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Abstract

An L(2,1)-labeling of a graph G is a function f from the vertex
set V(G) to the set of all nonnegative integers such that |f(z) —
f@) > 2 if dz,y) = 1 and |f(z) - f(¥)] = 1 if d(z,3) = 2,
where d(z,y) denotes the distance between vertices z and y in G.
The L(2,1)-labeling number A(G) of G is the smallest number k
such that G has an L(2,1)-labeling with max{f(v) : v € V(G)} =
k. We consider Cartesian sums of graphs and derive, both, lower
and upper bounds for the L(2,1)—labeling number of this class of
graphs; we use two approaches to derive the upper bounds for the
L(2,1)—labeling number and both approaches improve previously
known upper bounds. We also present several approximation algo-
rithms for computing L(2, 1)-labelings for Cartesian sum graphs.
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1 Introduction

Graph coloring is a well studied and important topic in graph theory. Re-
search on graph coloring can be traced to over one hundred years ago [15]
and it finds applications in many areas. The L(2, 1)—labeling problem is a
generalization of the famous vertex coloring problem. An L(2,1)-labheling
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of a graph G is an assignment of non-negative integers to all the vertices
of G such that: i) integers assigned to adjacent vertices differ by at least
2, and ii) different integers are assigned to vertices at distance 2 from each
other. The L(2,1)—labeling problem is to find an L(2,1)—labeling of a
given graph G that minimizes the largest label used; this largest label is
called the L(2, 1)—labeling number of G and it is denoted A(G).

The L(2, 1)-labeling problem models some frequency assignment prob-
lems [8]: Suppose, for example, that it is desired to assign transmitting
frequencies to a group of radio transmitters so that any two transmitters
that could potentially interfere with one another are assigned sufficiently
different frequencies to avoid interference. Griggs and Yeh [7] formulated
this problem as the L(2, 1)—labeling problem by proposing that if the dis-
tance between two interfering transmitters is very small they should be
assigned frequency channels at least a distance of two apart, but if two
interfering transmitters are not too close then they should just bhe assigned
different frequency channels.

Since the L(2, 1)- labeling problem is a generalization of the vertex col-
oring problem, it is strongly NP-hard. There are many papers studying
the L(2,1)-labeling problem and due to the inherent hardness of the prob-
lem, most research considers the problem on particular classes of graphs.
Griggs and Yeh (7] first gave an upper bound of A2 + 2A for the value of
A(G) on arbitrary graphs with maximum degree A. Later, Chang and Kuo
5] improved the bound to A% + A. Recently, Kral’ and Skrekovski [12]
reduced the hound to A% + A — 1. For graphs G of diameter 2, A(G) < A2
[7): This upper bound is attainable by Moore graphs; such graphs exist for
A = 2,3,7, and possibly 57 [7]. Griggs and Yeh [7] conjectured that the
best bound for A(G) is A? for graphs with maximum degree A > 2 [7).
The conjecture is not true for A = 1 since, for example, A(K3) = 1 but
A(K2) =2.

In [19], (11] and [20], Shao and Yeh, S. Klavzar and S. Spacapan, and
Shao and Zhang proved that the L(2,1)-labeling number of the Cartesian
product, the composition, the direct product, the strong product and the
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Cartesian sum product of graphs is hounded by the square of the maxi-
mum degree. Hence Griggs and Yeh’s conjecture holds in the above five
cases (with some minor exceptions). Shao, Klavzar, Shiu and Zhang [18]
improved the upper bounds obtained in [11] with a more refined analysis

of neighborhoods in product graphs than that used in [11].

Approximation algorithms and inapproximability results for the L(2,1)-
labeling problem on general graphs are rare. In [4], by using an algorithm
by McCormick [14], Calamoneri et al. proved that there exists an algorithm
for the L(h, k)-labelling problem with approximation ratio h((n— 1)1/241),
where n is the number of vertices in the input graph. In (9], Halldorsson
improved the above result by proving that the approximation ratio of the
first-fit algorithm is min{n'/2 + h/k, A} which is the currently best known
result. He also proved that it is hard to approximate the L(h, k)-labelling
problem within a factor of n1/2-¢ for any £ > 0 and k € [n!/2-¢,n).

We consider the Cartesian sum of graphs and derive, hoth, lower and
upper bounds for the L(2,1)-labeling number; we use two approaches to
derive the upper bounds and both approaches improve previously known
bounds. We also present new approximation algorithms for the L(2,1)-
labelings on Cartesian sum graphs.

Throughout the paper, all graphs are assumed to be simple (i.e. they
have no loops or parallel edges).

2 A Labeling Algorithm

Given a graph G, its set of vertices is denoted as V(G) and its set of edges
as E(G). The number of vertices in G is denoted v(G). A vertex u of
G is isolated if its degree is zero. The number of isolated vertices in G is
denoted t(G). The maximum degree of G is denoted A(G). If u and v are
two adjacent vertices of G, the edge connecting them is denoted as uv. The
Cartesian sum, G @ H, of two graphs G and H is the graph with vertex
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set V(G) x V(H), in which a vertex (u,v) is adjacent to another vertex
(«/,v') if and only if either uu’ € E(G), or vv’ € E(H), or both [15] (see
Figure 1 for an example).

P
o —o—0
®
o P
®
®

Figure 1. Cartesian sum of graphs P; and P;.

Lemma 2.1 Let G and H be two graphs. Then G@ H has a subgraph
of diameter two with (v(G) — t(G))(v(H) — t(H)) vertices and it also has
a subgraph of diameter three with max{v(G)(v(H) — t(H)),v(H)(v(G) -
t(G))} vertices.

Proof. Let G' and H’ be the subgraphs of G and H obtained by re-
moving all the isolated vertices, respectively. Observe that if G’ or H'
are empty then the first bound of the Lemma holds trivially, so let us
assume that G’ and H’ are not empty. Let G’ and H’ consist of con-
nected components Gi,Ga,...,Gx (k > 1) and Hy, Ha, ..., H, (p 2 1), re-
spectively. Note that v(G;) > 2 and v(H;) > 2 for each connected com-
ponent G;, H;,i = 1,2,...,k,j = 1,2,...,p. Let (u,v),(v,v') be any two
nonadjacent vertices of G@ H, where u € G;, v' € H, for i € {1,2,...,k}
and ! € {1,2,..,p}. Since G; and H; are connected, let u” be a ver-
tex adjacent to u in G; and let v” be a vertex adjacent to v/ in H;. By
the definition of G H, (u,v) and (u",v”) are adjacent and (u',v’') and
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(u”,v") are also adjacent. Hence (u,v) and (u',v') are at distance two
in G H, and so G@ H has a subgraph G’ @ H' of diameter two with
(v(G) = t(G))(v(H) — t(H)) vertices.

We now derive the first part for the second bound of the Lemma.
Note that if H' is empty this part of the bound is trivially zero, so we
assume that H’ is not empty. Let (u,v), (v/,v') be two nonadjacent ver-
tices of G H, where u € G;,u' € G; and v,v’ are two different ver-
tices in H. Let w,w’ be two adjacent vertices in H. Since G; and G;
are connected, let u” be a vertex adjacent to u in G; and let u" be
a vertex adjacent to u/ in G;. By the definition of G H, (u,v) and
(u”,w) are adjacent, (u,w’) and (v/,?') are adjacent, and (v”,w) and
(u",w') are adjacent. Hence (u,v) and (u,v') are at distance three.
Then G’ @ H has a subgraph of diameter three that includes G’ and all
vertices of H; this subgraph has v(H)(v(G) — t(G)) vertices. Similarly,
G @ H' has a subgraph of diameter three with v(G)(v(H) — t(H)) ver-
tices. [ ]

Corollary 2.2 Let G and H be two connected graphs. Then G@ H is of

diameter two.

A subset X of V(G) is called an i-stable set (or i-independent set), if
the distance hetween any two vertices in X is greater than i. A 1l-stable
set is a usual independent set. A maximal 2-stable subset X of a set Y of
vertices is a 2-stable subset of Y that is not a proper subset of any other
2-stable subset of Y. Chang and Kuo (5] proposed the following algorithm
to compute an L(2,1)-labeling for a given graph.

Algorithm Label(G)

Input: A graph G.

Output: The value of the maximum label in an L(2,1)-labeling computed
for G.

Initialization: Set X_; =9; V =V(G); i =0.
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Iteration:

1. Determine Y; and X;.

o Y;={z €V :zis unlabeled and d(z,y) > 2 for all y € X;_;}.

e Compute X;, a maximal 2-stable subset of Y;.
2. Label the vertices in X; (if there are any) with label i.
3. Ve« VX,
4. If V % 0 then set i + i+ 1 and go to Step 1.

5. Record the current value ¢ as k (which is the maximum label). Stop.

Note that the value returned by the algorithm is an upper bound for
A(G). We would like to find a bound for the largest label used by the
algorithm in terms of the maximum degree A(G) of G, analogous to existing
bounds for the chromatic number x(G) in terms of A(G).

Let z be a vertex with the largest label k assigned by algorithm Label.
We consider the following sets of labels:

L ={i:0<i<k~-1and d(z,y) =1 for some y € X;}. This is the
set of labels of the neighbors of z.

Ib={i:0<i<k-1and d(z,y) <2 for some y € X;}. These are the
labels of the vertices at distance at most 2 from z.

I3={i:0<4i<k-1andd(z,y) > 3 for all y € X;}. These are the
labels not used by vertices at distance at most 2 from z.

It is clear that |I| + |I3| = k. For any i € Is, z ¢ Y; since otherwise
X; U {z} would be a 2-stable subset of Y;, which contradicts the choice of
X;. That is, d(z,y) = 1 for some vertex y in X;_;; i.e., i — 1 € I;. Since
for every i € I3, i — 1 € I; then, |I3]| < |I;]. Hence

G) < k = |I| + 1] < |Io| + 1| (1).

In order to estimate A(G), in the next sections we will bound |I;| + | /5|
in terms of A(G).
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3 Lower and upper bounds on the L(2,1)-
labelings of Cartesian sum graphs

Theorem 3.1 For any two graphs G and H, (G H) > (v(G) — t(G))
(v(H)-t(H))-1.

Proof. By Lemma 2.1, G H has a subgraph of diameter two with
(v(G)—t(G))(v(H)—t(H)) vertices. Since in a L(2, 1)-labeling of a diameter
two graph all the vertices must have different labels, then A(G@ H) >
(v(G) - UG))(v(H) — ¢(H)) - 1. m

We now compute an upper bound for A(G@ H).

Theorem 3.2 For any two graphs G and H, A\(\GE@ H) < v(G)v(H) -
t(G)t(H)+ A(GEH)-1.

Proof. Note that G H has t(G)t(H) isolated vertices. Thus, the
number of vertices within distance two from any vertex z, is at most
v(G)v(H) — t(G)t(H) — 1. Therefore, by equation (1), MG H) < |I2| +
|| < v(G)(H) - t(G)t(H)+ A(GP H) - 1. n

In [20] it is proved that \(GE@ H) < D' = (A(G@P H))*-v(G)(A(G) -
)A(H) - v(H)(A(H) - 1)A(G) - (A(G) + A(H))A(G)A(H) - A(G) -
A(H)+1. Let D = v(G)v(H) - t(G)t(H) + A(GE H) - 1, be the bound
from Theorem 3.2. We now compare the bounds D’ and D.

Note that A(GE H) = v(G)A(H)+v(H)A(G)-A(G)A(H) 2 2(v(G)
v(H)A(G)A(H))'2 — A(G)A(H) = (A(G)A(H)) 2(2(v(G)v(H))'/? -
(A(G)A(H))?) = (AGC)AH) A ((W(G)(H))/2 + (v(G)w(H))? -
(A(G)A(H))M?) 2 (A(G)A(H))A((W(G)v(H)) 2+ (A(G)A(H)+A(G)+
A(H)+1)Y2—(A(G)A(H))?) > (A(G)A(H))V?(v(G)v(H))!/?, the sec-
ond inequality follows from v(G) > A(G) + 1 and v(H) 2 A(H) + 1.

Thus, (A(G@ H))? > v(G)v(H)A(G)A(H) and so

D'-D = [(A(G H))*~v(G)(A(G)-1)A(H)—v(H)(A(H)-1)A(G)—
(A(G) + A(H)A(G)A(H) - A(G) - A(H) + 1] - [¥(G)v(H) — ¢{G)¢(H) +
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A(GO H) - 1] = [(A(GO H))? - v(G)(A(G) — )A(H) — v(H)(A(H) —
1A(G) - (A(G) + A(H))A(G)A(H) — A(G) — A(H) +1] - [W(G)v(H) -
HG)(H) + (v(G)A(H) + v(H)A(G) - A(G)A(H)) ~ 1) = (A(GD H))? -
(v(G)v(H) — HG)t(H)) — (v(G)A(G)A(H) + v(H)A(H)A(G) + (A(G) +
A(H) - DA(G)A(H) + A(G) + A(H) - 2) > v(G)v(H)A(G)A(H) -
(W(G)(H) - HG)t(H)) — (V(G)A(G)A(H) + v(H)A(H)A(G) + (A(G) +
A(H) - 1)A(G)A(H) + A(G) + A(H) - 2).

Noting again that v(G) > A(G)+1 and v(H) > A(H) +1, we conclude
that D’ — D = ©(v(G)v(H)A(G)A(H)). So, our bound is asymptotically
better than in [20].

4 Algorithm BlockLabel

In this section, we present a different algorithm for computing an L(2,1)-
labeling for the Cartesian sum of two graphs that is better than the algo-
rithm presented in the previous section.

In the vertex coloring problem the goal is to color the vertices of a given
graph G with the minimum possible number of colors so that adjacent
vertices have different colors. The minimum number of colors needed to
color the vertices of a graph G is called the chromatic number of G, denoted
X(G). Consider two graphs G, H and optimum colorings x¢g, x# for them.
Without loss of generality, let the colors assigned to the vertices of G and
H be 1,...,x(G) and 1,..., x(H) respectively; moreover, let all the isolated
vertices in G and H be assigned color 1. We partition the vertices of G H
into blocks, as follows. All vertices (u,v) of G @ H where u has color 7 and
v has color j are placed in block B;;j. Let B be the set of all these blocks.
We use the following algorithm for labeling G H.

Algorithm BlockLabel(B)
Input: Set B of blocks as described above.

Output: The maximum label used in an L(2, 1)-labeling for the vertices
in B.
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1. Sort the blocks in B in any order.

2. l«0.

3. For each block B;; € B do {

4, Ifi=1and j=1then {

5 For each vertex u € By; do {

6. If u is isolated in G @ H then Assign u label 0.
7 otherwise Assign u label [ and then set [ « [ + 1.

}
}

8.  otherwise

9. For each vertex u € B;; do Assign u label [ and then set
141

10. I+« !+ 1//skip a label.

}
11. Return ! —1.

Theorem 4.1 Let G and H be two graphs. Then one of the following
holds.

a. If both G and H are not complete graphs or odd cycles, then (G @ H) <
W(G)u(H) — HG)HH) + A(G)A(H) — 2

b. If both G and H are odd cycles, then A\(G@P H) < v(G)v(H) + 7,

c. If both G and H are complete graphs, then \(G @ H) = 2v(G)v(H) - 2;
d. If one of G and H is not a complete graph or odd cycle, but the other
is an odd cycle, then A\(G@P H) < v(G)v(H)+3A(G) -2 or \(GEP H) <
v(Gv(H)+3A(H) -2

e. If one of G and H is not a complete graph or odd cycle, but the other
is a complete graph, then M(GD H) < v(G)v(H) + A(G)v(H) — 2 or
MG H) < v(Gw(H)+ AHW(G) -2

f. If one of G and H is a complete graph and the other is an odd cycle, then
MGODH) < v(GW(H)+3v(G)-2 or \(G@ H) < v(G)v(H)+3v(H)-2.

Proof. We first show that algorithm BlockLabel produces an L(2,1)-

labeling for G @ H. Let us consider the non-isolated vertices in some block
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B;; € B. For any two vertices (u,v) and (u,v') in B;j, since u and u’ have
the same color 7 in x¢, then u and u’ are at distance at least two in G;
similarly, v and v’ are at distance at least two in H. By the definition of
G@ H, (u,v) and (v/,v') are at distance at least two in G H. Thus, all
the vertices in block B; ; can he labelled consecutively.

Now let us consider the vertices in two different blocks. For any two
vertices (u,v) and (v’,v’) from two different blocks of B, there is the pos-
sibility that they are adjacent in G@ H. Note that since in algorithm
BlockLabel at least one label has been skipped between the labelling of
(%,v) and (v/,v'), then the labels of these vertices differ by at least 2 and
so the above labelling scheme is feasible.

The number of labels used to label GE H is equal to the number
v(G)v(H) — t(G)t(H) of non-isolated vertices plus the number of labels
skipped in step 10 of the algorithm. Notice that the number of labels
skipped is equal to the number of blocks in B minus 1.

Since the number of blocks in B is at most x(G)x(H), then (G @ H) <
v(G)v(H)—-t(G)t(H)+x(G)x(H) —2. We can now combine this result with
Brooks Theorem to prove (a)- (e).

(a). If both G and H are not complete graphs or odd cycles, then
x(G) < A(G) and x(H) < A(H). And the conclusion follows.

(b). If both G and H are odd cycles, then ¢(G) = ¢(H) = 0 and x(G) =
x(H) = 3. Thus, NG H) < v(G)v(H) - ¢(G)t(H) + x(G)x(H) - 2 <
v(G(H) +17.

(c). If both G and H are complete graphs , then G @ H .is a complete
graph. Thus, \(G@ H) = 2v(G)v(H) - 2.

(d). If G is not a complete graph or odd cycle, and H is an odd cycle,
then t(H) = 0, x(G) < A(G) and x(H) = 3. So, (G @ H) < v(G)v(H) -
t(G)t(H) + x(GC)x(H) — 2 £ v(G)v(H) + 3A(G) — 2. The other case is
similar.

(e). If G is not a complete graph or odd cycle, and H is a complete
graph, then {(H) = 0, x(H) = v(H) and x(G) < A(G). So, (G H) <
V(G (H) — t(G)t(H) + x(G)x(H) — 2 < v(G)v(H) + A(G)v(H) — 2. The
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other case is similar.

(f). If G is a complete graph and H is an odd cycle, then t(G) = t(H) =
0, x(G) = v(G) and x(H) = 3. So, MG H) < v(G)v(H) + 3v(G) — 2.
The other case is similar. [ ]

We now compare the bounds in Theorem 3.2 and Theorem 4.1. Note
that [V(G)v(H) — t(G)t(H) + A(G@ H) - 1] — [v(G)v(H) — t(G)H(H) +
x(G)x(H)-2] > A(G)v(H)+A(H)W(G)-A(G)A(H)—(A(G)+1)(A(H) +
1) = AG)W(H) — A(H)) + A(H)(G) - A(G)) - A(G) - A(H) — 1 =
AGYv(H)-AH)-1)+AH)wW(G)-A(G)-1)-1 > A(G)+A(H)—1.
Then, the bound in Theorem 4.1 is better than that in Theorem 3.2.

The following Corollaries follow from Theorems 3.1 and 3.3.

Corollary 4.2 Let G @ H be the cartesian sum of any two graphs G and H
and let both G and H have non-isolated vertices. Then one of the following
holds.

a. If both G and H are not complete graphs or odd cycles, then there is
an algorithm to L(2,1)-label G @ H with approzimation ratio (v(G)v(H)—
t(G)H(H) + AG)A(H) - 2)/((v(G) — HG))(v(H) — t(H)) - 1);

b. If both G and H are odd cycles, then there is an algorithm to L(2,1)-label
G @ H with approzimation ratio (v(G)v(H) + 7)/((v(G) — t(G))(v(H) —
t(H)) - 1);

c. If both G and H are complete graphs, then there is an exact algorithm
to L(2,1)-label GEP H with \G P H) =2v(G)v(H) — 2;

d. If one of G and H is not a complete graph or odd cycle, but the other
is an odd cycle, then there is an algorithm to L(2,1)-label GE@ H with
approzimation ratio (v(G)v(H)+3A(G)—-2)/(v(G)—t(G))(v(H)—t(H)) -
1) or (W(C)V(H) +3A(H) — 2)/((U(G) - HG))(W(H) — t(H)) - 1);

e. If one of G and H is not a complete graph or odd cycle, but the other
is a complete graph, then there is an algorithm to L(2,1)-label G @ H with
approzimation ratio (V(GY)v(H) + A(G)v(H) — 2)/((v(G) — t(G))(v(H) —
t(H))—1) or (v(G)v(H)+A(H)v(G)-2)/((v(G) - t(G))(v(H)—t(H))-1);
f. If one of G and H is a complete graph and the other is an odd cycle,
then there is an algorithm to L(2,1)-label G @ H with approzimation ratio
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(v(G)v(H) +3v(G) - 2)/((v(G) - t(G))(v(H) - t(H)) ~ 1) or (W(G)v(H)+
3v(H) - 2)/((v(G) - UG))(v(H) — t(H)) - 1).

Corollary 4.3 Let G H be the cartesian sum of two connected graphs
G and H. Then one of the following holds.

a. If both G and H are not complete graphs or odd cycles, then there is an
algorithm to L(2,1)-label G @ H with approzrimation ratio less than 2;

b. If both G and H are odd cycles, then there is an algorithm to L(2, 1)-label
G @ H with approrimation ratio (v(G)v(H) + 7)/(v(G)v(H) - 1);

c. If both G and H are complete graphs, then there is an ezact algorithm
to L(2,1)-label G H with A\(G@P H) = 2v(G)v(H) - 2;

d. If one of G and H is not a complete graph or odd cycle, but the
other is an odd cycle, then there is an algorithm to L(2,1)-label GEP H
with approrimation ratio (v(G)v(H) + 3A(G) - 2)/((v(G)v(H) — 1) or
(v(G)v(H) + 3A(H) - 2)/((v(G)v(H) - 1);

e. If one of G and H is not a complete graph or odd cycle, but the other
is a complete graph, then there is an algorithm to L(2,1)-label G H
with approzimation ratio (v(G)v(H) + A(G)v(H) - 2)/((v(G)v(H) - 1)
or (W(G)v(H) + A(H)(G) - 2)/((V(G)v(H) - 1);

f. If one of G and H is a complete graph and the other is an odd cy-
cle, then there is an algorithm to L(2,1)-label G H with approzimation
ratio (v(G)v(H) + 3v(G) = 2)/((V(G)v(H) - 1) or (W(G)v(H) + 3v(H) —
2)/(W(G)v(H) - 1).
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