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Abstract

An adjacent vertex distinguishing edge coloring or an avd-coloring of a simple graph G
is a proper edge coloring of G such that for any two adjacent and distinct vertices u and
v in G, the set of colors assigned to the edges incident to u differs from the set of colors
assigned to the edges incident to v. In this paper, we prove that graphs with maximum
3 and with no any isolated edges partly satisfy the adjacent vertex distinguishing edge
coloring conjecture.
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1. Introduction

In this paper we consider only simple, finite and undirected graphs. Let V(G), E(G),
A(G), §(G), d(u) and N(u) denote the vertex set, the edge set, the maximum degree, the
minimuin degree, the degree of vertex v and the set of vertices adjacent to u of graph
G respectively. A proper edge coloring of a simple graph G is called adjacent vertex
distinguishing if for any two adjacent and distinct vertices u and v in G, the set of colors
assigned to the edges incident to u differs from the set of colors assigned to the edges
incident to v, where the set of colors assigned to the edges incident to u is denoted by
flu] = {f(w)|uv € E(G)}. And the minimal number of colors required for a adjacent
vertex distinguishing edge coloring of G is denoted by x /,(G). It is clear that every
graph with isolated edges does not have any avd-coloring.

In 2002, Zhang Zhongfu [1] first introduced the concept of adjacent vertex distin-
guishing edge coloring of G. Adjacent vertex distinguishing edge colorings are studied
in [1 ~ 6], where different names such as adjacent strong edge coloring[1] and 1-strong
edge coloring [3] are used to refer to an avd-coloring. Adjacent vertex distinguishing
edge colorings are related to vertex distinguishing edge colorings in which the condi-
tion f[u] # f{v] holds for every pair of vertices u and v, not necessarily adjacent. This
concept has been studied in many papers. [9 ~ 12]

Another interesting problem arises when we drop the condition that the edge coloring
is proper and allow the incident edges to have the same color. Such as, 1. There exists
a finite set of real numbers which can be used to weight the edges of any graph with
no isolated edges so that adjacent vertices have different sums of incident edge weights.
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2. There is a finite set which can be used to color the edges of any graph with no
isolated edges so that adjacent vertices meet different multisets (i.e. duplicate elements
are allowed) of colors. ( These results are proved by Karonski in {13])

This shows that by dropping the condition of being proper from the definition of
avd-coloring. a constant number of colors would be sufficient. Obviously, when the edge
colorings are required to be proper this not the case. And adjacent vertex distinguishing
edge coloring conjecture given by Zhang Zhongfu (1] is as follows.

Conjecture. The avd-chromatic number of every simple connected graph G such that
G # Cs (the cycle with order 5) and G # K2 (without any isolated edge) is at most
A(G) +2.

The conjecture appears to be difficult even when the graph G are some special
graphs. It is clear, for any simple graph G, x ,,(G) > A(G). If graph G has two
adjacent vertices of maximal degree, then x 4,(G) 2> A(G) + 1.

Balister etc. proved that if G is a graph with no isolated edges, then the avd-
chromatic number of G is at most A + O(logx(G)). In (2], Hamed H. proved that if G is
a graph with no isolated edges and maximum degree A > 1020, then the avd-chromatic
number of G is at most A +300. In [7}, M.Ghandehari, etc. prove that 1. if A(G) > 10
then xa:(G,1) 2 A + 27AVInA. 2. for the k-strong edge chromatic number of every
r-regular graph , where 7 > 100 is less than or equal to » + (k + 2) logy r

Notwithstanding they obtain some bounds of general graph, but the bound is so far
away A + 2. In this paper we shall prove the graphs with maximum degree 3 and with
no any isolated edges partly s atisfy the adjacent vertex distinguishing edge coloring
conjecture .

Definitions not given here may be found in (8,14,15).

2. Main result

Lemma 2.1.11 If Gisacycleor a path, then G satisfy the conjecture of adjacent
vertex distinguishing edge coloring. W

Lemma 2.2. Let G be a graph consisting of two components G; and G;. If G,
and G2 are k-adjacent vertex distinguishing edge coloring, then so is G. B

Lemma 2.2 is obvious, by Lemma 2.1 and Lemma 2.2, we may get lemma 2.3.

Lemma 2.8. If G ( G # Cs) is a graph with no isolated edges and maximum degree
A(G) = 2, then G satisfies adjacent vertex distinguishing edge coloring conjecture. I

Theorem 2.4 Let G ( G # Cs) be a graph with no isolated edges and maximum
degree A(G) = 3 and minimum degree §(G) = 1, suppose u is vertex of degree 1 , if
G* = G — u has a 5-adjacent vertex distinguishing edge coloring f*, then G also has a
S-adjacent vertex distinguishing edge coloring f.

Proof. By Lemma 2.2 and Lemma 2.3, we may suppose that G is connected. Let
C ={1,2,3,4,5} denote a color set, suppose N(u)={v}. Now we extend f* of G* to a
5-adjacent vertex distinguishing edge coloring f of G.

Case 1. If d(v) = 2, let N(v) = {u,w}, obviously, d(w) > 2. then, let f(uv) €
C — f*[w]. The coloring of other edges is the same to f*. Then f[u] # f[v], flv] # flw].

Case 2. If d(v) = 3, let N(v) = {u,w,z}.

Subcase 2.1. If d(w) + d(x) < 4, then let f(uv) € C ~ f*[w] -

Subcase 2.2. If d(w) + d(z) = 5, then If f*(wv) € f*[z], let f(uv) € C— f*[=].
If f*(wv) ¢ f*[z], let f(uv) € C — f*(wv) — f*(vz). The coloring of other edges is the
same to f*. Then f[u] # f[v], f[v] # f[w] flv] # flz)-

Subcase 2.3. If d(w) + d(z) = 6, then,

2.3.1. If f*(vw), f*(vx) € f*lw] N f*[z], then | f*[w]U f*[z] |< 4. Let f(uv) €
C — f*[w] - f*[z]. The coloring of other edges is the same to f*. Then f[u] # f[v], f[v] #
Fluwl, £lo} # fla.
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2.3.2. If f*(vx) € f*[w], but f*(vw) ¢ f*[z]. Let f(uv) € C — f*[w]. The coloring
of other edges is the same to f*. Then f[u] # f[v], f(v] # flw], fl¥] # fl=z]. ‘
2.3.8. If f*(vz) ¢ f*[w], but f*(vw) € f*[z]. Let f(uv) € C — f*[z]. The coloring
of other edges is the same to f*. Then f(u] # f[v], f{v] # flw], f [v] # fl=x).
2.3.4. If f*(vz) ¢ f*[w], f*(vw) ¢ f*[z]. Let f(uwv) € C — f*(vw) — f*(vz). The
coloring of other edges is the same to f*. Then f[u] # f[v], flv] # f[w], flv] # f[x].
With all cases considered , f is a 5-adjacent vertex distinguishing edge coloring of
G, so the theorem holds. B
Lemma 2.5 Let G ( G # Cs) be a graph with no isolated edges and maximum
degree A(G) = 3 and minimum degree 6(G) = 1, suppose u is vertex of degree 1, if
G* = G — u has a 6-adjacent vertex distinguishing edge coloring f*, then G also has a
6-adjacent vertex distinguishing edge coloring f.
The proof of the lemma is similar to theorem 2.4. W
Theorem 2.6 Let G ( G # Cs) be a graph with maximum degree A(G) = 3 and
minimum degree §(G) = 2, H be a graph with maximum degree A(G) = 3 and minimum
degree 6(G) = 1, if H has a 5-adjacent vertex distinguishing edge coloring, then G has
also a 5-adjacent vertex distinguishing edge coloring.
Proof. We will prove the theorem by induction on the number of vertices (| V(G) |=
n) of G. By Lemma 2.2 and Lemma 2.3, we may suppose that G is connected. Let
= {1,2,3,4,5} denote a color set. If | V(G) |< 4, the result is obvious. Suppose G
has a 5-adjacent vertex distinguishing edge coloring f for | V(G) |< k. Suppose d(u)=2,
let w, v be the neighbor of u, namely, N(u) = {w, v}.
- If vertices w and v are not adjacent, obviously, 4 < d(v) + d(w) < 6, then,
Case 1. If 4 < d(v) + d(w) < 5, we denote a new graph G* = G — u, obviously,
A(G*) = 3 and §(G*) = 1 or A(G*) = 2. By the condition ( i.e. H has a 5-adjacent
vertex distinguishing edge coloring,) of the theorem 2.6 and lemma 2.3, G* has a 5-
adjacent vertex distinguishing edge coloring f*. Now we extend f* of G* to a 5-adjacent
vertex distinguishing edge coloring f of G.

Subcase 1.1. If d(v) = d(w) = 2, let N(w) = {u,z}, N(v) = {u,y}.

1.1.1. If d(z) = d(y) = 2, let f(uw) € C — f*[z] — f*(vy), f(uwv) € C — f*ly] —
f(uw) — f*(wz). The coloring of other edges is the same to f*. Then flu] # f[v], flu] #
flw), f[u)) # fla).flv] # fly).

- If d(z) = 3,d(y) = 2, let f(uw) € C— f*(wz) - f*(vy), f(uv) € C— f*y] -
f ‘(w:c) f (uw). The coloring of other edges is the same to f*. Then flu) # f{v], flu] #
flwl, flw] # flal-flv] # fly].

1.1.8. If d(z) = 2,d(y) = 3, the proof is similar to 1.1.2.

1.1.4. If d(z) = d(y) = 3, let f(uw) € C - f*(wz) — f*(vy), f(uv) € C - f*(vy) —

f(uw) — f*(wz). The coloring of other edges is the same to f*. Then f(u] # f[v], f[u] #
flw), flw] # fl=]-flv] # fly].
Subcase 1.2. If d(v) = 2,d(w) = 3, let N(v) = {u, z}, N(w) = {u,z,y}.

1.2.1. If d(z) = d(y) = d(z) = 2, let f(uw) € C— f*(wz)—f*(wy)—f*(vz), f(uv) €
C - f*|z]— f(uw). The coloring of other edges is the same to f*. Then f[u] # f[v), flu] #

flw), f[w] # f[I] flwl # flvl, flv] # fl2].

2.2 d(z) = d(y) = 2,d(z) = 3, let f(uvw) € C — f*(wz) — f*(wy) —
f‘('uz),f(u'u) E C — f*(vz) — f(uw) The coloring of other edges is the same to f*.
Then flu] # f[v], flu] # flw], flw] # flz], fw] # flv], flo] # flz].

1.2.8. If d(z) = d(z) = 2,d(y) = 3, then,

(1). If f*(vz) € {f*(wz)} U f*[y], let f(uw) € C — f~(wz) — f*[y).
(2). If f*(v2) ¢ {f*(wz)} U f*[y], then,

(2)-1. If f*(wz) € f*[y), let fluw) € C — f*[y] — f*(v2).
(2).2. If f*(wz) ¢ f*ly], let f(uw) € C — f*(wz) — f*(wy) ~ f7(v2).
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Let f(uv) € C— f*[2] — f(uw). The coloring of other edges is the same to f*. Then
1) 7l 7l & 1l £ 111 1] £ Tl 71l (2}
d(y) = d(z) = 2,d(x) = 3, the proof is similar to 1.2.3.
1 2 5 If d(z) = d(y) = d(z) = 3, firstly, we denote a new graph G’ = G* + wv =
G ~ u + wv, obviously, A(G’) =3, 6(G’ ) = 2. By the induction assumption, G’ has a 5-
adjacent vertex distinguishing edge coloring f/. Now we extend f’ of G’ to a 5-adjacent
vertex distinguishing edge coloring f of G.
Let f(uw) = f'(wv), f(uv) = C — f(uw) — f'(vz). The coloring of other edges is the
same to /. Then flul ¢ flv], 1u] # flul, flu] # 1l flu] # il 7] # ST
1.2.6. If d(y) = d(z) = 3,d(z) = 2 or d(z) = d(z) = 3,d(y) = 2 or d{z) = d(y) =
3,d(z) = 2, the proof of this case is similar to 1.2.5.
Subcase 1.3. If d(v) = 3,d(w) = 2, the proof is similar to subcase 1.2.
Case 2. If d(v) + d(w) = 6, i.e. d(v) = d(w) = 3, we denote a new graph
G’ = G + a + ua, where o ¢ V(G), obviously, A(G’) = 3 and 6(G’) = 1. By the
condition ( i.e. H has a 5-adjacent vertex distinguishing edge coloring,) of the theorem
2.6, then G has a 5- adjacent vertex distinguishing edge coloring, then obviously, G has
5- adjacent vertex distinguishing edge coloring.
If vertices w and v are adjacent, obviously, 4 < d(v) + d{w) < 6, then,

We denote a new graph G* = G — u, obviously, A(G*) = 3 and §(G°) = 1 or
A(G*) = 3 and §(G*) = 2 or A(G") = 2. By the condition ( i.e. H has a 5-adjacent
vertex distinguishing edge coloring,) of the theorem 2.6, the induction assumption and
lemma 2.3, G* has a 5-adjacent vertex distinguishing edge coloring f*. Now we extend
f* of G* to a 5-adjacent vertex distinguishing edge coloring f of G.

Case 1. If d(w) = 2,d(v) =3, let N(v) = {u,w, 2}, N(w) = {u, v}.

Subcase 1.1. If x is a vertex with degree 2, let f(uw) € C — f*(wv), f(uv) €
C — f*(wv) — f(uw) — f*(vz). The coloring of other edges is the same to f*. Then

flu] # flv], flu) # flw), flw) # flo].f[v) # flz].

Subcase 1.2. If x is a vertex with degree 3, let f(uv) € C— f*[z]— f*(vw), f(uw) €
C — f*(vw) — f(uv). The coloring of other edges is the same to f*. Then f[u] #
f1o), flu] # flal, flwl # £[o).flv] # flz).

Case 2. If d(w) = 3,d(v) = 2, the proof is similar to case 1

Case 3. If d(w) = d(v) = 3, let N(w) = {u,v,z}, N(v) = {u,w,y}.

Subcase 3.1 If d(z) = d(y) = 2, let f(uw) = C— f*(wv)~ f* (wz)— f*(vy), f(uv) €
C — f(uw) — f*(wv) — f*(vy). The coloring of other edges is the same to f*. Then
Flul # flol, Flu # £lCwl, fw] # flo].flw] # Fla), £lo] # Fly).

Subcase 3.2 If d(z) = 2,d(y) = 3,

3.2.1. If f*(wv) € f*[y), let f(uv) € C — f*y] - f*(wz), fluw) € C ~ fluv) —
f*(wy) - f* (wz).

3.2.2. If f*(wv) ¢ f*[y), let f(uv) € C — f*(wv) — f*(vy) — f*(wz), f(uw) €
C - f(uv) — £*(wv) — f*(wa).

The coloring of other edges is the same to f*. Then f[u] # f[v], flu} # f[(w], flw] #
S(v)-flw] # flz], flv] # flv)-

Subcase 3.3 If d(z) = 3,d(y) = 2, the proof is similar to subcase 3.2.

Subcase 3.4 If d(z) = d(y) = 3,

3.4.1. If f*(wv) € f*[z] and f*(wv) € f*[y], let f(uw) € C—f*[z]—f*(vy), f(uv) €
C - f*ly] = f(uw).

3.4.2. If f*(wv) € f*[z], but f*(wv) & f*[v], let f(uw) € C—f*[x]—F*(vy), fluv) €
C — f*(wv) — f*(vy) — f(uw).

3.4.3. If f*(wv) ¢ f*[z], but f*(wv) € f*[y], the proof is similar to 3.4.2.

3.4.4. If f*(wv) ¢ f*(z] and f*(wv) ¢ f*[y], let f(uw) € C — f*(wv) — f*(wz) —
£*(vy), f(wv) € C = f(uw) = f*(wv) — f*(vy).

The coloring of other edges is the same to f*. Then f[u] # f[v], f[u] # fl(w), flw] #
Flol-flwl # flz], flv] # flul.
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With all cases considered , the theorem holds. @

Theorem 2.7 If G ( G # Cs) is a graph with maximum degree A(G) = 3 and
minimum degree §(G) < 2, then G has a 6-adjacent vertex distinguishing edge coloring.

Proof. We will prove the theorem by induction on the number of vertices (| V(G) |=
n) of G. By Lemma 2.2 and Lemma 2.3, we may suppose that G is connected. Let
C ={1,2,3,4,5,6} denote a color set. If | V(G) |< 4, the result is obvious. Suppose G
has a 6-adjacent vertex distinguishing edge coloring f for | V(G) |< k.

Case 1. If §(G) = 1, suppose d(u)=1, We denote a new graph G* = G — u,
obviously, A(G*) = 3 and §(G"*) < 2 or A(G*) = 2. By the induction assumption and
lemma 2.3, G* has a 6-adjacent vertex distinguishing edge coloring f*. then by lemma
2.5, G has a 6-adjacent vertex distinguishing edge coloring.

Case 2. If §(G) = 2, suppose d(u)=2, suppose w, v be the neighbor of 1, namely,
N(u) = {w,v}.

Subcase 2.1. If vertices w and v are not adjacent and d(v)+d(w)=6. i.e. d(v) =
d(w) = 3, uv ¢ E(G). We denote a new graph G* = G — u, obviously, A(G*) = 3 and
8(G*) = 2 or A(G*) = 2 . By the induction assumption and lemma 2.3, G* has a 6-
adjacent vertex distinguishing edge coloring f*. Now we extend f* of G* to a 6-adjacent
vertex distinguishing edge coloring f of G.

let N(w) = {a,b,u}, N(v) = {u,g,h}. We first color edge uw,

If d(a) = d(b) = 3, then,

(1). When | f*[a] N f*[b] |= O, then let f(uw) € C — f*(wa) — f*(wb).

(2). When 1 £| f*[a] N f*[b] |< 3, then 3 a € C such that ¢ f*[a] and o ¢ f*[b],
let f(uw) =a.

If d(a) = 2,d(b) = 3, then let f(uw) € C — f*[a] — f*(wa).

If d(a) = d(b) = 2, then let f(uw) € C — f*(wa) — f*(wbd).

Edge uv is colored by as follows,

(1). If d(g) = d(h) = 3, then,

When | £*[g] N £*[h] [= 0, let f(wv) € C ~ f(uw) — f*(vg) — f*(vh).

When | f*{g] N f*[h] |= 1, then 3 a € C such that o ¢ f*[g] and a € f*[h],

If & # uw, let f(uv) =a.

If o« = uw, because | f*[g]Nf*{h] |=1= 3 B € Csuchthat B € f*[g] and B € f*[h],
If B # f*(vg) and B # f*(vh), then let f(uv) € C — f*(vg) — f*(vh) — a. If B8 = f*(vg)
then 8 # f*(vh), let f(uv) € C — f*[h] — f(uw).

When 2 <| f*lg] N f*[h) | 3, then 3 a,8 € C (a # B), such that o,8 ¢
f*lg) and o, B ¢ f*[h], let f(uv) € {a, B} — fluw).

(2). If d(g) = 2,d(h) = 3, then let f(uv) € C — f*[h] - f*(vg) — f(uw).

(3). If d(g) = d(h) = 2, then let f(uv) € C — f(uw) — f*(vg) ~ f*(vh).

The coloring of other edges is the same to f*. Then f[u] # f[v], fu] # flw], flw] #
fla), flw) # fly}, flv] # flz).

Subcase 2.2. The proofs of case 2 in theorem 2.7 are the same as that of theorem
2.6 except for when vertices w and v are not adjacent and d(v)+d(w)=6.

The coloring of other edges is the same to f*. Then f[u] # flv], f[u] # Fl(w), flw] #
flv).flw] # flz], flv] # fly]. With all cases considered , the theorem holds. B

Theorem 2.8. If G is a 3-regular graph containing a cut edge at least, suppose wv
is a cut edge of G, if G — uv has a 5- adjacent vertex distinguishing edge coloring , then
G has a 5- adjacent vertex distinguishing edge coloring .

Proof. Because uv is a cut edge of G, then G — uv has two components G;
and G2, where G; contains u, G2 contains v, moreover, G — uv has a 5- adjacent
vertex distinguishing edge coloring, then G has a 5- adjacent vertex distinguishing edge
coloring f1; G2 has a 5- adjacent vertex distinguishing edge coloring f2. Now we will
establish a 5- adjacent vertex distinguishing edge coloring f according to f; and f2. Let
C={1,2,3,4,5} be a color set, N(u) = {u1,uz,v}, N(v) = {v;,v2,u}.

Step 1. First, we color edge uv by fi ( without considering f2), obviously, 1 <|
Hlw) N fifuz] (< 3.
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— If Aifu1] N fifuz] = 1, then | fifu] U fifuz] |= 5. If fi(uau) ¢ fi[u2] and
Si(uau) ¢ fi{ua], then let f(uv) € C — fi(uiu) — fi(ugu); If fi(uiu) € fi [u2], then let
f(uv) € C — fi(u2); If fi(uau) € filua], then let f(uv) € C — fi(w1).

— If 2 <] fifua] N f1[u2] |< 3, then existing a color a € C such that o & fi[u1]
and a ¢ fi1[u2), let f(uwv) = a.

Without loss of the generality, we assume f(uv) = 8.

The coloring of G1 remain invariability.

Step 2. Next, we will recolor some elements (vertices and edges) of G2 according
to f1 and f(uv),

Whether or no, by permutation of colors in f2, we can obtain a new coloring f’
of G2, we can make f'(vv1) # f(uv), f'(vv2) # f(uwv) and {fi(uw1), fi(uuz)} #
{f'(vv1), f'(vv2)}.

—If8 ¢ f'[vi) and 6 ¢ f'[v2], obviously, fi1, f(uv) and f’ form a 5- adjacent vertex
distinguishing edge coloring of G.

— If 8 € f'lv1] and 6 € f'lva], suppose N(v1) = {v,v},v{}, N(v2) = {v, v}, v¥
without loss of the generality, we can assume f'(viv]) = f/(v2v}) = 6 then by permu-
tation of colors of in f/, (i.e. the permutation two colors @ and 8 in f', 0 < 8 €
C — f'(vv1) = f'(vv2) — f'(n1v]) — f'(v2v)). We can obtain a new coloring f” of Gg,
then f1, f{(uv) and f" form a 5- adjacent vertex distinguishing edge coloring of G.

— 1f 6 € f'[vi} and 8 ¢ f'[vz) or 8 € f'[v2) and @ ¢ §'[v1], without loss of the
generality, we may assume 8 € f'[v;] and 6 ¢ f/[vg], we may assume fiov)) = 0. If
f'(vv2) ¢ f'[w1], then, the conclusion is true. If f/(vvg) € f’[v1], then by permutation
of colors of in f’, (i.e. the permutation two colors 6 and 8 in f/, 8 < B € C— f'[vg] —
f'(vv1)). We can obtain a new coloring f" of G2, then fi1, f(uv) and f” form a 5-
adjacent vertex distinguishing edge coloring of G.

Up to now , we establish a 6- adjacent vertex distinguishing edge coloring of G. B

Lemma 2.9. If G is a 3-regular graph containing a cut edge at least, suppose uv
is a cut edge of G, if G — uv has a 6- adjacent vertex distinguishing edge coloring , then
G has a 6- adjacent vertex distinguishing edge coloring .

The proof of the lemma is similar to theorem 2.8. I

Theorem 2.10. If G is a 3-regular graph containing a cut edge at least, then G
has a 6- adjacent vertex distinguishing edge coloring.

By theorem 2.7 and lemma 2.9, the theorem 2.10 is true. l

We firstly introduced a lemma used in the proof of the following theorem before the
proof as follows.

Lemma 2.11. Every 3-regular graph without cut edges has a perfect matching. W

This lemma have been proved in [14]. Lemma 2.11 implies that the edge set of
Every 3-regular graph G without cut edges can be partitioned into the union of a perfect
matching M and certain vertex disjoint cycles. Suppose that Cp, = ujuz---u, is a cycle
of G — M. In the sequel, we always use v; to denote the neighbor of u; in G which is
different from u;—1 and w41, namely, N(u;) = {vi,ui—1,ui+1},(i = 2,3,--- ,n = 1),
N(u1) = {v1,un,u2}, N(un) = {vn,un-1,m1}. If v; ¢ V(Cy), we call v; a pendent
vertex of Cn at the vertex u;. Otherwise , u;v; forms a chord of Cr. Let Q(C) denote
the set of aa pendent vertices of Cr. Thus the edges between V(C,) and Q(C) belong
to the matching M. It is clear, edges u;v; € M, (i = 1,2,--- ,n).

If G is a 3-regular graph without cut edges, thus G— M is the union of vertex-disjoint
cycles, let H; denote the union of cycles of G — M each of which has no chord in G. let
Hj denote the union of cycles of G — M — V(H,) each of which has at least one chord
in G. Thus G — M is partitioned into the vertex-disjoint union of H; and Ho.

Theorem 2.12. If G is a 3-regular graph without cut edges and G has a cycle
Cn € Hy, then x ,,(G) < 7.

Proof. By lemma 2.11, if G is a 3-regular graph without cut edges , then we know
G consists of a perfect matching M and certain vertex disjoint cycles. Suppose that
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'a = ujug---upn is a cycle of G — M which has no chord in G , then G — V(Cy) is
a cycle or a graph with A(G) = 3 and with 6(G) = 2. Moreover, when G is a cycle
Ch, then x %,(Cn) < 6; When G is a graph with A(G) = 3 and with §(G) = 2, then
X %5(G) < 6 by theorem 2.7; Then x ;,(G — V{(Cn)) < 6.

Suppose f* is a 6-adjacent vertex distinguishing edge coloring of G — V(Cy) with
the color set B = {1,2,3,4,5,6}. Now we establish a 7-adjacent vertex distinguishing
edge coloring f of G with the color set C = {1,2,3,4,5,6,7} as follows.

Step 1. Let N(v;) = {ui, v i, v {}, i = 1,2,--,n. F*[v)] = {f*(vi v AR
f*(vi v {)}. Firstly we color edges ujv;, (i = 1,2,---,n) of G with 7 (= f[vi] #
flo gl flwid # flv 7))

Step 2. Next we color edge ujuz. Let f(uiuz) € B — F*[v1].

Step 3. Now we color edge ugu3. Let f(uzu3) € B — F*[v2] — f(ujuz).

Step 4. Finally, we color others edges u;ui41, (i = 3,4, --n— 1) and edge upu;.
Let f(uivis1) = B — F*[vi] — f(wi-1ui) = f(vi—gui-1), f(unt1) € B — F*lvn] -
fun—1un) — f(un—2un—1). The coloring of other edges is the same to f*. Then, we
know for any u;, (i =3,4,--+ ,n—1)., flus] # flvi], flwi] # flui-a), flus] # fluisa).

For vertices un, u1, u2, first, we will color afresh edges ujuz and ugus, let f(uiug) €
B—F*[v1]- f(un—1un) — f(unw1); f(u2us) € B~F*[vg] — f(u1u2) — f(un-1ua). Then
we may get vertices un, uj, ug is also adjacent vertex distinguishing.

Example: For vertex ug, f(uivi) = 7; f(ugua) € B — F*[vg] — f(uruz): f(usua) €
B — F*{v3] — fuzua) — f(uruz) = flus) # flva], flus] # flua}; f(uaus) € B—F*[va] ~
flusua) — f(uzua) = flus) # Flual;

With all cases considered, the theorem is true. B

In fact, it is easy to prove that for any 3-regular graphs x 4,,(G) < 7. The reason
of theorem 2.12 given here is that we want to only enucleate the structure of 3-regular
graphs.

Theorem 2.13. If G is a 3-regular graph, then x 4,(G) £ 7.

Proof. Suppose uv is a edge of G, then G —uv is a a graph with A(G) = 3 and with
5(C) = 2, then x %, ,(G —uv) < 6 by theorem 2.7; Let N(u) = {v,z,y}, N(v) = {v,w, z}.
Suppose f* is a 6-adjacent vertex distinguishing edge coloring of G—uv with the color set
B ={1,2,3,4,5,6}. Now we establish a 7-adjacent vertex distinguishing edge coloring
f of G with the color set C = {1,2,3,4,5,6,7} as follows.

Case 1. If 0 <| {f* (ux), f*(uy)} O{ f*(vw), f*(vz)} |< 2, then let f(uv) =7. The
coloring of other edges is the same to f*. Thus f is a 6-adjacent vertex distinguishing
edge coloring,.

Case 2. If | {f*(uz), f*(uy)} 0 {f*(vw), f*(v2)} |= 2, namely the two sets are
equal.

(1). First we will color edge uv, let f(uv) =7.

(2). Let N(w) = {w, we, v}. Next we will color anew edge vw.

I€| £ [wi] N f*[wa] |= 0, then let f(vw) € B — f*(ww;) -~ (wws) — £*(vw) -

fr(vz).

If | f*[w1] N f*[we] |= 1, then existing a color a € B such that a ¢ f*[w)}
and f*|w2]. If a ¢ {f*(vw), f*(vz)}, let f(vw) = a. If a € {f*(vw), f*(vz)}, because
| f*[w1] N f*[w2] |= 1, then, 1). if f*(ww1) € f*[wo] then f*(wwy) ¢ f~[w1], then let
fvw) € B = f*lwa] — f*(vw) — f*(vz). 2). if f*(ww1) ¢ f*[wa), f*(ww2) & f*[wr],
then let f(vw) € B — f*(wwy) — f*(ww2) — f*(vw) — f*(v2).

—1If | f*[w1] N f*wg] |= 2, then existing o, 8 € B,(a # @) such that a,3 ¢
S lw1] and f*[w2]. If {a, B} # {f*(vw), f*(vz)}, then let f(vw) € {a, B} = f*(v2). If
{e, 8} = {f*(vw), f*(v2)}, then we will color anew edge ww;,wv, suppose N(wi) =
{w, wi, w{}. Let f(ww)=7, f(vw) € B- f*(wyw}) - f*ww{)-a-8.
If | *[wi] 0 f*(wa] |= 3, then existing o, 4,7 € B, (a # f,a # 7,7 # f)
such that a, 8,7 € f*(w1] and f*{w2]. Let f(vw) € {a, 8,7} —{ f*(vw), f*(vz)}. The
coloring of other edges is the same to f*. It is clear f is a 7-adjacent vertex distinguishing
edge coloring. B
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Theorem 2.14. Let G is a 3-regular graph containing a triangle at least, ver-
tices u,v,w form a triangle, where d(u) = d(v) = d(w) = 3, N(u) = {z,v,w},
N(v) = {v1,u,w}, N(w) = {wi,u,v}. Let G* = G — uz, If G* has a 5-adjacent vertex
distinguishing edge coloring f* , then G* must exist a 5-adjacent vertex distinguishing
edge coloring f such that {f(uv), f(vw)} # {f(zy), f(z2)}.

Proof. Because G* have a 5-adjacent vertex distinguishing edge coloring f*, let
C={1,2,3,4,5} be a color set. Now by f*, we establish a 5-adjacent vertex distinguishing
edge coloring f such that {f(uv), f(uw)} # {f(zy), f(zz)} .

Case 1. If {f*(uv), f*(uw)} # {f*(zy), f*(zz)}, then f is f*, the conclusion is
true..

Case 2. If {f*(uwv), f*(uvw)} = {f*(zy), f*(zz)}, then,

Subcase 2.1. If f*(uw) ¢ f*[v1], then let f(vw) = f*(uw), f(uw) = f*(vw).

Subcase 2.2. If f*(vw) € f*[v1] and f*(uv) € f*[w;], then let f(vw) = f*(uv),
fluv) = f*(vw).

Subcase 2.3. If f*(uw) € f*{v1] and f*(uv) € f*{w1), obviously, | f*[v1]U{f*(zy),
frE)} IS 4, | P ] U{f (zy), f(z2)} [< 4 and 1 <] f2To] N f[w] |< 2.

if | f*{v] N f*[w] |= 1, then,

— if f*(w) € f*[w1)), let f(uw) € C — f*[w1) - f*(zy) — f*(z2).

—— if f*(wv) ¢ f*[w], then let f(uw) € C— f*(ww) - f* (vw) — f*(zy) - f* (z2).

if | f*[v] 0 f*[w] |= 2, then,
if f*(wv) € f*[wn] and f*(vw) € f*[v), then f*(uv) ¢ f*[w], then let f(uw) €
C = f*[wr] - f*(=y) - f*(z2).
if f*(wv) € f*lwi], f*(uw) € f*[v) and f*(uv) ¢ f*[w), then let f(uw) €
C - flwi) = f*(=y) - f*(z2).
if f*(wv) € f*[wi] and f*(uv) € f*[w), then f*(uw) ¢ f*[v]. If f*(wv) €
F*[v), then let f(uv) € C — f*[n] — f*(zy) — f*(zz). If f*(wv) ¢ f*[v1], then let
f(w) € C = f*(vv1) = f*(vw) — f*(2y) ~ f*(z2).

Up to now , we have established a 5-adjacent vertex distinguishing edge coloring f
such that {f(uwv), f(uvw)} # {f(zy), f(zz)}. So the theorem holds. M

Lemma 2.15. Let G is a 3-regular graph containing a triangle at least, ver-
tices u,v,w form a triangle, where d(u) = d(v) = d(w) = 3, N(u) = {z,v,w},
N(v) = {v1,u,w}, N(w) = {w1,u,v}. Let G* = G — uz, If G* has a 6-adjacent vertex
distinguishing edge coloring f* , then G* must has a 6-adjacent vertex distinguishing
edge coloring f such that {f(uv), f(vw)} # {f(zy), f(z2)}.

The proof of the lemma is similar to theorem 2.14. B

Theorem 2.18. Let G is a 3-regular graph containing a triangle at least, then G
has a 6-adjacent vertex distinguishing edge coloring

Proof. Suppose vertices u,v,w form a triangle, where d(u) = d(v) = d(w) = 3,
N(u) = {z,v,w}, N(v) = {v1,u,w}, N(w) = {w1,u,v}. We denote a new graph
G* = G — uz, then G is a graph with A(G") = 3 and §(G* = 2, by theorem 2.7, we
know G* has a 6-adjacent vertex distinguishing edge coloring f*. Let C={1,2,3,4,5,6}
be a color set.

Step 1. First we color edge uz, obviously, 0 £| f*{y] N f*[z] |< 3.

Case 1. If | f*[y] N f*[2] |= 0, then let f(uz) € C — f*(zy) — f*(z2).

Case 2. 1 <| f*[y] N f*[2] |< 3, then 3 <[ f*[y] U f*(2] I< 5, then let f(uz) €
C- £l - £

Step 2. Newt, we will recolor some edges of G for remain adjacent distinguishing,
without loss of the generality, we can assume f(uz) = a. By lemma 2.15 we know
| {£(w), F(uw)} N{ fay), f(z2)} I# 2, then,

Case 1. If | f*[w] N f*[v] |= 1, then,

Subcase 1.1. If f*(uw) # a and f*(uv) # «, obviously, the conclusion is true.

Subcase 1.2. If f*(uv) = a, then recolor edge uv as follows,

1, If f*(wv) € f*[v1]) and f*(wu) € {f*(zy), f*(zz)}, then,

386



—If | f*[n1) U {f*(zv), f*(z2),a} |= 6, then, f*(wv) & {f*(zy), f*(xz),a} and
f*(wu) € f*[n], hence, let f(wv) = f*(wu), f(wu) = f*(wv), f(uv) € C ~ f*(vv1) —
f(wv) — f(wu) — a.

2, If f*(wv) € f*[v1] but f*(wu) ¢ {f*(xy), f*(zz)}, then, let f(uv) € C-f*ln]-
f*(wu) — e

2, If f*(wv) ¢ f*[v1] and f*(wu) ¢ {f*(zy), f*(zz)}, then, let f(uv) € C —
[ (vv1) = f*(wv) = f*(wu) - a.

Case 2. If | f*[w] N f*[v] |= 2, it is easy to prove that f(uz) = « = f*(wu) and
F*(uv) ¢ {f*(zy), f*(z2)}, then, we recolor edge wu as follows,

Subcase 2.1. If f*(wv) ¢ f*[w1], then let f(wu) € C — f*[v] — f*(ww1).

Subcase 2.2. If f*(wv) € f*[wi], then | f*[v] U f*[w1] |< 5, hence let f(wu) €
C - f*l] = f*funl.

The coloring of other edges is the same to f*. It is clear f is a 6-adjacent vertex
distinguishing edge coloring. W
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