Weakly convex and convex domination numbers of some products of graphs

Agata Kucieńska agatakucienska@wp.pl Jabil Circuit Poland Sp. z o.o., Lotnicza 2, 82-500 Kwidzyn, Poland

Magdalena Lemańska*
magda@mif.pg.gda.pl
Gdansk University of Technology, Narutowicza 11/12,
80-233 Gdańsk, Poland

Joanna Raczek gardenia@pg.gda.pl Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

^{*}Corresponding author

Abstract

If G=(V,E) is a simple connected graph and $a,b\in V$, then a shortest (a-b) path is called a (u-v)-geodesic. A set $X\subseteq V$ is called weakly convex in G if for every two vertices $a,b\in X$ exists (a-b)- geodesic whose all vertices belong to X. A set X is convex in G if for every $a,b\in X$ all vertices from every (a-b)-geodesic belong to X. The weakly convex domination number of a graph G is the minimum cardinality of a weakly convex dominating set in G, while the convex domination number of a graph G is the minimum cardinality of a convex dominating set in G. In this paper we consider weakly convex and convex domination numbers of Cartesian product, join and corona of some classes of graphs.

Keywords: domination number, convex sets, Cartesian product AMS Subject Classification: 05C69, 05C38.

1 Definitions

Here we consider simple undirected and connected graphs G=(V,E) with |V|=n. The open neighbourhood $N_G(v)$ of a vertex $v\in V$ is the set of all vertices adjacent to v and the closed neighbourhood $N_G[v]$ of a vertex $v\in V$ is the set $N_G(v)\cup\{v\}$. The degree of a vertex v is $d_G(v)=|N_G(v)|$ and a vertex of degree n-1 is called a universal vertex. For a set $X\subseteq V$, the neighbourhood $N_G(X)$ is defined to be $\bigcup_{v\in X}N_G(v)$. A subset D of V is dominating if every vertex of V-D has at least one neighbour in D. Let $\gamma(G)$ be the minimum cardinality of a dominating set of G.

The distance $d_G(u,v)$ between two vertices u and v in a connected graph G is the length of a shortest (u-v) path in G. A (u-v) path of length $d_G(u,v)$ is called a (u-v)-geodesic. Let us denote by $\mathcal{P}_G(u,v)$ the set of all (u-v)-geodesics in G.

A set $X \subseteq V$ is called weakly convex in G, if there exists (a-b)-geodesic whose vertices all belong to X. A set X is convex in G if for all $a, b \in X$ all vertices from every (a-b)-geodesic belong to X. A set $X \subseteq V$ is a weakly convex dominating set in G if X is weakly convex and dominating. Further, X is a convex dominating set, if it is convex and dominating. The weakly convex domination number of a graph G, denoted $\gamma_{wcon}(G)$, is the minimum cardinality of a weakly convex dominating set, while the convex domination number of a graph G, denoted $\gamma_{con}(G)$, is the minimum cardinality of a convex dominating set. The convex and weakly convex domination numbers were first introduced by Jerzy Topp [4]. This parameters were also considered in [5], [6] and [7].

2 Cartesian product

The Cartesian product of two graphs G_1 , G_2 is the graph $G = G_1 \square G_2$ with a vertex set $V(G) = V(G_1) \times V(G_2)$ and two vertices (u_1, u_2) , (v_1, v_2) are incident in $G_1 \square G_2$ if and only if we have one of the two possibilities:

- a) $u_1 = v_1$ and $u_2v_2 \in E(G_1)$,
- b) $u_2 = v_2$ and $u_1v_1 \in E(G_2)$.

For $v_i \in V(G_2)$, G_1^i denotes the subgraph of $G = G_1 \square G_2$ induced by $V(G_1) \times \{v_i\}$ in G and we call G_1^i the *ith* copy of G_1 in $G_1 \square G_2$. If $V(G_2) = \{v_1, \ldots, v_n\}$, then G_1^i and G_1^j $(1 \le i, j \le n)$ are neighbouring copies in $G_1 \square G_2$ if $v_i v_j \in E(G_2)$.

In 1963 Vizing conjectured that $\gamma(G_1 \square G_2) \geq \gamma(G_1)\gamma(G_2)$. In [2] was proven that the following Vizing-type inequality for the convex domination number is true.

Theorem 1 [2] For connected graphs G_1 and G_2 ,

$$\gamma_{con}(G_1)\gamma_{con}(G_2) \leq \gamma_{con}(G_1 \square G_2).$$

The domination number of the Cartesian product of two paths have been intensively investigated, see for example [1, 3]. Nevertheless, the complexity of determining the value of $\gamma(P_m \square P_n)$ remains unknown. In this paper we give and prove exact values for the convex and weakly convex domination number of $P_m \square P_n$ for $m, n \geq 2$. Weakly convex and convex domination in torus, the cartesian product of a path and a cycle, was considered in [8].

If G is a graph $P_m \square P_n$, where $V(G) = \{(x_i, y_j) : x_i \in V(P_m), y_j \in V(P_n), 1 \leq i \leq m, 1 \leq j \leq n\}$, then let A denotes the set $\{(x_1, y_1), (x_1, y_n), (x_m, y_1), (x_m, y_n)\}$. Each element of A we call an extreme vertex.

Let $G = P_m \square P_2$. It is easy to observe that for m = 2 and m = 3, $\gamma_{wcon}(G) = \gamma_{con}(G) = 2$ and $\{(x_2, y_1), (x_2, y_2)\}$ is the minimum weakly convex and convex dominating set of G (see Fig. 1).

Figure 1: The Cartesian product $P_m \square P_2$, m = 2, 3.

We follow with straightforward observations.

Observation 2 If (x_i, y_j) and (x_k, y_l) are two distinct extreme vertices of $G = P_m \square P_n$ with m, n > 3, then $N_G[(x_i, y_i)] \cap N_G[(x_k, y_l)] = \emptyset$.

Observation 3 If $G = P_m \square P_n$, where $V(G) = \{(x_i, y_j) : x_i \in V(P_m), y_j \in V(P_n), 1 \le i \le m, 1 \le j \le n\}$, then

$$|\mathcal{P}_G((x_i, y_i), (x_k, y_i))| = |\mathcal{P}_G((x_i, y_i), (x_i, y_l))| = 1$$

for every $1 \le i, k \le m$ and $1 \le j, l \le n$.

Observation 4 If G_1^i and G_1^j are neighbouring copies of G_1 in $G = G_1 \square G_2$, then every vertex of $V(G_1^i)$ has exactly one neighbour in $V(G_1^j)$ and similarly, if G_2^i and G_2^j are neighbouring copies of G_2 in G, then every vertex of $V(G_2^i)$ has exactly one neighbour in $V(G_2^j)$.

Proposition 5 For $G = P_m \square P_2$ with m > 3,

$$\gamma_{wcon}(G) = \gamma_{con}(G) = m.$$

Proof. Let $G=P_m\square P_2$ where $V(G)=\{(x_i,y_j):x_i\in V(P_m),y_j\in V(P_2),j\in\{1,2\},1\leq i\leq m\}$ and let m>3. We show that $D=\{(x_i,y_1):1\leq i\leq m\}$ (see Fig. 2) is a minimum convex and weakly convex dominating set of G. Since it is obvious that D is weakly convex and dominating in G, $\gamma_{wcon}(G)\leq \gamma_{con}(G)\leq m$. Now we suppose that D is not minimum weakly convex dominating set of G. Hence there exists a weakly convex dominating set $D'\subseteq V(G)$ such that |D'|<|D|=m. Then there exists i such that $(x_i,y_1),(x_i,y_2)$ do not belong to D'. Since the subgraph induced by D' in G is connected, i=1 or i=m. Without loss of generality let i=m. D' is dominating, so $(x_{m-1},y_1)\in D'$ and $(x_{m-1},y_2)\in D'$. Moreover, at least one vertex from $N_G[(x_1,y_1)]$ belongs to D'. We consider three cases.

Figure 2: The Cartesian product $P_m \square P_2$, m > 3

(a) If $(x_1, y_1) \in D'$, then Observation 3 implies that $(x_i, y_1) \in D'$ for each $1 \le i \le m-1$ and hence $|D'| \ge m = |D|$, a contradiction.

- (b) If $(x_2, y_1) \in D'$, then similarly like in Case 1, we have $(x_i, y_1) \in D'$ for $2 \le i \le m 1$. Moreover, at least one vertex from $N_G[(x_1, y_2)]$ belongs to D', so again $|D'| \ge m = |D|$, which is impossible.
- (c) The case $(x_1, y_2) \in D'$ is similar to the Case (b) and hence is omitted.

Thus, D is a minimum convex and weakly convex dominating set of G.

Theorem 6 For P_m and P_n with $m \ge n \ge 3$,

$$\gamma_{con}(P_m \square P_n) = m(n-2).$$

Proof. Let $G = P_m \square P_n$, where $V(G) = \{(x_i, y_j) : x_i \in V(P_m), y_j \in V(P_n), 1 \leq i \leq m, 1 \leq j \leq n\}$ and let $m \geq n \geq 3$. We show that $D = \{(x_i, y_j) : 1 \leq i \leq m, 1 < j < n\}$ is a minimum convex dominating set of G. It is clear that D is convex and dominating in G. Suppose that D is not minimum. Then there exists a convex dominating set $D' \subseteq V(G)$ such that |D'| < |D|. We claim that $A \cap D' = \emptyset$, where A is the set of the extreme vertices of G. Without loss of generality, suppose that (x_1, y_1) belongs to D'. Since D' is dominating in G, $N_G[(x_m, y_n)] \cap D' \neq \emptyset$. We consider three cases.

- (a) If (x_{m-1}, y_n) belongs to D', then the convexity of D' implies that $|D'| \geq (m-1)n$. Moreover, since $m \geq n \geq 3$, $|D'| \geq mn n \geq mn 2m = |D|$, a contradiction.
- (b) If (x_m, y_{n-1}) belongs to D', then by the convexity of D' we have $|D'| \ge (n-1)m$, which is impossible.
- (c) If (x_m, y_n) belongs to D', then the convexity of D' implies that |D'| = mn and again |D'| > |D|, a contradiction.

Hence $A \cap D' = \emptyset$. Therefore, either (x_1, y_2) or (x_2, y_1) belongs to D' and similarly either (x_n, y_2) or (x_{n-1}, y_1) belongs to D'. Suppose $(x_2, y_1) \in D'$ and $(x_1, y_2) \notin D'$. Since $(x_1, y_1) \notin D'$ and (x_1, y_1) belongs to $\mathcal{P}_G((x_2, y_1), (x_1, y_{n-1})), (x_1, y_{n-1}) \notin D'$. This implies that $(x_2, y_n) \in D'$ and since D' is convex, $(x_2, y_j) \in D'$, $j \in \{2, \ldots, n-1\}$.

Since $(x_2, y_n) \in D'$ and $(x_m, y_n) \notin D'$, and (x_m, y_n) belongs to $\mathcal{P}_G((x_2, y_n), (x_m, y_{n-1}))$, we obtain that $(x_m, y_{n-1}) \notin D'$. Hence $(x_{m-1}, y_n) \in D'$. Moreover, $(x_{m-1}, y_1) \in D'$, because (x_{m-1}, y_1) belongs to $\mathcal{P}_G((x_2, y_1), (x_{m-1}, y_n))$. The convexity of D' implies that $(x_i, y_j) \in D'$ for 1 < i < m and $1 \le j \le n$. Therefore $|D'| \ge n(m-2) = |D|$, a contradiction.

Similarly we can show that if $(x_1, y_2) \in D'$, then $|D'| \ge m(n-2) = |D|$, a contradiction. Thus $D = \{(x_i, y_j) : 1 \le i \le m, 1 < j < n\}$ is a minimum

convex dominating set of $G = P_m \square P_n$ and therefore $\gamma_{con}(G) = |D| = m(n-2)$.

The following two results give exact values for weakly convex domination number of the Cartesian product of two paths.

Proposition 7 For $m \geq 3$,

$$\gamma_{wcon}(P_m \square P_3) = m.$$

Proof. Let $G = P_m \square P_3$, where $V(G) = \{(x_i, y_j) : x_i \in V(P_m), y_j \in V(P_3), 1 \leq i \leq m, 1 \leq j \leq 3\}$ and $m \geq 3$. It is sufficient to show that $D = \{(x_i, y_2) : 1 \leq i \leq m\}$ is a minimum weakly convex dominating set of G. Suppose $D' \subseteq V(G)$ is a weakly convex dominating set such that |D'| < |D|. Then there exists i such that $(x_i, y_1), (x_i, y_2)$ and (x_i, y_3) do not belong to D'. Moreover, D' is connected, so i = 1 or i = m. Without loss of generality, let i = m. Since D' is dominating, $(x_{m-1}, y_j) \in D'$ for j = 1, 2, 3. Further, at least one vertex from $N_G[(x_1, y_1)]$ belongs to D'. We consider three cases.

- (a) If $(x_1, y_1) \in D'$, then Observation 3 implies that $(x_i, y_1) \in D'$ for $1 \le i \le m-1$ and hence $|D'| \ge m+1 > |D|$, a contradiction.
- (b) If $(x_2, y_1) \in D'$, then similarly like in Case (a), $(x_i, y_1) \in D'$ for $2 \le i \le m-1$ and hence $|D'| \ge m = |D|$, which is impossible.
- (c) If $(x_1, y_2) \in D'$, then by Observation 3, $(x_i, y_2) \in D'$ for $1 \le i \le m-1$ and hence $|D'| \ge m+1 > |D|$, which is a contradiction.

We conclude that $\gamma_{wcon}(G) = m$.

Theorem 8 For P_m and P_n with $m \ge n > 3$,

$$\gamma_{wcon}(P_m \square P_n) = (m-2)(n-2) + 4.$$

Proof. Let D be a minimum weakly convex dominating set of $G = P_m \square P_n$ where $V(G) = \{(x_i, y_j) : x_i \in V(P_m), y_j \in V(P_n), 1 \leq i \leq m, 1 \leq j \leq n\}$ and $m \geq n > 3$. By Observation 2, no extreme vertex is in D, so (x_1, y_1) and (x_m, y_1) have a neighbour in D. Observe that if $v \in N_G[(x_1, y_1)]$ and $w \in N_G[(x_m, y_1)]$, then every shortest (v - w) path contains (x_2, y_1) or (x_2, y_2) . Also, if $a \in N_G[(x_1, y_n)]$ and $b \in N_G[(x_m, y_n)]$, then every shortest (a - b) path contains (x_2, y_{n-1}) or (x_2, y_n) . Therefore, since D is weakly convex, vertices (x_2, y_j) belong to D for $2 \leq j \leq n - 1$.

Similarly we can justify that vertices (x_{m-1}, y_j) belong to D for $2 \le j \le n-1$. Hence, since D is weakly convex, from Observation 3, $(x_i, y_j) \in D$ for $2 \le i \le m-1$ and $2 \le j \le n-1$.

Since the extreme vertices are dominated, Observation 2 implies that $|D| \ge (m-2)(n-2) + 4$ and thus $\gamma_{wcon}(G) \ge (m-2)(n-2) + 4$.

On the other hand, $D' = \{(x_i, y_j) : 2 \le i \le m - 1, 2 \le j \le n - 1\} \cup \{(x_2, y_n), (x_{m-1}, y_1), (x_1, y_2), (x_m, y_{n-1})\}$ is a weakly convex dominating set of G of cardinality (n-2)(m-2)+4 and hence $\gamma_{wcon}(G)=(n-2)(m-2)+4$.

Next results consider weakly convex and convex domination numbers in the Cartesian product of graphs with a universal vertex.

Proposition 9 Let $G = G_1 \square G_2$ and $n(G_2) \le n(G_1)$. Then

- $\gamma_{wcon}(G) \geq n(G_2)$
- $\gamma_{con}(G) = \gamma_{wcon}(G) = n(G_2)$ if and only if G_1 has a universal vertex.

Proof. Let $G = G_1 \square G_2$, $n(G_2) \leq n(G_1)$ and suppose $\gamma_{wcon}(G) < n(G_2)$. Let D be a minimum weakly convex dominating set of G. Clearly, $|D| < n(G_2) \leq n(G_1)$. Hence there exists a vertex $(u_i, v_j) \in V(G)$ such that $V(G_1^j) \cap D = \emptyset$ and $V(G_2^i) \cap D = \emptyset$. Thus, (u_i, v_j) has no neighbour in D, which implies that D is not dominating, a contradiction. Therefore $\gamma_{con}(G) \geq \gamma_{wcon}(G) \geq n(G_2)$.

If u is a universal vertex of G_1 , then it is easy to see that $\{u\} \times V(G_2)$ is a minimum convex dominating set of G and thus $\gamma_{con}(G) = \gamma_{wcon}(G) = n(G_2)$.

On the other hand, let D be a minimum convex dominating set of G and $\gamma_{con}(G) = |D| = n(G_2)$. We claim, that D contains exactly one vertex from each copy of G_1 . If not, then there exists a copy G_1^i such that $V(G_1^i) \cap D = \emptyset$. Hence Observation 4 implies that $|D| \geq n(G_1)$ and thus $n(G_1) = n(G_2) = |D|$. Moreover, since D is dominating, G_2 has a universal vertex. In this situation we can exchange G_1 and G_2 and we may claim that D contains exactly one vertex from each copy of G_1 . Further, since D is convex, there exists a copy G_2^i such that $D = V(G_2^i)$. Since D is dominating in G, u_i is a universal vertex in G_1 .

The following result is an immediate cosequence of the Proposition 9.

Corollary 10 Denote by K_p a complete graph and by $K_{p,q}$ a complete bipartite graph. Then

- (a) $\gamma_{con}(K_p \square K_q) = \gamma_{wcon}(K_p \square K_q) = \min\{p, q\}.$
- (b) $\gamma_{con}(K_p \square K_{1,q}) = \gamma_{wcon}(K_p \square K_{1,q}) = \min\{p, q+1\}.$
- (c) $\gamma_{con}(K_{1,p}\square K_{1,q}) = \gamma_{wcon}(K_{1,p}\square K_{1,q}) = \min\{p+1,q+1\}.$

Now we consider Cartesian product of a complete graph K_m and path $P_n = (v_1, \ldots, v_n)$ for $m, n \geq 3$.

Theorem 11 If $G = K_m \square P_n$, where $m, n \geq 3$, then

$$\gamma_{wcon}(G) = \gamma_{con}(G) = n.$$

Proof. Let $G = K_m \square P_n$, where $m, n \geq 3$, and $P_n = (y_1, \ldots, y_n)$. Moreover, let D be a minimum weakly convex dominating set of G. Suppose |D| < n. Then there exists a copy K_m^i , $1 \leq i \leq n$ such that $V(K_m^i) \cap D = \emptyset$. Since D is weakly convex, i = 1 or i = n. Without loss of generality let i = 1.

Since $N_G(V(K_m^1)) = V(K_m^2)$, Observation 4 implies that $V(K_m^2) \subseteq D$. If $V(K_m^n) \cap D = \emptyset$, then again by Observation 4, $V(K_m^{n-1}) \subseteq D$ and since D is weakly convex, $V(K_m^i) \subseteq D$, where $2 \le i \le n-1$. Thus $|D| \ge m(n-2) \ge 3n-6 \ge n$, a contradiction.

If $V(K_m^n) \cap D \neq \emptyset$, then $(x_i, y_n) \in D$ for some i = 1, ..., m. Since D is weakly convex and since $V(K_m^2) \subseteq D$, we also have $(x_i, y_j) \in D$ for $2 \le j \le n$ and thus $|D| \ge m + n - 2 \ge n$, a contradiction.

We conclude that $|D| \ge n$ and for this reason $\gamma_{con}(G) \ge \gamma_{wcon}(G) \ge n$. On the other hand, all vertices of any copy of P_n in G form a convex dominating set of G and hence $\gamma_{wcon}(G) = \gamma_{con}(G) = n$.

Our next result gives the exact value for the Cartesian product of a graph K_m and a cycle C_n .

Theorem 12 If $G = K_m \square C_n$, where $m \ge 4$ and $n \ge 3$, then

$$\gamma_{wcon}(G) = \gamma_{con}(G) = n.$$

Proof. Let $G = K_m \square C_n$, where $m \ge 4$ and $n \ge 3$. If $m \ge n$, then the result follows from Proposition 9.

Assume $4 \leq m < n$. Let D be a minimum weakly convex dominating set of G. Suppose |D| < n. Then there exists a copy K_m^i , $1 \leq i \leq n$ such that $V(K_m^i) \cap D = \emptyset$. Without loss of generality let i = 3. Since D is dominating, (x_1, y_3) has a neighbour in D. Without loss of generality let $(x_1, y_4) \in D$. Since D is weakly convex and n > 4, $(x_1, y_2) \notin D$. By the same reason, $(x_l, y_2) \notin D$ for $l \in \{2, \ldots, m\}$. Now, since D is dominating, $(x_l, y_k) \in D$ for $l \in \{2, \ldots, m\}$ and $k \in \{1, 4\}$ (see Fig. 3). Further, $d_G((x_1, y_1), (x_1, y_4)) = 3$, so the weakly convexity of D implies that $n \leq 6$. Thus, we have only three possibilities: $G = K_4 \square C_5$, $G = K_4 \square C_6$ and $G = K_5 \square C_6$. However, since $|D| \geq 8 > 6$, we conclude that our assumption |D| < n lead us to a contradiction.

Figure 3: Main case of $K_m \square C_n$ (some edges are omitted).

Now we consider the Cartesian product of a path P_n and a cycle C_m . The *ith* copy C_m^i of a cycle C_m in $G = C_m \square P_n$, where $i \in \{1, \ldots, n\}$, we call an *extremal copy* of C_m in G if i = 1 or i = n.

Lemma 13 Let D be a minimum weakly convex dominating set of $G = C_m \square P_n$, $m \ge 4$, such that $|V(C_m^i) \cap D| \le m-3$ for some $i \in \{1, \ldots, n\}$. Then C_m^i is an extremal copy of C_m in G.

Proof. Let D be a minimum weakly convex dominating set of $G = C_m \square P_n$, where $m \geq 4$ and $|V(C_m^i) \cap D| \leq m-3$ for some $i \in \{1,\ldots,n\}$. Suppose C_m^i is not an extremal copy of C_m in G. In this situation there exists a set A of consecutive vertices of C_m^i such that $|A| \geq 3$ and $A \cap D = \emptyset$. (If the vertices of A would not be consecutive, then D would not be weakly convex in G.) Without loss of generality, let $\{(x_1,y_i),(x_2,y_i),(x_3,y_i)\}\subseteq A$. Let us denote $B=\{(x_2,y_{i-1}),(x_2,y_{i+1})\}$. Since (x_2,y_i) is dominated, $B \cap D \neq \emptyset$ and since D is weakly convex in G, $|B \cap D| = 1$.

If $(x_2, y_{i-1}) \in D$, then obviously $(x_2, y_{i+1}) \notin D$. Notice that every shortest $((x_2, y_{i-1}), (x_3, y_{i+1}))$ -path contains at least one vertex from $C = \{(x_2, y_i), (x_3, y_i)\}$. Thus, since $C \cap D = \emptyset$, $(x_3, y_{i+1}) \notin D$. Similarly we may justify that $(x_1, y_{i+1}) \notin D$ and $(x_2, y_{i+1}) \notin D$. If i = n - 1, then $d_G(x_2, y_{i+1}) = 3$ and thus (x_2, y_{i+1}) has no neighbour in D, a contradiction. If $i \leq n - 2$, then the vertices (x_2, y_{i+1}) and (x_2, y_i) belong to the shortest $((x_2, y_{i+2}), (x_2, y_{i-1}))$ -path. Therefore, since D is weakly convex in G, $(x_2, y_{i+2}) \notin D$. But then again (x_2, y_{i+1}) is not dominated by D, a contradiction.

The case when $(x_2, y_{i+1}) \in D$ is similar to the previous one and thus is omitted. We conclude that C_m^i is an extremal copy of C_m in G.

Theorem 14 If G is the Cartesian product of the cycle C_m and the path P_n , where m > 6 and n > 2, then

$$\gamma_{con}(G) = \gamma_{wcon}(G) = (n-2)m.$$

Proof. Let D be a minimum weakly convex dominating set of $G = C_m \square P_n$ where m > 6 and n > 2. For $1 \le i \le n$ let C_m^i be the ith copy of C_m . Since the weakly convex domination number of a cycle C_k on k > 6 vertices equals k, $|V(C_m^i) \cap D| = m$ or $|V(C_m^i) \cap D| \le m - 3$. (If $|V(C_m^i) \cap D| \in \{m-1, m-2\}$, then D would not be weakly convex in G.)

By Lemma 13, if C_m^i is not an extremal copy C_m in G, then $|V(C_m^i) \cap D| = m$. Thus, $V(C_m^j) \subseteq D$ for 1 < j < n and hence $\gamma_{con}(G) \ge \gamma_{wcon}(G) = |D| \ge m(n-2)$.

On the other hand, notice that the set $\{(x_i, y_j) : 1 \le i \le m, 1 < j < n\}$ is a convex dominating set of G and thus $\gamma_{con}(G) = \gamma_{wcon}(G) = m(n-2)$.

Theorem 15 If G is the Cartesian product of the cycle C_m and the path P_n , where $m \in \{4,5\}$ and $n \ge m$, then

$$\gamma_{con}(G)=(m-2)n.$$

Proof. Let $G = C_m \square P_n$ where $m \in \{4,5\}$ and $n \ge m$. It is easy to see that $D = \{(x_i, y_j) : 1 \le i \le m-2, 1 \le j \le n\}$ is a convex dominating set of G and thus $\gamma_{con}(G) \le (m-2)n$. Suppose there exists a convex dominating set D' in G with |D'| < |D|. Since |D'| < (m-2)n, there exists an index j such that $|V(C_m^j) \cap D'| \le m-3$. Without loss of generality, $\{(x_k, y_j) : 1 \le k \le 3\} \subseteq V(G) - D'$.

Let 1 < j < n. Since D' is dominating, $(x_2, y_{j-1}) \in D'$ or $(x_2, y_{j+1}) \in D'$. Assume $(x_2, y_{j-1}) \in D'$. Then the convexity of D' implies that $\{(x_k, y_j) : 1 \le k \le m\} \subseteq V(G) - D'$ and since D' is connected, we conclude that $\{(x_k, y_l) : 1 \le k \le m, j \le l \le n\} \subseteq V(G) - D'$. However, then (x_1, y_{j+1}) does not have a neighbour in D', which contradicts that D' is dominating. The case when $(x_2, y_{j+1}) \in D'$ is similar and thus is omitted.

Let j=1 or j=n, say j=1. Then $(x_2,y_2)\in D'$ dominates (x_2,y_1) . Now the convexity of D' implies that $\{(x_k,y_1):1\leq k\leq m\}\subseteq V(G)-D'$. Observe, that since D' is dominating, $\{(x_k,y_2):1\leq k\leq m\}\subseteq D'$ and at least one vertex of C_m^{n-1} belongs to D'. Since D' is convex, we conclude that $\{(x_k,y_l):1\leq k\leq m,2\leq l\leq n-1\}\subseteq D'$. For this reason, $|D'|\geq m(n-2)=mn-2m\geq mn-2n=(m-2)n=|D|$, a contradiction.

We conclude that $\gamma_{con}(G) = (m-2)n$.

Theorem 16 If G is the Cartesian product of the cycle C_6 and the path P_n , where $n \geq 3$, then

$$\gamma_{con}(G) = 6n - 12.$$

Proof. Let $G = C_6 \square P_n$ where $n \geq 3$. It is easy to see that $D = \{(x_i, y_j) : 1 \leq i \leq 6, 2 \leq j \leq n-1\}$ is a convex dominating set of G and thus $\gamma_{con}(G) \leq 6(n-2) = 6n-12$. Suppose there exists a convex dominating set D' in G with |D'| < |D|. Since |D'| < 6(n-2), there exists an index $j \in \{2, \ldots, n-1\}$ such that $|V(C_m^j) \cap (V(G) - D')| \geq 1$. However D' is convex, so $|V(C_m^j) \cap (V(G) - D')| \geq 4$ and the vertices of $V(C_m^j) \cap (V(G) - D')$ induce a path in G. Without loss of generality, $\{(x_k, y_j) : 1 \leq k \leq 4\} \subseteq V(G) - D'$. Now, by the similar reasoning as in previous proof we conclude that D' is not dominating in G or $|D'| \geq |D|$, a contradiction. Thus D is a minimum convex dominating set of G.

3 Other graph products

The join of graphs G_1 and G_2 is the graph $G = G_1 + G_2$, such that $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup \{uv | u \in V(G_1) \text{ and } v \in V(G_2)\}$. This definition imply the following.

Observation 17 For two connected graphs G_1 and G_2

$$\gamma_{con}(G_1+G_2) = \gamma_{wcon}(G_1+G_2) = \begin{cases} 1 & \text{if } G_1 \text{ or } G_2 \text{ has a universal vertex,} \\ 2 & \text{otherwise.} \end{cases}$$

The corona $G \circ H$ is the graph formed from a copy of G and |V(G)| copies of H by joining the *ith* vertex of G to every vertex in the *ith* copy of H.

Let $V(G) = \{x_i : i = 1, ..., n\}$ and let us denote by H_i the *i-th* copy of a graph H. The following observation is a consequence of the definition of the corona.

Observation 18 If $G \circ H$ is a corona of connected graphs G and H, $x_i, x_j \in V(G)$ and $v_i \in V(H_i), v_j \in V(H_j)$ for $i \neq j$, then each $(v_i - v_j)$ -path contains vertices x_i, x_j and each $(v_i - x_j)$ -path contains x_i .

Certainly, if $P = (v_0, \ldots, v_l)$ is the shortest $(v_0 - v_l)$ -path in a connected graph G, then $v_i \neq v_j$ for every $i, j \in \{0, \ldots, l\}$.

Theorem 19 If G and H are connected graphs, then $\gamma_{wcon}(G \circ H) = \gamma_{con}(G \circ H) = n(G)$.

Proof. It suffices to justify that V(G) is a minimum weakly convex dominating set and minimum convex dominating set of $G \circ H$. Since every vertex $x_i \in V(G)$, (i = 1, ..., n) dominates itself and the *ith* copy H_i of a graph H, V(G) is a dominating set of $G \circ H$.

By Observation 18, for every two vertices $x_i, x_j \in V(G), V(\mathcal{P}_{G \circ H}(x_i x_j)) \subseteq V(G)$ and thus V(G) is weakly convex and convex in $G \circ H$.

Since every convex dominating set is a weakly convex dominating set and every weakly convex dominating set is a dominating set, $\gamma(G \circ H) \leq \gamma_{wcon}(G \circ H) \leq \gamma_{con}(G \circ H)$. Further, $\gamma(G \circ H) = n(G)$, so V(G) is a minimum weakly convex dominating set and minimum convex dominating set of $G \circ H$.

References

- [1] T. Y. Chang, W. E. Clark and E. O. Hare, Domination numbers of complete grid graphs, Ars Combin. 38 (1994), 97-111.
- [2] J. Cyman, M. Lemańska, J. Raczek, Graphs with convex domination number close to their order, Discussiones Math. Graph Theory 26 (2006), 307-316.
- [3] M. H. El-Zahar, S. M. Khamis and Kh. M. Nazzal, On the domination number of the cartesian product of the cycle of length n and any graph, Discrete Applied Math. 155 (2007), 515-522.
- [4] J. Topp, Personal communication, Gdansk University of Technology, Gdańsk, 2002.
- [5] Magdalena Lemaśka, Weakly convex and convex domination numbers, Opuscula Mathematica 24/2 (2004), 181-188.
- [6] Magdalena Lemańska, Nordhaus-Gaddum results for the weakly convex domination number of a graph, Disscussiones Mathematicae Graph Theory 30(2) (2010).
- [7] M. Lemańska, J.A. Rodriguez-Velazquez, I. Gonzalez Yero, Nordhaus-Gaddum results for the convex domination number of a graph, submitted for publication.
- [8] J. Raczek, M. Lemańska, A note on the weakly convex and convex domination numbers of a torus, Discrete Applied Math. 158 (2010), 1708-1713.