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Abstract

Assume that G = (V, E) is an undirected graph with vertex set V'
and edge set E. The ball B,(v) denotes the vertices within graphical
distance r from v. A subset C C V is called an r-locating-dominating
code if the sets Ir(v) = Br(v) N C are distinct and non-empty for all
v € V\ C. A code C is an r-identifying code if the sets I-(v) are
distinct and non-empty for all vertices v € V. We study r-locating-
dominating codes in the infinite king grid and in particular show that
there is an r-locating-dominating code such that every r-identifying
code has larger density. The infinite king grid is the graph with vertex
set Z* and edge set {{(z1,31),(2,%2)} |21 — 22| < 1, |31 — 92| <
1, (z1,3) # (z2,92)}-

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set
E. Denote by d(u,v) the distance between two vertices « and v i.e. the
number of edges on any shortest path from v to v. The ball with center v
and radius r is

B,(v)={ueV |d(u,v) <r}

We call any C C V a code. The vertices of C are called codewords. In
particular, C is an r-locating-dominating code if the sets

I,(v) = B,(v)nC
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are non-empty and distinct for all non-codewords v € V\C. If the sets I,.(v)
are non-empty and distinct for all vertices v € V, then C is an r-identifying
code. In particular, an identifying code is always a locating-dominating
code.

The symmetric difference of two sets A and B is denoted by

AAB = (A\ B)U(B\ A).

The r-locating-dominating code could also be defined by symmetric differ-
ences: code C is an r-locating-dominating code if and only if I, (v) AT, (u) #
@ and I.(v) # @ for all non-codewords v and u. If ¢ € I.(v) Al (u), we say
that v and v are separated by c.

We study r-locating-dominating codes in the infinite king grid. The
infinite king grid is the graph where V = Z x Z and two different vertices
u = (uz,uy) and v = (v, vy) are adjacent if [u; —vz| < 1 and Juy —vy| < 1.
Thus vertices u and v are neighbours if the Euclidean distance between u
and v is 1 or V2.

The density of C C Z2 is

o CNB((0,0))]
D(C) = limsup =50 0p)

where {C'N B,((0,0))] is the number of codewords in the ball {(z,y) | |z| <
n,|y] < n} and |B,((0,0))| = (2n + 1)? is the number of all vertices in the
ball. We also denote B,((0,0)) = Q,.. We search for the minimum density
of locating-dominating codes for given r in the infinite king grid.

Locating-dominating codes were introduced in the late 1980s by Slater
(17] and [18] and identifying codes in the late 1980s by Karpovsky, Chakra-
barty and Levitin [10]. A motivation of such codes is a safeguard analysis
of a facility using sensor networks [17] or a fault diagnosis of a multipro-
cessor system [10]. Assume that we have a multiprocessor system. Some
processors are chosen to perform the task of testing if the processor itself
is faulty or if there is a faulty processor within distance ». The chosen
processor sends the symbol 2, if the processor itself is faulty; symbol 1,
if it itself is not faulty, but there is a faulty processor within distance r;
and symbol 0, otherwise. Finally, we get the reports from all the chosen
processors and based on the reports alone we can perform the fault diagno-
sis. Here, processors are vertices and the chosen processors are codewords.
If the chosen processors form an r-locating-dominating code, then we can
locate the processor which is faulty if we assume that at most one of the
processors is faulty. If the chosen processor sends symbol 1 instead of 2 also
when the processor itself is faulty, then we can use an r-identifying code to
locate the faulty processor.
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r Locating-dominating codes ID codes
1 i (8] i B
2<p<t [3], Thm 2 g (28
3 L<b<% Thms 2 & 5 < [2],[3]
L <D< L if2|r
>4 | 2T | 2], Thms2&5 | £  [2]
7 S D<o if2¢r

Table 1: The known lower and upper bounds for densities of
locating-dominating and identifying codes (ID codes) in the
infinite king grid.

Although the difference between the definitions of locating-dominating
codes and identifying codes is quite small, we show in this paper that there
exists an r-locating-dominating code with density D, for any odd r such
that there exist no r-identifying codes with the same or smaller density.
Results when 7 = 1 have already been shown in [8]. We also prove two
lower bounds for r-locating-dominating codes when r > 1. The proof of
the better bound is long and quite similar to corresponding proof for r-
identifying codes (Theorem 3 of [2]). Therefore, we only add some details
to the proof and it is almost impossible to understand our proof if one
does not know the proof of Theorem 3 of [2]. The complete proof would
nevertheless be a duplicate in many respects of the proof for r-identifying
codes, so it is reasonable to present only the differences in this paper. When
reading our proof of Theorem 2, the reader should have a copy of (2] at hand.
The proof of the weaker bound is short and easy to understand.

Furthermore, we observe in this paper that the bounds of r-locating-
dominating codes when r > 2 are also valid for so-called open neighbourhood
r-locating-dominating codes i.e. r-OLD codes. A code is an r-OLD code
if sets I (v) \ {v} are non-empty and distinct for all v € V. OLD codes
were considered in [9] and [16] and they can be used in fault diagnosis if
the chosen processor sends symbol 0 if the processor itself is faulty. This
corresponds for example to the case where the processor is unable to send
an alarm if the processor itself is faulty.

Table 1 summarizes what is known about the density of r-locating-
dominating codes and r-identifying codes in the infinite king grid. Here,
the upper bound means that there exists a locating-dominating or an iden-
tifying code with that density and the lower bound means that density of
every locating-dominating or identifying code is at least the value given in
the table.
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Locating-dominating codes, identifying codes and other closely related
classes of codes in the infinite king grid and other graphs have also been
studied in (1], [3]-{7] and [11)-[15]. See also the web bibliography [19).

2 Lower bounds

Theorem 1. The density of an r-locating-dominating code is at least ﬁ.

Proof. In this proof, we use a standard technique for identifying codes. A
more detailed presentation of the technique can be found in [1), for instance.
Let C be an r-locating-dominating code. Then

Ar(z,y) = (Br(2,y)ABr(z,y + 1)) U {(z,9), (z,y + 1)}

contains at least one codeword for all (z,y). The claim follows from the
fact |A,(z,y)| = 4r + 4. Indeed, a codeword can belong to only 4r + 4 such
sets. 0

Theorem 2. The density of an r-locating-dominating code is at least 1.

Proof. (Sketch) The claim is proved in [8], when r = 1. Therefore we can
assume that C is an r-locating-dominating code and » > 2. Next, we denote

Co(z,y) = {(x—ry-r)(z—ry+r+1),
(@+r+lLy-r)(z+r+Ly+r+1)},

Ce(z, y) = {(fB, y),(m,y+1),(z+l, y),($+ 1»y+1)},

Su(z,y) = {(a,b)|a€e{z-rz+r+1}andy—r<b<y+r},

Sh(z,y) {(e,b)|z—r<a<z+randbe {y—ry+r+1}},
L(x’ y) = Co(ma y) UCe(z’ y) U Su(z,y) U Sh(.'l!, y)'

We call C, the set of corners, C, the center, and S, and S}, vertical and
horizontal sides of set L(z,y). Moreover, we observe that

Lzy= |J (B-(v)AB(v))UCelz,y)

u,vEC. (z,y)

Then L(z,y) has to separate vertices in the center of L(z,y).
Paper [2] shows that the sides of

K(z,y) = Kr((z,9),(x+1Ly),(z+1,y+1),(z,y+1))
= U (Ir(u) A I(v))

U,‘UGCQ (:vy)

356



contain on average at least two codewords for all identifying codes. Now, we
add a few rules to this proof and show that the sides and the center together
contain at least two codewords on average for all locating-dominating codes.

If S, contains codewords u and v, then these vertices separate the code-
words of the center in the same way. Therefore, we say that v is useless for
L(z,y) if the y-coordinate of v is greater than the y-coordinate of u or if the
y-coordinates of v and u are the same and the z-coordinate of v is greater
than the z-coordinate of u. In the same way, if u,v € Sp(z,y), then v is
useless for L(z,y) if the z-coordinate of v is greater than the z-coordinate
of u or if the z-coordinates of v and u are the same and the y-coordinate of
v is greater than the y-coordinate of u. This is how useless codewords are
defined for K(z,y) in {2]. But in this paper, we give one more rule when a
codeword is useless.

Codeword v € C.(z,y) is useless for L(z,y) if other non-useless code-
words in L(x,y) separate vertices in the center of L(z,y). When we define
whether the codewords in the center are useless or not we go through then
in the following order:

(z,y)a(z,y+ 1) a(z+1,y)a(z+1,y+1).

If possible, we mark useless codewords for the associates of L(z,y) in
the same way as they are marked for the associates of K(z,y) in paper
[2]. However, it is possible, that the sides of K(z,y) (or L(z,y)) do not
contain any codeword for locating-dominating codes if K(z,y) € £ i.e two
opposite corners of K (z,y) are codewords and the other two are not. Then
at least one vertex in the center of L(z,y) has to be a codeword. See Figure
1. In this case, we can not mark useless codewords as for identifying codes.
Therefore we need new rules.

Assume that (z,y), (x—r,y+7r+1) and (z+7+1,y —r) are codewords
and there are no other codewords on the sides and in the corners (or else
we can mark a useless codeword as in [2]). First, if the center also contains
other codewords than (z,y), then all except one of the codewords in the
center are useless and we can mark one of them for L(z,y).

Second, we assume that (z,y) is the only codeword in the center of
L(z,y). Now,

BT((x - l:y))ABr((x + 1) y+ 1))
c Sv(x - 1ay) U {(IE -r- l»y - ’I‘)} U S‘u(za y) U Sh(l', y) (1)
UWz-ry-r)(+r+l,y+r+1)}
contains at least one codeword or (z — 1,¥) or (z+ 1,y + 1) is a codeword

for all r-locating-dominating codes (cf. Figure 1). The last three sets of (1)
and {(z + 1,y + 1)} do not contain any codewords by our assumption. If
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Figure 1: Black dots are codewords and white dots are non-
codewords. These dots constitute L.(z,y). Gray dots can be
codewords or non-codewords. The squares constitute the set
B((z-1,)ABr((z+1,y+1))U{(z - 1,9), (z+ 1,y +1)}.
Therefore, at least one of the squares must be a codeword.

¢ € S,(z — 1,y) is a codeword, then cand (z — r,y + 7 + 1) € Sp(z — 1,3)
separates the codeword in C, (2 —1,y) and so (z, y) is useless for L(z—1,y)
and it can be marked for L(z — 1,y).

If Sy(xz —1,y) does not contain codewords and (z —r — 1,y —r) is a
codeword, then (z — 7,y 4+ r + 1) separates (z,y) from (z — 1,y + 1) and
(z,y+1) and (z—7—1,y—r) separates (z,y) from (z—1,y). Thus (z,y) is
useless for L(z — 1, y) and it can be marked for L(z - 1,y). Otherwise, (z —
1,y) must be a codeword, then it is useless and it is marked for L(z —1,y),
since (z — 7,y + 7 + 1) and (z,y) separate (z,y — 1) from other vertices in
the center of L(z — 1,y) and (z — 1,y) comes before (z,y) in our ordering.

The rotations of case £5 are treated in the same way. In particular, we
nevertheless mark useless codewords in the center only by left and right as-
sociates. Now, codewords can not be marked twice, because r > 2. Indeed,
by the new rules we can mark codewords only from centers. Moreover, the
useless codeword in the center of L(z,y) can be marked only if there are
no codewords in the sides of L(z,y) or if there is exactly one codeword on
the horizontal sides of L(z,y) and it is at distance one from a corner.

Thus, equations (4) and (5) of [2] are also valid for r-locating-dominating
codes when

S = {(L(z,y),¢) | L(z,y) € €,c € C N Qn,c marked for L(z,y)},
but equation (6) is now

(8r +8) - |CN Qx| 2 2|Qn] + p1 +p2 +pa+2ps + |S| — 2hn
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since |L(z,y)| = 8r + 8. Moreover,

p1+p2+p3+2ps+|S| 2 4-|1CNQy| —10kn —8n

as in [2]. Then
o |C'nQn|> . 1 _(10k+2h+8)n)_ 1
D(C) = limsup 7= 2 limsup | 775 8r|Qn] “w+2

a

Remark 3. An r-OLD code is also an r-locating-dominating code. There-
fore the lower bounds for r-locating-dominating codes are also valid for
r-OLD codes.

3 Upper bounds

Theorem 4. There is an r-locating-dominating code with density 4—1,, for
allr.

Proof. The code
C={(z,y)| z=y (mod2r), z=0 (mod 2)}

is an r-identifying code with density ;= for all by [2]. The claim follows
since r-identifying code is automatically an r-locating-dominating code. O

Theorem 5. There exists an r-locating-dominating code with density 4—,‘%_5
for all odd r.

Proof. We show that the code

C={(2k,(2r+2)k+2rl+ Li—lmk,zez}

is an r-locating-dominating code for all odd r. The density of C is

r+1 _ 1
22r(r+1)+1)  4r+ 25

D(C) =

Indeed, when we look at any even-numbered column, then always r + 1 of
any (r + 1)2r + 1 consecutive vertices belong to the code. Moreover, there
are no codewords in the odd-numbered columns. A part of C when r = 3
is shown in Figure 2.

359



e le® Oe®
XTI

oS e ®

50 ::”:‘o’:‘o’:‘o.:‘o
LU XIRIIO Lot LT
XL T XTI XT XTI X )
Yy e v v viess we
Ly LTI T XTI X
R RIIIXEXIRIXT

03
AT/

XX

0

Seen
X IK]
XK

(X]
{ 2
X]
\/
XL

®
<]
®

(X
(X
[
(3

g

X
VARTARY
{IX

IR
ul
D
i)

"'
(]

&
AIX]
(1
X)
<]

e
49%
\/
o)
s
JX)
%
X

IX]
N/
Y
AX]
.
XX
®
\/
.’a
.'
..
(X}
X
el

a

()
()
()
()
D
@
)
[X)
5
(X
X
’
o
- (X
SeS0seSeseTes
X
X
Oy
LS
%
o

.
iz
:"4
-'-‘
D:(
De‘
%
D'.C
:
’;‘
.:‘:.’
Q2
b

X
(]
AR

(X

5

()
X
LX)
: ()
X
I

IXL
(X
CH
A%

IN/

eole edeloldgty
RIIXIXT T XIAT XL
SeSeS SeSelele
L IXIITIX XTI X
egegese £

3
e‘)
2%

[V
@.
J

N,

X

X
0

¢

(]

(]
»

(]

()

\/

X

()

Rl

31X

S Ip%es

AN

4"."

109

X

HIX]

32)
31X

",
K
¢ .D

o
e

(X

')

(]

(X
5

o
(1M
)

-

‘N
X]
/
o
X1
XX
>
XIX]
\/
X
X
/
g%
a0de

®

4
®

]

()
HIX

Lk

@

3
Q)
ag
X548
N
/
X
X
=
X
%
34

o
{ 9

S
(X
=
(X

v“

oo
CIX]
3
S0
X
®
."‘.

-
3

1]
)

t

a
X
(X
X
(X
X
\/
S
ﬁ'
&g
[X]
oseSeSe0
-‘Q B
(X)
(XX
W,
4
¢
(X
%
(2
X
[ X)

®
(X)
S0
X1
S0
"‘o
XD
o
>y
24
3
1
%
X)
4 ’:"
Oy
X
RIXIX]
v Ow.
0108
O

®.
o
¢
®
¢
®
L
®

®

@

@

55

®.
1

@
<]

@
CLP

)
y

®
(]

@

&
-

7
IX
X

\/

(X
(X
X
’
ese
(X
X
(X
(X
(X
-
2
X
X

’:‘o
T X
X
X)
X
I X)
$ ’:‘o’:‘o’ 05098
00
XX
X
X
%
X
%X

(X
4
4

.
X
3
83

X

...
()
\/
X
XL
X1
e
(D
$/
X

&'
X

4
L
(]

)

.-
IX
X

&
\/

3

X
(]
4.»'
<D

(]
P,
0.

A

o

[ X)

o

X
»,

Yol
»=

):.(

[ X]

o 03‘0

ae

[X)

e

X

X
%)

X

'eo

3
s‘o
ne
-
[X]
[ X]
X
X
X
(%)
oAy
%

X
S
X
X
(X

-0
X

XI5
(]

{ }
(XL
X
X1
X

@
X
AR LT\ ATNATN
0a ta0alal

S
3

e X
X
X
{ )
XX

]
g
o2
0
ole
0,1
Oy
]
(K
5
$TX

oS
<]

o2

®

@
4]
'.,.

X)

XIXIXTS

(X
P,
St
(X
/

IR
TR

Figure 2: A 3-locating-dominating code. Black dots are code-
words and white dots are non-codewords.

First, we make a small remark. Assume that v = (z,y,) and v = (z,y,)

are two arbitrary vertices in the same column and y, < yv. If I.(u) # I.(v)
and w = (z,yy) is an arbitrary vertex where ¥, < y, (or yw > ¥,), then
also I.(w) # Ir(v) (or I.(w) # I-(u), resp.). Indeed, A(I.(u),I.(v)) C

Al (w), I, (v)) if Yy — yw < 2r or In(w) N I.(v) = 0, if y, — yu > 2r.
Now, we observe that at least one of 2r 4+ 1 consecutive vertices is a

codeword in every even column. Then I,(v) is always non-empty and it
contains a codeword from each even column that intersects B,.(v). Thus,
we see in which column v is. Indeed, if two vertices © and v are in different
columns, then balls B,.(u) and B,(v) can not intersect in exactly the same

even columuns.

Therefore, it is enough to show that I.(u) # Ir(v) for all non-codewords
u = (z,¥,) and v = (z,y,) in the same column.
Since the code consists of tiles with size 2r x (2r+2)U2 x 1 (cf. Figure
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separated vertices codeword z t
(=r—1+42t,7+2t) 0,..,-1+2t |(1,...,55
,=1+2t), (z,2t -
(= +20), (=,20) (r=14+2t,—r—142t) 2t,...,2r—1 0,..., 55
—r =142t -7+ 2t) 0,...,—1+2t |{1,...,55¢
20), (2,142  |-T z
(.2), (2 ) e eivonraiean | 142,20 —1 0., 52
(2t,2t) 0,....,r+2 [0,..., 5t
2t), (z,r+1+2¢ —
(.7 +2t), (27 )(2r+2+2t,2r+1+2t)r+2+2t,...,2r-—10,. , 552
(2t, 2r + 2t) 0,...,r+2t 1,..., 5%
,r—1+28), (2,7 +2t -
(7 = 1+26), (@7 +20) (2r +2t,-1 +2t) r+2t,...,2r-1 [1,...,5
(2,27), (z,2r+1) (r+1,3r+1) 1,...,2r -1
(z,2r +1), (z,2r +2) (-r+1,3r+2) 0,1

Table 2: The codeword is in the symmetric difference of the
separated vertices. Here z and ¢ are two integer parameters.

2), then it is enough to prove that each vertex (3, 7) in the tile
{(z,9)|0<z<2r,0<y<2r+2}U{(0,2r +2),(1,2r +2)}

is separated from the vertex (¢, 5 —1). Table 2 shows that this is true except
for the r + 1 pairs
r—1

2 ?

{(2t,2t), (2t,2t +1)}, fort=0,1,...,

and

r—3

{r+2t+1,74+2t),(r+2t+1,7+2t+1)}, fort=0,1,..., 5

and
{(0,27),(0,2r + 1)}.

Moreover, exactly one of the vertices in each of these r + 1 pairs is a code-
word, and every codeword belongs to at most one of these pairs.

We now claim that a non-codeword (i, j) is separated from all other
non-codewords in the same column. If (¢,5 + 1) is not in the code, then
by the previous paragraph, (¢, j) is separated from (i,j + 1) and therefore
from all the non-codewords above (3, j), as we saw earlier. The same is true
even if (¢,j + 1) € C unless {(¢,5), (3,7 + 1)} is one of the exceptional pairs
listed above. But then (i,j + 2) is not in the code (by the structure of C)
and {(¢,5 + 1), (4,7 + 2)} is not an exceptional pair (as each codeword is
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contained in at most one such pair). But then (i,j + 2) and (4,5 + 1) are
separated and by the argument proved earlier the same is true for (i, j + 2)
and (4,5), and by referring to the same argument a second time, we see
that (4, 5) is separated from all non-codewords above it. This concludes the
proof. O

Remark 6. The codes in the proofs of Theorems 4 and 5 are also »-OLD
codes, when r > 2. Indeed, I,.(v) \ {v} = I.(v) for any non-codeword v
and by the previous proofs the sets I,.(v) are distinct and non-empty for all
non-codewords. Moreover, sets I.(c) \ {¢} are non-empty for all codewords
¢. Then, the claim is true if I.(c) \ {¢} # I.(v) \ {v} for all ¢ € C and for
alveV.

Let ¢ = (a,b) be a codeword. Then either ¢; = (a — 2,0~ 2) or ¢} =
(@ —2,b—1) and either c; = (@ +2,b+2) or ¢ = (a + 2,b+ 1) are
also codewords for all codes in the proofs of Theorems 4 and 5. Now,
c1,¢),¢2,¢5 € Br(c). Then ¢; or ¢} contains in I.(c) \ {c} and ¢; or ¢}
contains in Ir(c) \ {c}. Furthermore, if ¢; or ¢} is in B,(v) and c; or ¢} is in
B, (v), then c also belongs to B,(v). Therefore, c is only vertex which has
¢ @ L)\ {v}, but L)\ {v} N {e,¢;} # 0 and L, () \ {0} N {c2, &5} #90.
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