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Abstract

If G = (V,E) is a simple connected graph and a,b € V, then a
shortest (a — b) path is called a (u — v)-geodesic. A set X C V is
called weakly convez in G if for every two vertices a,b € X exists
(a — b)- geodesic whose all vertices belong to X. A set X is convex
in G if for every a,b € X all vertices from every (a — b)-geodesic
belong to X. The weakly convez domination number of a graph G
is the minimum cardinality of a weakly convex dominating set in G,
while the conver domination number of a graph G is the minimum
cardinality of a convex dominating set in G. In this paper we consider
weakly convex and convex domination numbers of Cartesian product,
join and corona of some classes of graphs.

Keywords: domination number, convex sets, Cartesian product
AMS Subject Classification: 05C69, 05C38.

1 Definitions

Here we consider simple undirected and connected graphs G = (V, E) with
[Vl = n. The open neighbourhood Ng(v) of a vertex v € V is the set of
all vertices adjacent to v and the closed neighbourhood Ng[v] of a vertex
v € V is the set Ng(v) U {v}. The degree of a vertex v is dg(v) = |[Ng(v)|
and a vertex of degree n — 1 is called a universal vertez. For a set X C V,
the neighbourhood Ng(X) is defined to be | J,¢x Na(v). A subset D of V
is dominating if every vertex of V — D has at least one neighbour in D.
Let 7(G) be the minimum cardinality of a dominating set of G.

The distance dg(u, v) between two vertices u and v in a connected graph
G is the length of a shortest (u — v) path in G. A (u — v) path of length
dg(u,v) is called a (u — v)-geodesic. Let us denote by Pg(u,v) the set of
all (u — v)-geodesics in G.

A set X C V is called weakly conver in G, if there exists (a — b)-
geodesic whose vertices all belong to X. A set X is convez in G if for
all ¢,b € X all vertices from every (a — b)-geodesic belong to X. A set
X C V is a weakly convezr dominating set in G if X is weakly convex and
dominating. Further, X is a conver dominating set, if it is convex and
dominating. The weakly convex domination number of a graph G, denoted
Yweon(G), is the minimum cardinality of a weakly convex dominating set,
while the conver domination number of a graph G, denoted v.on(G), is the
minimum cardinality of a convex dominating set. The convex and weakly
convex domination numbers were first introduced by Jerzy Topp [4]. This
parameters were also considered in (5], [6] and [7].
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2 Cartesian product

The Cartesian product of two graphs G;, Gy is the graph G = G10G, with
a vertex set V(G) = V(G;) x V(G2) and two vertices (uy,uz2), (v1,v2) are
incident in G,0G; if and only if we have one of the two possibilities:

a) u; = v and uzv; € E(G)),
b) Ug = Vg and U1y € E(Gz)

For v; € V(G2), Gi denotes the subgraph of G = G;00G; induced by
V(G1) x {v;} in G and we call Gj the ith copy of G, in G,0G;. If V(G:) =
{vi,...,vn}, then GY and G| (1 < i,j < n) are neighbouring copies in
G10G2 if Vivj € E(Gz)

In 1963 Vizing conjectured that v(G10G2) > ¥(G1)v(G2). In [2] was
proven that the following Vizing—type inequality for the convex domination
number is true.

Theorem 1 [2] For connected graphs G, and Ga,
'Ycon(Gl)'Ycon(GZ) < 'Ycon(GlDGZ)-

The domination number of the Cartesian product of two paths have
been intensively investigated, see for example [1, 3]. Nevertheless, the com-
plexity of determining the value of ¥(P,OP,) remains unknown. In this
paper we give and prove exact values for the convex and weakly convex
domination number of P,,00P, for m,n > 2. Weakly convex and convex
domination in torus, the cartesian product of a path and a cycle, was con-
sidered in [8].

If G is a graph P,0P,, where V(G) = {(x:,y;) : z: € V(Pn),y; €
V(P,),1 <i<m,1< j<n}, then let A denotes the set {(z1,11), (x1,¥Yn),
(Zm»,¥1)s (m, yn)}. Each element of A we call an extreme verter.

Let G = P,0OP,. It is easy to observe that for m = 2 and m = 3,
Yweon(G) = Yeon(G) = 2 and {(z2,11), (£2,y2)} is the minimum weakly
convex and convex dominating set of G (see Fig. 1).

(72, y2) (z2,92)

(z2, 1) (z2,11)

Figure 1: The Cartesian product P, 0P, m = 2,3.

We follow with straightforward observations.
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Observation 2 If (z;,y;) and (zk,y1) are two distinct extreme vertices of
G = P,0P, with m,n > 3, then Ng[(z:,y;)] N Ng|(zk, y1)] = 0.

Observation 3 IfG = P[P, where V(G) = {(zi,y;) : zi € V(Pm),y; €
V(P.),1<i<m,1<j<n}, then

1Pz, ¥5), (zr: ¥3))| = [Pa((z:, 95): (ziywr))| = 1
foreveryl <i,k<mandl1<jl<n.

Observation 4 IfG% and G} are neighbouring copies of G in G = G,0Gs,
then every vertex of V(G}) has ezactly one neighbour in V(G?) and simi-
larly, if G and G{; are neighbouring copies of Ga in G, then every vertex
of V(G}) has ezactly one neighbour in V(G}).

Proposition 5 For G = P,,0P, with m > 3,
Yuweon(G) = Yeon(G) = m.

Proof. Let G = Ppn0P, where V(G) = {(z:,y;) : z: € V(Pn),y; €
V(PR),j € {1,2},1 <i < m} and let m > 3. We show that D = {(z;,31) :
1 <i < m} (see Fig. 2) is a minimum convex and weakly convex domina-
ting set of G. Since it is obvious that D is weakly convex and dominating
in G, Yweon(G) £ Yeon(G) £ m. Now we suppose that D is not minimum
weakly convex dominating set of G. Hence there exists a weakly convex
dominating set D’ C V(G) such that |D’| < |D| = m. Then there exists i
such that (x;,%1), (z:, y2) do not belong to D’. Since the subgraph induced
by D' in G is connected, i = 1 or ¢ = m. Without loss of generality let
it =m. D' is dominating, s0 (Zm-1,%1) € D’ and (zm—1,%2) € D’'. More-
over, at least one vertex from Ng[(z1,1)] belongs to D’. We consider three

cases.
(mII,yl) (sz,yl) (zaI,yl) """ ia’cm-zI,yl) (me_l,m) (L,yo

Figure 2: The Cartesian product P,,,0P;, m > 3

(a) If (x3,71) € D', then Observation 3 implies that (z;,y;) € D’ for
each 1 <i <m —1 and hence |D’| > m = |D|, a contradiction.

412



(b) If (z2,71) € D', then similarly like in Case 1, we have (z;,y1) € D’
for 2 < 1 < m — 1. Moreover, at least one vertex from Ng|(z1,¥2)]
belongs to D', so again |D’| > m = |D|, which is impossible.

(c) The case (z;,y2) € D’ is similar to the Case (b) and hence is omitted.

Thus, D is a minimum convex and weakly convex dominating set of G. W

Theorem 6 For P, and P, withm >2n >3,
Yeon(PmOP,) = m(n — 2).

Proof. Let G = P,0P,, where V(G) = {(zi,y;) : 2i € V(Pn),y; €
V(P),1 €i<ml<j<n}andletm >n >3 We show that
D = {(zi,yj) : 1 <i <m,1 < j < n}is a minimum convex dominating
set of G. It is clear that D is convex and dominating in G. Suppose that
D is not minimum. Then there exists a convex dominating set D' C V(G)
such that |D’| < |D|. We claim that AN D' = @, where A is the set of
the extreme vertices of G. Without loss of generality, suppose that (z1,¥1)
belongs to D’. Since D’ is dominating in G, Ng[(Zm,yn)] N D' # 0. We
consider three cases.

(a) If (Tm-1,¥yn) belongs to D', then the convexity of D’ implies that
|D’| > (m — 1)n. Moreover, since m > n > 3, |D'| > mn—-n 2
mn — 2m = |D|, a contradiction.

(b) If (zm,Yn—1) belongs to D', then by the convexity of D’ we have
|D'} = (n — 1)m, which is impossible.

(€) If (m,yn) belongs to D', then the convexity of D’ implies that |D'| =
mn and again |D’| > |D|, a contradiction.

Hence AN D' = . Therefore, either (z1,y2) or (z2,y1) belongs to D’ and
similarly either (z,,¥2) or (Zn—1,y1) belongs to D’. Suppose (z2,y1) € D’
and (z,y2) ¢ D’. Since (z1,%1) ¢ D’ and (z1,y:) belongs to

Pa((z2,11), (Z1,Yn-1)), (Z1,Yn-1) € D'. This implies that (z3,y.) € D’
and since D’ is convex, (z2,y;) € D', j€{2,...,n—1}.

Since (z2,yn) € D’ and (zm,yn) € D', and (zm,yn) belongs to
Pe((x2,Yn), (Tm, Yn—1)), We obtain that (Zm,yn—1) ¢ D’. Hence (Tm-1,¥n) €
D'. Moreover, (Zm-1,¥1) € D', because (m—1,%1) belongs to
Pe((z2,91), (Tm—1,Yn)). The convexity of D’ implies that (z;,y;) € D’
for 1 <i<mandl < j < n. Therefore |[D'| > n(m —2) = |D|, a
contradiction.

Similarly we can show that if (z;,y2) € D/, then |D’| > m(n—2) = |D|,
a contradiction. Thus D = {(z;,y;):1<i<m,1 < j < n}is a minimum
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convex dominating set of G = P,0P, and therefore v,,n(G) = |D| =
m(n—2). |

The following two results give exact values for weakly convex domina-
tion number of the Cartesian product of two paths.

Proposition 7 For m > 3,
7wcon(PmDP3) =m.

Proof. Let G = Pn0Ps, where V(G) = {(zi,y;) : =i € V(Pn),y; €
V(P3),1 <i<m1<j<3}and m > 3. It is sufficient to show that
D = {(zi,y2) : 1 <4 £ m} is a minimum weakly convex dominating set
of G. Suppose D' C V(G) is a weakly convex dominating set such that
|D’] < |D|. Then there exists ¢ such that (zi,1),(z:,y2) and (z;,ys) do
not belong to D’. Moreover, D’ is connected, so i = 1 or ¢ = m. Without
loss of generality, let i = m. Since D’ is dominating, (m-1,y;) € D’ for
J =1,2,3. Further, at least one vertex from Ng[(z1,y1)] belongs to D'.
We consider three cases.

(a) If (z1,41) € D', then Observation 3 implies that (z;,v;) € D’ for
1<i<m-—1and hence |D’| > m +1 > |D|, a contradiction.

(b) If (z2,v1) € D', then similarly like in Case (a), (z;,31) € D’ for
2 <i<m—1 and hence |D'| > m = | D|, which is impossible.

(c) If (z1,y2) € D', then by Observation 3, (z;,y2) € D' for1 <i < m-—1
and hence |D’| > m + 1 > |D|, which is a contradiction.

We conclude that yycon(G) = m. |

Theorem 8 For P,, and P, withm >n > 3,
Yweon(PmOPr) = (m - 2)(n — 2) + 4.

Proof. Let D be a minimum weakly convex dominating set of G = P,,0P,
where V(G) = {(zi,y;) : 2i € V(Pn),y; € V(Pa),1<i<m,1 <j<n}
and m > n > 3. By Observation 2, no extreme vertex is in D, so (z1,7;)
and (Zm,y1) have a neighbour in D. Observe that if v € Ng[(z1,91))
and w € Ng[(Zm,y1)), then every shortest (v —w) path contains (z3,y;) or
(z2,y2). Also, ifa € Ng[(z1,yn)] and b € Ng[(Zm,yn)], then every shortest
(a — b) path contains (z2,yn—1) or (z2,yn). Therefore, since D is weakly
convex, vertices (r2,y;) belongto Dfor2<j<n-—1.

Similarly we can justify that vertices (zm—1,y;) belongto D for2 < j <
n — 1. Hence, since D is weakly convex, from Observation 3, (z;,y;) € D
for2<i<m-land2<j<n-1.
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Since the extreme vertices are dominated, Observation 2 implies that
|D| 2 (m — 2)(n — 2) + 4 and thus Yyeon(G) = (m — 2)(n — 2) + 4.

On the other hand, D’ = {(z;,y;):2<i<m-1,2<j<n-1}uU
{(z2,yn)s (Zm—1,11), (Z1,¥2), (Tm,Yn—1)} is & weakly convex dominating
set of G of cardinality (n — 2)(m — 2) + 4 and hence Yycon(G) = (n —
2)(m —2) + 4. n

Next results consider weakly convex and convex domination numbers
in the Cartesian product of graphs with a universal vertex.

Proposition 9 Let G = G10G; end n(G3) < n(G1). Then

® Yucon(G) = n(G2)
® Yeon(G) = Yweon (G) = n(Ga) if and only if Gy has a universal vertes.

Proof. Let G = G,00G;, n(G3) < n(G1) and suppose Yycon(G) < n(G2).
Let D be a minimum weakly convex dominating set of G. Clearly, |D| <
n(G2) < n(G1). Hence there exists a vertex (u;,v;) € V(G) such that
V(G)ND = @ and V(Gi) N D = §. Thus, (u;,v;) has no neighbour in
D, which implies that D is not dominating, a contradiction. Therefore
7c:m(G) > ’)’wcon(G) 2 n(G‘Z)-

If u is a universal vertex of G, then it is easy to see that {u} x V(G3)
is a minimum convex dominating set of G and thus ¥.on(G) = Ywcon(G) =
‘n(Gz).

On the other hand, let D be a minimum convex dominating set of
G and Y,n(G) = |D| = n(G3). We claim, that D contains exactly one
vertex from each copy of G. If not, then there exists a copy G such that
V(Gi) N D = §. Hence Observation 4 implies that |D| > n(G;) and thus
n(G1) = n(G2) = |D|. Moreover, since D is dominating, G2 has a universal
vertex. In this situation we can exchange G; and G5 and we may claim
that D contains exactly one vertex from each copy of G;. Further, since
D is convex, there exists a copy G} such that D = V(GE). Since D is
dominating in G, u; is a universal vertex in Gj. [ ]

The following result is an immediate cosequence of the Proposition 9.

Corollary 10 Denote by K, a complete graph and by K, , a complete
bipartite graph. Then

(a,) 'Ycon(KpDKq) = 'chon(KpDKq) = mn{?; Q}‘
(b) 'Ycon(KpDKl,q) = '7wcon(KpDK1.q) = min{p,q + 1}'
(c) 'Ycon(Kl,pDKl,q) = 'chon(Kl,pDKl,q) = min{p + 1, q + 1}'
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Now we consider Cartesian product of a complete graph K, and path
P, =(v,...,v,) for myn >3.

Theorem 11 If G = K,,0P,,, where m,n > 3, then

Yweon (G) = 'Ycon(G) =n.

Proof. Let G = K,[1P,, where m,n > 3,and P, = (y1,...,yn). Moreover,
let D be a minimum weakly convex dominating set of G. Suppose |D| < n.
Then there exists a copy K, 1 < i < n such that V(K: )N D = 0. Since
D is weakly convex, i = 1 or i = n. Without loss of generality let i = 1.

Since Ng(V(K},)) = V(KZ), Observation 4 implies that V(K2 C D.
If V(Kz) N D = @, then again by Observation 4, V(K%!) C D and
since D is weakly convex, V(K}) C D, where 2 < i < n—1. Thus
|D| 2 m(n — 2) > 3n — 6 > n, a contradiction.

IfFV(K2)ND # 0, then (z;,y,) € D for some i = 1,...,m. Since
D is weakly convex and since V(KZ2,) C D, we also have (z;,y;) € D for
2 £ j < nand thus |D| > m+n —2 > n, a contradiction.

We conclude that |D| > n and for this reason Yeon(G) = Yweon(G) = n.
On the other hand, all vertices of any copy of P, in G form a convex
dominating set of G and hence Ywcon (G) = Yeon(G) = n. [ |

Our next result gives the exact value for the Cartesian product of a
graph K,, and a cycle C,,.

Theorem 12 If G = K,,[1C,,, where m > 4 and n > 3, then

'chon(G) = 'Ycon(G) =n.

Proof. Let G = K,,OC,, where m > 4 and n > 3. If m > n, then the
result follows from Proposition 9.

Assume 4 < m < n. Let D be a minimum weakly convex dominating
set of G. Suppose |D| < n. Then there exists a copy K, 1 <i < n such
that V(Ki) N D = 0. Without loss of generality let i = 3. Since D is
dominating, (x1,ys) has a neighbour in D. Without loss of generality let
(z1,v4) € D. Since D is weakly convex and n > 4, (z1,y2) ¢ D. By the
same reason, (z;,y2) ¢ D for | € {2,...,m}. Now, since D is dominating,
(zi,yx) € D for I € {2,...,m} and k € {1,4} (see Fig. 3). Further,
de((z1,y1), (z1,94)) = 3, so the weakly convexity of D implies that n < 6.
Thus, we have only three possibilities: G = K,00C5, G = K4;0Cg and
G = K3(OCs. However, since |D| > 8 > 6, we conclude that our assumption
|D| < n lead us to a contradiction.

||
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z1,vs) K=2.vs) T3, v8) T4 v8)

o—0— —& Q
Ty, v4) =2, v4) =3, ¥4) z4,v4)
@ vertex in D

) O Q) C O vertex not in D
(Jal.va) \Zzz‘vs) \l=3‘va) \?1-‘4.”)
Q Q Q———

(rg.vz) (zsz) T3, ¥2) T4, ¥2)

!=1.v1) #rzvn) (=3,v1) ’u-v:)

Figure 3: Main case of K,,[0C,, (some edges are omitted).

Now we consider the Cartesian product of a path P, and a cycle Cp,.
The ith copy C, of a cycle Cn, in G = CaOP,, where i € {1,...,n},
we call an extremal copy of Cr, in Gifi=1ori=n.

Lemma 13 Let D be a minimum weakly conver dominating set of G =
C0OP,, m > 4, such that |V(Ci)ND| <m -3 for someic€ {1,...,n}.
Then C?, is an eztremal copy of Crm in G.

Proof. Let D be a minimum weakly convex dominating set of G = CnOF,,
where m > 4 and |V(C:) N D| < m — 3 for some i € {1,...,n}. Suppose
Ct. is not an extremal copy of Cy, in G. In this situation there exists a set
A of consecutive vertices of C?, such that |A| > 3 and AND = 0. (If the
vertices of A would not be consecutive, then D would not be weakly convex
in G.) Without loss of generality, let {(z1, %), (z2,¥:), (z3,v:)} € A. Let us
denote B = {(z2,¥i-1), (Z2, ¥i+1)}. Since (x2,y;) is dominated, BND # @
and since D is weakly convex in G, |[BND|=1.

If (z2,yi-1) € D, then obviously (x2,%i+1) ¢ D. Notice that ev-
ery shortest ((zz,yi—1), (%3, ¥i+1))-path contains at least one vertex from
C = {(z2,:), (z3,¥:)}. Thus, since CND =0, (z3,yi+1) € D. Similarly
we may justify that (z1,yi41) € D and (x2,yi+1) ¢ D. If i = n — 1, then
dg(z2,¥i+1) = 3 and thus (z2,yi41) has no neighbour in D, a contradic-
tion. If # < n — 2, then the vertices (z2,¥i+1) and (z2,y;) belong to the
shortest ((z2,Yi+a), (z2,¥i—1))-path. Therefore, since D is weakly convex
in G, (z2,¥i+2) ¢ D. But then again (z2,¥:+1) is not dominated by D, a
contradiction.

The case when (z2,y:4+1) € D is similar to the previous one and thus is
omitted. We conclude that C?, is an extremal copy of Cp, in G. |
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Theorem 14 If G is the Cartesian product of the cycle C,, and the path
P,, where m > 6 and n > 2, then

Yeon (G) = Ywcon (G) = (Tl - 2)m

Proof. Let D be a minimum weakly convex dominating set of G = C,,,(0P,
where m > 6 and n > 2. For 1 < i < n let Ci, be the ith copy of Cp,.
Since the weakly convex domination number of a cycle Ci on k > 6 vertices
equals k, |V(C,)ND|=mor |V(CL)ND| <m-3. (If |V(CL)ND| €
{m —1,m — 2}, then D would not be weakly convex in G.)
By Lemma 13, if C}, is not an extremal copy C,, in G, then |V(C:,) N
D} =m. Thus, V(Cj) C Dfor1 < j < n and hence Yeon(G) > Yuweon (G) =
|D| =2 m(n —2).
On the other hand, notice that the set {(z;,y;):1<i<m,1<j<n}
is a convex dominating set of G and thus Yecon(G) = Ywcon (G) = m(n — 2).
]

Theorem 15 If G is the Cartesian product of the cycle Cp, and the path
P, where m € {4,5} and n > m, then

Yeon(G) = (m — 2)n.

Proof. Let G = C,0P, where m € {4,5} and n > m. It is easy to see
that D = {(z,y;) : 1 <i<m—2,1<j < n}isa convex dominating
set of G and thus v.0n(G) < (m — 2)n. Suppose there exists a convex
dominating set D’ in G with |D’| < |D|. Since [D’| < (m—2)n, there exists
an index j such that |V(CZ) N D'| < m — 3. Without loss of generality,
{(zk,y;): 1<k <3} CV(G)-D'.

Let 1 < j < n. Since D’ is dominating, (z2,y;-1) € D’ or (z3,y;4+1) €
D'. Assume (r2,yj—1) € D'. Then the convexity of D’ implies that
{(zx,y;) : 1 <k < m} C V(G) — D’ and since D' is connected, we con-
clude that {(zx,y):1 <k <m,j <l<n}CV(G) - D'. However, then
(%1,9j+1) does not have a neighbour in D’, which contradicts that D’ is
dominating. The case when (z2,yj4+1) € D’ is similar and thus is omitted.

Let j =1or j = n, say j = 1. Then (z2,y2) € D’ dominates (z2,¥1).
Now the convexity of D’ implies that {(zx,11):1 <k <m} C V(G) - D'.
Observe, that since D’ is dominating, {(zx,y2) : 1 <k <m} C D' and at
least one vertex of C7~? belongs to D'. Since D' is convex, we conclude
that {(zx,9) : 1 < k < m,2 <1 <n-1} C D'. For this reason,
|D'| 2 m(n—2) = mn—2m > mn—2n = (m—2)n = |D|, a contradiction.

We conclude that y¢0n (G) = (m — 2)n. [ |
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Theorem 16 If G is the Cartesian product of the cycle C¢ and the path

P,, where n > 3, then
'Ycon(G) = 6n -— 12.

Proof. Let G = C40P, where n > 3. It is easy to see that D = {(=;,y;) :
1<i<6,2<j<n-1}isa convex dominating set of G and thus
Yeon(G) < 6(n — 2) = 6n — 12. Suppose there exists a convex dominating
set D’ in G with |D'| < |D|. Since |D’| < 6(n—2), there exists an index j €
{2,...,n—1} such that |[V(CZ)N(V(G)— D’)| > 1. However D’ is convex,
s0 |V(C3)N(V(G)—-D’)| > 4 and the vertices of V(C%,)N(V(G)—D’) induce
a path in G. Without loss of generality, {(zr,y;): 1 < k <4} C V(G)-D'.
Now, by the similar reasoning as in previous proof we conclude that D’ is
not dominating in G or |D’| > |D|, a contradiction. Thus D is a minimum
convex dominating set of G. [ ]

3 Other graph products

The join of graphs G and Gy is the graph G = G; + G3, such that V(G) =
V(G1) UV(Gs) and E(G) = E(G1) U E(G2) U {uv|u € V(G1) and v €
V(G2)}. This definition imply the following.

Observation 17 For two connected graphs Gy and G»

1 ifG Gz h ] l vertez,
Yeon(G1+G2) =vm(cl+c:2)={ y T o Ga has a universal vertes

The corona G o H is the graph formed from a copy of G and |V(G)|
copies of H by joining the ith vertex of G to every vertex in the ith copy
of H.

Let V(G) = {z; : i =1,...,n} and let us denote by H; the i-th copy of
a graph H. The following observation is a consequence of the definition of
the corona.

Observation 18 If G o H is a corona of connected graphs G and H,
zi,x; € V(G) and v; € V(H;),v; € V(Hj) for i # j, then each (v; — v;)-
path contains vertices z;,x; and each (v; — z;)-path contains z;.

Certainly, if P = (vg, ..., v) is the shortest (vo —v;)-path in a connected
graph G, then v; # v; for every 4,5 € {0,...,1}.

Theorem 19 If G and H are connected graphs, then vYycon(G o H) =
Yeon(G o H) = n(G).
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Proof. It suffices to justify that V(G) is a minimum weakly convex domina-
ting set and minimum convex dominating set of G o H. Since every vertex
z; € V(G), (i = 1,...,n) dominates itself and the ith copy H; of a graph
H, V(G) is a dominating set of G o H.

By Observation 18, for every two vertices z;, z; € V(G), V(Peon(ziz;)) C
V(G) and thus V(G) is weakly convex and convex in G o H.

Since every convex dominating set is a weakly convex dominating set
and every weakly convex dominating set is a dominating set, v(G o H) <
Yweon(G © H) £ Yeon(G o H). Further, v(G o H) = n(G), so V(G) is a
minimum weakly convex dominating set and minimum convex dominating
set of Go H. ]
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