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Abstract: Using a new way to label edges in a bicoloured ordered tree,
we introduce a bijection between bicoloured ordered trees and non-nesting
partitions. Consequently, enumerative results of non-nesting partitions are
derived. Together with another bijection given before, we obtain a bijection
between non-nesting partitions and non-crossing partitions specified with
four parameters.
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1 Introduction

An ordered tree can be defined inductively as an unlabelled rooted
tree whose principal subtrees (the subtrees obtained by removing the root)
are ordered trees and have been assigned a linear order (from left to right)
among themselves. A bicoloured ordered tree is an ordered tree in which
even height vertices are assigned by one colour and odd height ones by the
other, where height of a vertex is the distance from it to the root ([6]).

A partition of the set [n] = {1,2,...,n} is a collection = = {By, By, ...,
By} of non-empty disjoint subsets of [n], called blocks, whose union is
[n]. A partition is called non-nesting if there do not exist four numbers
a < b < ¢ < dsuch that a and d are consecutive elements of a block and b
and c are both contained in another block. A partition is called non-crossing
if there do not exist four numbers a < b < ¢ < d such that @ and ¢ are in
one block of the partition and b and d are in another block. A (complete)
matching on [2n] is a partition of [2n] into n two-element blocks.

Bijections between non-crossing partitions and ordered trees were pre-
sented ([3, 8]), a bijection between ordered trees and bicoloured ordered
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trees was presented ([6]), meanwhile there are also bijections between non-
crossing partitions and non-nesting partitions ([1, 9, 10, 11]), which implies
that there could be a direct connection between bicoloured ordered trees
and non-nesting partitions. We aim to exhibit a bijection between them.
Enumeration of non-crossing partitions, non-nesting partitions has been
studied ([1, 4, 5, 9, 11]). Using two different labelling algorithms, Liu et
al. ([7]) introduced two bijections between bicoloured ordered trees and
non-crossing partitions, and derived some new enumerative results of non-
crossing partitions. From the bijection given here, we get some enumerative
results of non-nesting partitions; together with one bijection in [7], we ob-
tain in effect a bijection between non-nesting partitions and non-crossing
partitions specified with four parameters.

2 Bijections

In an ordered tree T, the number of subtrees of a vertex u is called
the degree d(u) of u. A vertex is called a leaf if its degree is 0, otherwise
an internal vertex. Suppose any edge in an ordered tree has a direction
leading away from the root. Then the in-degree of any vertex u is 1 (with
the root as exception) and the out-degree of u is d(u). We denote the
directed edge flowing from u to v by e =< u,v >. For a vertex u with
linearly ordered (from left to right) subtrees T1,T>,...,Tm, whose roots
are v1,v2,...,Vm respectively, we call u the parent of v;(1 < ¢ < m),
v;(1 < % < m) the children of u, v, the rightmost child and for 2 <i < m,
v; the closest older brother of v;_;; define the claw subtree of T' centered
by u (denoted by CT'(u)) to be the subgraph of T induced by the edge set
{<vo,u >}U{< v,u1 >, <u,v2 >,...,< u,v, >}, where < vy, u > is the
possible edge flowing to u, that is {< vp,u >} = @ when u is the root of
T. For a non-root even height vertex u with parent v, the indicating edge
of u is defined by the edge < w,v > where w is the parent of v if u is the
rightmost child of v, otherwise by < v,u9 > where ug is the closest older
brother of u.

For a block B in a partition m, we denote by |B| the number of elements
in B. B is called singleton if |B| = 1, otherwise non-singleton. The small-
est element in B is called the leader of B (denoted by I(B)). Two different
blocks B; and B; are said to be adjacent if |I(B;) —(B;)| = 1. A block run
is a maximal sequence of blocks B;,, B;,, ..., B;, such that any two consecu-
tive blocks are adjacent. For example, my ={{1,3,7,11},{2, 5,9},{4,8},{6},
{10,14},{12},{13}} is a non-nesting partition of [14] into 7 blocks 4 of which
are non-singleton, with 5 block runs; my = {{1,10,11,14}, {2},{3,4,7},
{5},{6}, {8}, {9}, {12}, {13} } is a non-crossing partition of [14] into 9 blocks
2 of which are non-singleton, with 4 block runs.



Using two different ways (E-Labelling and O-Labelling) to assign num-
bers to edges in a bicoloured ordered tree, Liu et al. ([7]) presented two
bijections between bicoloured ordered trees and non-crossing partitions.
In order to present a bijection between bicoloured ordered trees and non-
nesting partitions, first we introduce another different labelling algorithm.
The main difference between E-Labelling and that one given here is that
even height vertices are selected to consider by different styles.

Given a bicoloured ordered tree T' with n+1—k even height vertices and
k odd height ones, the procedure to attach numbers 1,2,...,n to the edges
in T can be described as follows, where consecutive numbers are assigned
to edges which may constitute a claw subtree.

Even-Height- Vertex-Centered-Modifying-Labelling (EM-Labelling): sup-
pose u is the root of T, first label the edges in the claw subtree CT'(u) from
right to left with the smallest not yet used number consecutively; next,
other even height vertices are selected to consider inductively. Each time,
among the remaining even height vertices whose indicating edges have been
labelled, we find that one with the smallest indicating edge. Once an even
height vertex (say w) is chosen, we label the edges in CT'(w) in a clockwise
direction by beginning at the edge flowing to w, with the smallest not yet
used number consecutively. That is, if the parent of w is vp and the linearly
ordered (from right to left) children are v;,vs,...,vm, then first assign the
smallest not yet used number, say 7, to edge < vp,w > and consequently
assign i+ 1,44 2,...,i+m to < w,n1 >, <w,v2 >,...,< W,V > respec-
tively.

Now we give a brief review of the E-Labelling algorithm in [7]: traverse
the tree in preorder (visit the root, then traverse its subtrees from left to
right), whenever encountering an even height vertex u the first time, we
label the edges in the claw subtree CT'(u) in a clockwise direction similarly.

Fig.1 is an illustration of the above two different labelling algorithms.

(a) EM-Labelling (b) E-Labelling

Fig.1. Two labelling algorithms on edges of a tree T'.
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Theorem 2.1 There is a bijection between the set of bicoloured ordered
trees with k odd height vertices r of which are internal and n + 1 — k even
height ones s of which are internal and the set of non-nesting partitions of
[n] into k blocks r of which are non-singleton with s block runs.

Proof. We first give the procedure to construct a non-nesting partition 7
from a bicoloured ordered tree T'.

(1) Label the edges in T with numbers 1,2,...,n by the EM-Labelling
algorithm.

(2) For each odd height vertex u with degree ¢, let the set of labels of those
t + 1 edges in CT(u) be a block of the partition .

Since in T there are k odd height vertices  of which are internal, we
obtain a partition of [n] into k blocks r of which are non-singleton. For a
block {pg,p1,--.,p} (Po < p1 < :-+ < p;) in the partition 7, suppose the
edges in the corresponding claw subtree CT'(u) are ey =< vp,u >,€; =<
u,% >,...,e =< u,v; >, where vy,...,v; are linearly ordered (from right
to left) children of u. Then e; (0 < ¢ < t) must have been labelled by
pi. To prove that 7 is non-nesting, it suffices to show that for any number
go, satisfying p; < g0 < piy1 (0 £ 2 < t — 1), there does not exist any
other number ¢; such that p; < ¢ < pi41 and go and ¢; are in the same
block. Without loss of generality, suppose go < ¢, the block containing go
is {...,90,q1,...} (- < go < q1 < --*), the edge being labelled by ¢ is
< w,T >, and y is the even height vertex whose indicating edge is < w,z >.
Obviously, if w is an even height vertex, then y is the rightmost child of
z and < z,y > is labelled by ¢;; otherwise,  is the closest older brother
of y and < w,y > is labelled by ¢;. By the EM-labelling algorithm, we
have (i) firstly p; is assigned to e;, next go to < w,z >; (ii) as e; is the
indicating edge of v;41, < w,z > is the indicating edge of y and p; < go,
in the following steps e;y, is labelled by p;;, before the edges in CT(y)
are done. This leads to a conclusion that ¢, must be bigger than p;,,.
Moreover, to an even height internal vertex u with linearly ordered (from
right to left) children v, vs,...,vm, we have that if < u,v; > is labelled by
some number i, then < u,v2 >, < u,v3 >,...,< u,¥; > must have been
labelled by ¢ + 1, + 2,...,i 4+ m — 1 respectively, which will be leaders of
different blocks Bj,, Bj,, ..., B;,, respectively, which result in a block run.
Therefore the non-nesting partition obtained from T contains s block runs,
which is the desired.

Conversely, to each block B in a partition 7, a claw tree centered by
some vertex (say u) with |B| edges (denoted by Tg) shall be constructed
where the edge flowing to u is labelled by {(B) and other edges are labelled
by the remaining elements in B increasingly from right ro left. That is,
if B = {po,p1,-..,0e} (o < p1 < -+ < p), a claw tree Tp centered by
u which has a parent vy and linearly ordered (from right to left) children



v1,v2,...,v would be constructed, where < vp,u > is labelled by pp and
< u,v; > (1 £i<t) by pi- These corresponded claw trees may be put
inductively in the suitable places to get the bicoloured ordered tree T as
follows.
(1) Find the block B, in 7 containing number 1 and construct the corre-
sponding claw tree Tg,. Let T, be a claw subtree of T' such that their
roots are identical.
(2) Find the block B, in 7 that contains the smallest remaining element,
say z, and construct the claw tree T'g,.
(A) If z — 1 has been assigned to some edge < u,v > where u is an even
height vertex, merge T's, and T'g, by putting Tg, on the left-hand side of
< u,v > and identifying the root of Ts, with u. We shall call this operation
a left-horizontal merge to Tg,.
(B) Otherwise, i.e. z — 1 has been assigned to < u,v > where v is an
even height vertex, merge Ts, and T, by putting Tp, underneath v and
identifying the root of T, with v. We shall call this operation a vertical
merge to Tg,.
(3) Repeat (2) until all blocks in 7 are considered.

Since a claw subtree with ¢ edges is added corresponding to a block of
t elements and an odd height vertex is added after either a left-horizontal
merge or a vertical merge, when all k blocks in « are considered, we get a
bicoloured ordered tree with k odd height vertices and n+1—k even height
vertices. Moreover, a singleton block leads to an odd height leaf and a non-
singleton block to an odd height internal vertex. Since a left-horizontal
merge is conducted to a claw subtree T, if and only if /(B;) — 1 is a leader
of some other block B;(i # j), a block run corresponds to consecutive left-
horizontal merges. Furthermore, to s different block runs, s — 1 vertical
merges are needed, which lead to s even height internal vertices. This
means that after s — 1 vertical merges and k — s left-horizontal merges, the
eventually obtained bicoloured ordered tree is the required. i

Example 2.2 Fig. 2 shows a bicoloured ordered tree T with 24 even height
vertices 8 of which are internal and 17 odd height vertices 11 of which are
internal and the corresponding non-nesting partition w of [40] into 17 blocks
11 of which are non-singleton with 8 block runs, where the edges in T are
assigned with numbers by the EM-Labelling algorithm.
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7={{1,6,11,22},{2},{3,9,17},{4},{5,10,18},{7,12,25},{8,14},{13,26,32} {15},

{16,27,33,37},{19,28},{20},{21,30,35} ,{23},{24,31,36,40} ,{29,34,38},{39} }
Fig. 2.

Lemma 2.3 ([2]) The number of bicoloured ordered trees with k odd height
vertices r of which are internal and n + 1 — k even height ones s of which
are internal equals

1 E\fn+1-k\/n—-1-k\ (k-1
n+l—-k\r s r—1 s—1/"
From Theorem 2.1 and Lemma 2.3, we have

Corollary 2.4 The number of non-nesting partitions of [n] into k blocks r
of which are non-singleton with s block runs equals

1 E\fn+1-kK\/n-1-k\[(k-1
n+l1—-k\r s r—1 s—1)°
Summing the number in Corollary 2.4 over s and over r respectively, we
obtain

Corollary 2.5 The number of non-nesting partitions of [n] into k blocks r
of which are non-singleton equals

) () 6)



Corollary 2.8 The number of non-nesting partitions of [n] into k blocks
with 8 block runs equals

1 k-1\/n+1-k\(n-1
n+l—k\s-1 8 k-1)
Using the E-Labelling algorithm, Liu et al. presented the following

bijection, whose proof is analogous to that of Theorem 2.1, with the main
difference being that the “non-crossing” property had been stated instead.

Lemma 2.7 ([7]) There is a bijection between the set of bicoloured ordered
trees with k odd height vertices r of which are internal and n +1 —k even
height ones s of which are internal and the set of non-crossing partitions of
[n] into k blocks r of which are non-singleton with s block runs.

For example, from the tree T in Example 2.2, we get a non-crossing
partition:
7 = {{1,20,26,27}, {2}, {3,18,19}, {4}, {5,6,17},{7,12},
{8}, {9, 10,11}, {13, 14,16}, {15}, {21}, {22, 23, 24, 25},
{28, 36, 37}, {29, 30}, {31}, {32, 33, 34, 35}, {38, 39,40} },

which contains 17 blocks 11 of which are non-singleton and 8 block runs.

Combining the bijections in Theorem 2.1 and Lemma 2.7, we establish a
correspondence between non-nesting partitions and non-crossing partitions
specified with several parameters.

Corollary 2.8 There is a bijection between the set of non-nesting parti-
tions of [n) into k blocks r of which are non-singleton with s block runs
and the set of non-crossing partitions of [n] into k blocks r of which are
non-singleton with s block runs.

As a (complete) matching on [2n] is a partition of [2n] into n blocks
each of which contains two elements exactly, from Corollary 2.4 we have

Corollary 2.9 The number of non-nesting matchings on [2n] with s block

runs equals
1 +1\[/n-1
N"'a—n+1( 8 )(s—l)’

which is the famous Narayana number.
From Corollary 2.8, we have

Corollary 2.10 There is a bijection between the set of non-nesting match-
ings on [2n] with s blocks runs and the set of non-crossing matchings on
[2n] with s block runs.
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