeated vertex. a

3 k-Modular Multiplicative Graphs

Definition 3.1. Let G be a graph on n edges and k an integer greater
than or equal to zero. We say G is a k-modular multiplicative graph if there
exists a function f : V(G) — Z/(n + k)Z such that:

1. fisinjective (if K = 0 and G € T, then we permit one repeated vertex
label)

2. The induced edge label function F' : E(G) — Z/(n + k)Z given by
F(uw) = f(u)f(v) mod (n + k) for all (uv) € E(G) is injective.

We denote the set of all k-modular multiplicative graphs on n edges by
My (k) (hence M, (0) = M,,).

Lemma 3.1. Every graph is k-modular multiplicative for some k > 0.

Proof. Let G be a graph on n + 1 vertices. Apply Lemma 2.1 to find
{Zo,z1,- - ,zn} € NU{0} such that each z; is distinct and Eg(zo, 21, ,Zn)
# 0. Define:

n-1 n
C=EG($o,x1,"',$n)H H (J:g—Zj)

=0 j=it1
and let p be a prime number such that p > |E(G)| and p does not divide
c. It follows that G € M g(q) (p — |E(G))). O

We now find some actual label schemes that result in a k-modular mul-
tiplicative graph. Let C, be a cycle on n edges and P, be a path on n
edges. Then we have the following results:

Theorem 3.1. Let p = 2n + 1 be prime. Then C, € M,(n + 1) if there
does not exist o € {2,3,...,n} such that o® + o — 1 = 0 mod p.
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Proof. Define

V(Cn) = {‘Uo,‘vl,'vz,...,vn_l} (4)
E(Cﬂ) = {('Uovl), (0102)1 veey (vﬂ—IUO)}

Let f: V(C,) — Z/pZ be the vertex label function given by f(v;) =
i+2. Then every edge except (vn_1vo) is of the form a(a+1),a = 2,3,...,n
while the edge (v,-1vp) is labeled 2(n + 1). We first show that all edges
save the final one are distinct modulo p.

Assume the contrary. Then there must exist « € {2,3,--- ,n — 1} and
ke {1,2,--- ,n — a} such that:

oa+1)
= k(k+2a+1)
Since p is prime this implies either k =0 or k +2a + 1 = 0. Since k is
not equal to zero by definition the latter must be true. Hence k = —2a—1
which implies ¥ = (2n + 1)A — 2a — 1 for some A € Z. Since k > 1 it is
obvious that A > 1. Hence:

(a+k)(%+k+1) mod p )

a < n (6)
= n—a < 2n-2a<(2n+1)A—-2a-1=k

But k < n — « so this cannot be.
All that remains to show is the final edge (v,—1vp) is distinct. If not,

then there must exist some o € {2,3,--:,n} such that:
2n+1) = oa(a+1) modp (7)
= o?+a-1 = 0
But no such « exists by hypothesis. O

Theorem 3.2. Let p =2n + 1 be prime. Then P,, € My(n +1).

Proof. Let V(P,) = {v,v1,...,vs} and E(FP,) = {(vov1), (v1v2),---,
(vn—1v5)}. Let f: V(P,) — Z/pZ be the vertex label function given by:

0 ifi=0
o) = { i+ 1 otherwise

Then it follows from the proof of Theorem 3.1 that this results in a
(n + 1)-modular multiplicative label. O
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4 Open Problems

The following interesting open problems remain regarding this new label
scheme.

5

1. Is 7, € M, for every n? Or at least for every prime n?
2. What other families of graphs are in M,?

3. Can anything be said about the structure of graphs H and K de-

scribed in Theorems 2.3 and 2.4?

4. The edge label polynomial (equation 1) can be adapted to other graph

labeling schemes. For example, the edge label polynomial for a har-
monious graph [3] on n + 1 vertices and p edges would take the form:

p-1 p
E¢(z0,71,-.03n) = [[ ] (6 —€5) (8)

i=1 j=i+1

Where given e; = (va,vp;) € E(G) then é; = z,, + x5,. What
kind of results can be proved with the help of the concept of the
edge label polynomial? For example, in [4], Liu and Zhang showed
that every graph is a subgraph of a harmonious graph. Using the
edge label polynomial for harmonious graphs this same result can be
shown algebraically as in section 2 of this paper.
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