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Abstract

Let %(n,d) be the set of bicyclic graphs with both n vertices
and diameter d, and let & consist of three paths ugw;vo, uowavo
and uowsvg. For four nonnegative integers n,d, k, j satisfying n >
d+3,d =k+j+2, we let B(n,d;k,j) denote the bicyclic graph
obtained from 6* by attaching a path of length k to uo, attaching
a path of length 7 to vertex vp and n — d — 3 pedant edges to wvo,
and let #(n,d;k,j) = {B(n,d;k,j5)|k+ j = 1}. In this paper, the
extremal graphs with the minimal least eigenvalue among all graphs
in #(n,d; k,j) are well characterized, some structural characteriza-
tions about the extremal graphs with the minimal least eigenvalue
among all graphs in #B(n,d) are presented as well.
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1 Introduction

All graphs considered here are simple and undirected. Denote by V(G)
and E'(G) the vertex set and edge set of a graph G respectively. |[V(G)| is
always called the order of G. For S C V(G), let G[S] denote the subgraph
induced by S. For a vertex set {v), vs, ..., vx}, we denote by Glvy, v, ...,
vk] simply for G[{vi, v, ..., ux}] sometimes. Let Ng(v) denote the set of
the vertices adjacent to v in G. The degree of v in G, denoted by dg(v),
d(v) or deg(v), is equal to |[Ng(v)|.

Let W = wejviez- - exvr (€ = v;—1v; for 1 < i < k) denote a walk
in a graph G. A walk is also denoted simply by W = (vo, vy, ..., v),
W = vv;---vx or W = ejey - - - e if there is no ambiguity; the positive
integer k is called the length of the walk W, denoted by L(W). A cycle
with length & is always called k-cycle, denoted by Ci. A path with order
n is denoted by P,,. In a graph G, the length of the shortest path from
v; to v; is called the distance between v; and v;, denoted by dg(vi,v;) or
d(vi,v;). d(G) = max{d(v;, v;)| v, v; € V(G)} is called the diameter of
the graph G.

Definition 1.1 Let A be a nonnegative irreducible square matriz. The
spectral radius, denoted by p(A), is the mazimum of the moduli of its eigen-
values.

Theorem 1.2 (Perron-Frobenius [9]) Let A be a nonnegative irreducible
square real matriz with order n. Suppose A1, Aa, ..., An are all the eigen-
values of A. Then

(i) p(A) is a simple eigenvalue of A and |\;| < p(A) for any eigenvalue
Ai(1<i<n);

(ii) there exists a positive unit eigenvector corresponding to p(A), which
is called the Perron vector of A.

Let A(G) be the adjacency matrix of a graph G. The characteristic
polynomial of A(G) is called the characteristic polynomial of graph G,
denoted by P(G) (or P(G,)\)). Suppose A\; > Ay > .-+ > A, are the
eigenvalues of A(G). The largest eigenvalue of A(G) is called the spectral
radius of G, denoted by p(G). The Perron vector X = (z4,, Tuy, ---,
Ty, )7 is the non-negative unit eigenvector corresponding to p(G), where z,,
corresponds to the vertex v;. By the Perron-Frobenius theorem, the Perron
vector is a positive vector for a connected graph. The least eigenvalue
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An(G) of graph G can be denoted by A(G) simply. It is well known that
MG) = —p(G) for a hipartite graph (see (3]).

Definition 1.3 A connected graph G with order n is called a bicyclic graph
if |[E(G)|=n+1. Let B(n,d) = {G| G be a bicyclic graph with both order
n and diameter d} and Ag = min{A.(G)| G € B(n,d), n > d+3,d > 3}.

Definition 1.4 Let 8* consist of three paths uow;vg, owavp and upwWsvp.
For four nonnegative integers n,d, k,j satisfyingn >d+3,d=k+j+2,
we let B(n,d; k, j) denote the bicyclic graph obtained from * by attaching a
path of length k to ug, attaching a path of length j to vertex vo and n—d—3
pedant edges to vy (see Fig. 1.1). Let B(n,d;k,j) = {B(n,d; k,j)|d > 3}
and let Ag = min{\,(G)|G € B(n,d; k,j)}.

wy

Uk Uy U wy . vj
0 U -

w3
Fig. 1.1. B(n,d;k,7)

The investigation on the lower bound of the least eigenvalue of a graph
is of great significance and interest (see [1], [2], [4], [7], etc.). In 2008,
M. Petrovié [10] characterized the bicyclic graphs with the minimal least
eigenvalue among all the graphs with given order. In this paper, we consider
the hicyclic graphs with the minimal least eigenvalue Ap among %(n,d)
(n > d+3,d > 3). The paper is organized as follows: Section 1 introduces
the hasic ideas of spectra of graphs and their supports; Section 2 introduces
series of working lemmas; Section 3 presents some basic results; Section
4 presents some structural characterizations about the extremal graphs
with the minimal least eigenvalue among all graphs in &(n,d); Section 5
characterizes the extremal graphs with the minimal least eigenvalue among
all graphs in %B(n,d;k, j); Section 6 conjectures that the extremal graphs
with the minimal least eigenvalue among all graphs in #&(n,d; k, j) are also
the extremal graphs with the minimal least eigenvalue among all graphs in
B(n,d).

2 Preliminaries

Lemma 2.1 ([12]) Let A be an n x n real symmetric irreducible non-
negative matriz and X € R™ be an unit vector. If p(A) = XTAX, then
AX = p(A)X.
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Lemma 2.2 ([14]) Let G be a connected bipartite graph with order n. Let
X =(z1,%2,...,2,)T be a real unit vector such that MG) = XTAX. Then
z; #0 foreach1 <i < n.

Let % (n,d) denote the set of unicyclic graphs with both order n and
diameter d.

Fig. 2.1. U},

Lemma 2.3 ([14]) For every pair of positive integers n,d with 3 < d <
n — 2, there is (up to isomorphism) an unique graph in %, 4 that has the

minimal least eigenvalue among all graphs in %, 4, namely, U™y%~2 ,_,
' ==, I54

for3<d<n-6andU% %2, , forn—5<d<n—2, where U¥_ (see
L=, 1521 P
Fig. 2.1) denotes the graph obtained from a 4-cycle by attaching k pendant

edges and a path with length q to a vertez u, and attaching a path with
length p to the vertex not adjacent to u.

Lemma 2.4 ([8]) Let the connected graph G, be obtained from G by
attaching two pendant paths Py, and Py, at vertices u and v respectively,
dlu,v) =m. Ifk>1>1, then P(GTY) > p(Gii1,-1) if Gy satisfies one
of the following conditions:

(1) m = 0,degg(u) 21 and k >1>1;
(2) m = 1,degg(u) > 2,degg(v) 22, and k > 1> 1;
(3) m > 1,degg(u) > 2,degg(v) > 2, and k-1 >m,l > 1.

Lemma 2.5 ([13]) Let u,v be two vertices of a connected graph G. Sup-
pose v1,v3,..., vs (1 < s < d,) are some vertices of Ng(v)\Ng(u) and
X = (21, T2, ..., Tn)7T is the Perron vector of G, where z; corresponds to
the vertex v; (1 <1 < n). Let G* be the graph obtained from G by deleting
the edges (v,v;) and adding the edges (u,v;) (1 <1< 3). If z, > x, then
p(G) < p(G").

Lemma 2.6 ([13]) Let graphs G and G* be as in Lemma 2.5. If G* is

also connected, suppose X = (z, z3, 3, ..., Tn_1, Tn)T is the Perron
vector of G* where x; corresponds to vertex v, || X ||= 1, then =, > z,.
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Let G, H be two disjoint connected graphs with v € V(G) and w €
V(H). We denote by GuwH the graph obtained from G and H by identi-
fying u with w (See Fig. 2.2).

Lo e

Fig. 2.2 GuwH and GuwH.

Lemma 2.7 ([4]) Let G, H be two disjoint nontrivial connected graphs
with u,v € V(G) and w € V(H). Let X be an unit eigenvector correspond-
ing to A\(GuwH). If |z.| < |zy|, then A(GuwH) > M(GuwH). The equality
holds if and only if X is also an eigenvector corresponding to AM(GvwH),
Ty = T, and zieNH(w) x; =0.

Lemma 2.8 ([6, 8]) Let G, and G3 be two graphs. If Gy is a proper
subgraph of G1. Then p(Gs2) < p(G1) and for A 2 p(G1), P(Gz,A) >
P(Gy, A).

Lemma 2.9 ([8]) Let G and H be two connected graphs such that P(G, \) >
P(H,)) for A > p(H) or A = p(G), then p(G) < p(H).

Let G be a connected simple graph with uv € E(G). The graph Gy,
is obtained from G by subdividing the edge uv, that is, introducing a new
vertex on the edge uv; while the graph G*V is obtained by contracting uv,
that is, deleting the edge uv, deleting possible multiple edge and identifying
the two vertices u,v. Suppose Gvy, v2, ..., vx] (k = 1) is a path of graph
G,de(v) =2 (2 <i< k~-1)and dg(vi) > 3 (i = 1,k) (or Gluv1, vz,
.+, Ug) is a cycle if k > 3, dg(vi) =2 (2 £ i £ k) and dg(v1) 2> 3), then
the induced graph Glvy, v, ..., vg] (k > 2) can be called an internal path
of G. Let T, (n > 6) be the graph obtained from a path vjv--:v,_4 by
attaching two pendant edges to v, and another two to v,_4. Hoffman and
Smith showed the following result.

Lemma 2.10 ([5}) Let G be a connected graph and G 2 T,,G 2 Cp. If
the edge uv belongs to an internal path of G, then p(G,.) < p(G).

Lemma 2.11 ([11]) Let v be a vertex of graph G and C(v) be the set of
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cycles containing v. Then

P(G,\)=AP(G-v,A)— > P(G-v-4,))-2 3 P(@G-V(C),).
uENg(v) CeC(v) ( )
1

Let u be a pendant vertex of a graph G and v be its neighbor. It follows
from Lemma 2.9 that

P(G,A) = AP(G —u,\) = P(G — u — v, )\). (2)

3 Some basic results

Let G = G1vov; Px denote the graph obtained from graph G; and path P;
by adding an edge vov; between the vertex vp of G; and a pedant vertex
vy of Py (see Fig. 3.1).

v Vi— v
Gl@ v Vg k-1 Uk

F'ig. 3.1. leolek.,.l

Lemma 3.1 Let A be the adjacency matriz of the graph G = Gyvov, Py
(see Fig. 3.1) with order n, A; (1 < i < n) be the ith largest eigenvalue
of A. Suppose X; = (Zip, Ti1, Ti2, -+ Tik, Tik+l, -« - xi,n—l)T is
an eigenvector corresponding to eigenvalue A; and z;, (0 < s < n—1)
corresponds to vertex vs. Let fi = A; and fi41 = N — 71; Then z;k—; =
fiTik—j+1 for 1 < j < k and we have

(i) \
SL<fH<N, if A2
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(1) [fi+rl <Ifsl of |l 2 2
(i) fix1fi 2 Ml A<k =1)if |A] 222
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In particular,
{ fin1fi 283(1<j<k-1) if |Ai] = 2.3095;

fierfi 28N (15 <k—-1)  if |24

Proof. (i) Noting that z;x—1 = AiTix = fizik and Tik—2 + Tik =
)\,-:zi,k_l, we get

1 1
Tik—2 = (A — —)Tik—1 = (Ai — =)Ti k-1 = foTik—1-
A h

1 .
So, by induction, fj;1 = A; — T and T = fiTir—j+1 for 1 < j<k.
J

We prove that % < fi < A if Ay 2 2 firstly. It is easy to check that

i Ai
% < f2 if Ay 2 2. Suppose that —21 < f;j £ Aifor j < N. Because
1 2 1 2 1
et so -t gt < a- 2 < fy < - —. Note
In Fn-1 50 )‘i2 .§N~1 Ai \ i fnsh Ai
that if A\; > 2, then \; — X > é Therefore, —21 < fn < A;. By induction,
i
we get % <fishif 22 If A £-2, % > fj 2 A can be similarly
proved.

Same as (i), (ii) and (iii) can be proved. O

Let G = G1v9G2 denote the graph obtained from graph G by attaching
graph G, to the vertex vo of G;.

vy U2 Uizt
.-%—“ (N
Uy u2 U1 uy u%_l
4 3
Fig. 3.2 58,56
Let o4 = leoCk’U;Pt_...i.l where k is even and dg,(vo) > 2 (see
Fig. 3.2), V(Ck) = {‘Uo, V1, U2y oo vy v;_!_.., ’Uk_ﬁ_z, v§, Uy, U2, +.oy Uk= 2}
V(P__;__’_l) —(Uk v§+1, ,’Ut) and V(Gl {‘vo, 81y 82, -y sn—tm—z-—l}
Let graph = G'lvoCk where & is odd (see Fig. 3. 2) V(Gy) = {vo, 815
$2, sn—k} V(Ck) = {UO; U1, V2, ..oy v"_fl y UL, Uy ..oy Uk 1}
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Lemma 3.2 (i) For the graph 5 (see Fig. 3.2), there must be a nonzero
eigenvector X; = (Ziwvy, Ti,sys Tiysg, - Tis

et —

5;3—1’ xi,v; ] xi,ug: ey
Tivi_q» xi,‘ug: xi,u“ xi,ugy ooy Tiugogsr Tijvgias Tivgiar ++ oy xi,v:)T corre-
sponding to eigenvalue \; where x;, corresponds to vertex v satisfying the
following:

1° Ziv; = Tiu; (1<5< '—2'2);

2° Tiv,_j —fjxtvg —it+1 ( <Jj<t t?‘é_): 233:0%3 _‘fg._ -ﬁzzu§:
where fi = Ay, fip1=Ai— 7;:

3° f; (1 £j Lt) satisfies (i), (i), (ii) in Lemma 3.1.

(i) For the graph 5% (see Fig. 3.2), there must be a nonzero eigen-
vector X; = (Ti o, Tiysyr Tisgr «+vr Tiysn_xr LTiyvyr Lijugs « - s xi’"ii—" Tiuy
Tiugy - s Tiyup )T corresponding to eigenvalue \; where x;, corresponds

to verter v satisfying the following:
1° Ty, = Ti, (LS5 <551,
2° Tiw,_; = fiTiwejun (1 <G < E5L), where fi = Ni—1, fip1 = Ai—Tl;;
3° f; (1 < j < 551) satisfies (i), (i) in Lemma 3.1;

5° fi+1fi 2 1Nl (1< S 553 if M| 2 2.

Proof. (i) For 4, suppose X; does not satisfy 1°. Then there exists
: k=4 —

xi,v,' 79 xi,u_,'(l ..<. J S _2'_) Let Sl - {xi,uos Tisy Ti 82y «+ Tis k=2

ne— ——’——1

xi,vé’ xi,‘u&;_gy Tivgigsr = zi,vg}) ‘/1 = {UO) 81, 82y «. oy sn_g_L;ﬁ_l, ’Ui_,

kt2, 'U"_;i, .oy ’Ug} SZ = {xi,‘m, Tivgy oy Tiwp_as Tiuys Tijugs -+ oy Tiug_q })
' ' ' ' '
and let X ( T; vos :r:t w10 Tigogr o Tis  wg 0 Tiwn Tiwgr oo Tijwg g
ko2 ko2

7 ’ ¢+ 7

’
T .
xi,v; ) xiyuly xi,uzs ooy xi,uhi_;: ) xi,uk l 2 xi,v§+2, ey xi,v,) satlsfy

’
Ty =Tiyp UG‘/];

’

= - i< k=2
Tiw, = Tiuy Ty = Tiw, 1S7S 555

Then X,f is also an eigenvector corresponding to A;.
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’ ’ ’
Let S3 = {z;,, + Ti,uys Tiy + Tiyar -+ Tipy,_, T Tijvp—s }. If there
k2

exists one element in S; | J S3 is nonzero, then Y = X; +X,f is also a nonzero
eigenvector corresponding to A; and satisfies 1°. If each element in S | J S3
is zero. Note that X; is nonzero, so there exists at least one element in S;
is nonzero. Suppose Z;,; #0 (1 <j5 < -’-‘—;—2) and z;,, =0 (1 <1<j). By
a rotation, then we obtain a nonzero vector Y; corresponding to A;, where

r Yivo = Tiupy Yiuy = Tiupgqs o0 oo yi,v;_, = xi,V§ y
yi,‘vé_“'l =Tiup_z:» yi.‘uﬁ‘_H’2 =Tiup_qr )yi,v§ = xi’u"-z-(l-l)’
q Yiur_r = xi,uk_z_,y yi,uk_;;_l = xi'uk-z_‘_la coos Yiugy = Tian

Yiouy = Tiwgy Yiuoy = Tiwgy -+ Yiug = Tiugs

Yi,v = Ti, veW.

As X ;, we can construct an eigenvector Yi' corresponding to A; such that
Z =Y;+Y, is also a nonzero eigenvector corresponding to A; satisfying 1°.

1

Similar to the proof of Lemma 3.1, we can prove 2°,3° of (i).

In a same way, we can prove that (i) holds. O

4 Structural characterizations of the extremal
graphs with the minimal least eigenvalue in
B(n,d)

Definition 4.1 LetG € %B(n,d). We call the shortest path P; ; from vertex
v; to v; a diameter-path in G if the length of P; ; is equal to d, where v;
and v; are called the end vertices of P; ;.

Definition 4.2 Let G consist of connected graph Gy and tree T; (1 <i <
k) (see Fig. 4.1) with order t; (t; > 2), where V(T;)NV(G1) = {vi}.
Vertez v; is called the root of the tree T; on Gy; T; is called nontrivial
attaching tree to Gy with root v; (or rooted at v;). We say a path P pass
through T if |[V(P)NV(T3)| = 1.
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N

Fig. 4.1. attaching tree Fig. 4.2. Ug!

Let Uit (see Fig. 4.2) denote the graph obtained from a 4-cycle by
attaching ¢ pendant edges and a path with length g to a vertex u, and
attaching s pendant edges and a path with length p to the vertex v not

adjacent to u.

Lemma 4.3 Let G € #(n,d) (n > d+ 3,d > 3) and A\,(G) = Ag. Then
there G is a bipartite graph.

Proof. Suppose the lemma does not hold. Then there exist an odd cycle
in G. Suppose that C; is an odd cycle, and suppose that X = (z;, z3, 3,
.+ Tn-1, Tn)T is an unit eigenvector corresponding to eigenvalue A(G) in
which z; corresponds to vertex v;. There must be an edge e; = v,v54; on
C; such that z,z;41 > 0 or 2,251 = 0. Let H; = G — ey, d = d(H,).
Then d' > d, A\(H,) < AMG), alnd A(H,) is an unicyclic graplh. By Lemma
2.3, we have A(H,) > MU™;¢ "2 , | )Yor A(Hy) 2 AU™;¢ 72, . ). By
L&=1 151 ===
Lemmas 2.4 and 2.3, there exists an U3} (p+9+2 =d,s+t+p+g+4=n)
such that p(Upy) > p(U"d','fa'2 o 1) or p(Ugit) > p(U";,'f;z o _a.)- Note

that Ugt, U4 ~2 gy, and U "¢ 2 ._,. are all bipartite. Therefore,
=1 550 L= 00571

AUt < "(Uff'f;]zr«'-q ) or AUSY) < A(U[j;‘_‘;ﬁd,_,] ). By Lemma
e Rl e -l ) e aand
) —d-2 , —d~2

2.3, we have A(Upt) > ’\(Urii—aj.f“—;—‘]) or \(Upz) > A(U{'i;ljy[d_;_,]).

n—d—2 n—d-—-2 . — Jm—d-2
For Ulii-g].fii-w or Uli;_z”i;_z] (see Fig. 2.1), let Hp = Ul%_s“.ii_,] +

_ prn-d=2 n—d—2
tv, Hz = U[i;ij.f"—;—’] + tv. Then p(Hz) > p(Uli_raJ'ri;_,]), p(Hs) >

p(Ur%jﬁ%_,]). Note that U[g_;fr%], U{‘d_;fri?], Ho and Hs are all

bipartite. Therefore, \(U"z%"2 ,_, ) > A(Ha), AU™S 2, ,.) > A(Ha).
L= M54 1211534

Hence A(G) > A(Hz2) or A(G) > A(HM3), which contradicts A\,(G) = Ag.

Then the lemma follows. 0O

Definition 4.4 The union of simple graphs H and G is the simple graph

G H with vertez set V(G)|JV(H) and edge set E(G)|J E(H). The in-
tersection G| H of simple graphs H and G is defined analogously.
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Lemma 4.5 Let G € B(n,d) (n > d+3,d > 3) and M\,(G) = Ap. Suppose
C) and C, are two different cycles in G. Let 9 = C;|JC2. Then

(i) C, and Cy have common vertices in G;
(ii) in fact, @ is the union of two 4-cycles;

(iii) 2 have common vertices with a diameter-path P4, and all the ver-
tices in V(G)\\V(2U Pi) are pendant vertices attaching to one vertez of
2.

Proof. Suppose the Lemma does not hold. By Lemma 4.3, we know that
L(C1) 24,L(C2) 2 4.

Case 1 C1(C; =

Subcase 1.1 Both C;, C; have common vertices with a diameter-path
P,

Suppose Cy (1 Py = P;,Co\Py= Py and C; = PLUP;,C2 = P,UP;.
Then L(P;) < [L(gl) ——],L(P) £ [L(202)] Suppose the path between C;

and C; on diameter-path P are path P; and P3(\C) = Va, P3N Cy = w.
Let & =C; UCQ UPd and Py =P, U B U P U P2UPf (Pl nPd)\{'Ua} =
{ve} = P.NC1, (PaNPi)\{ws} = {vs} = Py N C; (see Fig. 4.3).

Pa_ w vy
C, cl 2

Fig. 4.3. G Fig. 4.4. G

Denote by Tg i, (vi, € V(£),1 <1 < k) the nontrivial attaching tree
to & rooted at vertex v;,. Suppose Y = (y1, ¥2, ¥3, -+, Yn—1, Yn)’ is
the Perron vector of G and y; corresponds to vertex v;. Suppose y;, =
max{y; |1 <1< k}. Let

H=G- Z E vy, Vg + Z Z v;, Vg.

1<LI<k vQGNTe.‘.l (‘Ui‘) 1<i<k erNT‘vil (”"1)

Then p(H) > p(G) by Lemma 2.4. Denote by T2, the nontrivial attaching
tree to & rooted at v;, in H. Let H; be the graph obtained from H by
transforming TH, into a star with center v;,. Then p(H)) > p(H) >

p(G) by Lemmas 2.4, 2.5 and d(H,) = d(G). Suppose v;, € V(FPs), and
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suppose Z = (2, 22, 23, ..., Zn—1, 2,)7 is the Perron vector of H, and 2;
corresponds to vertex v;, zy = max{zs, 2}, 2, = max{z;,,z;}. Suppose
NP (va) = {vc}, NP (vs) = {va}. Let Ho = Hy —vave+vpve — vavs +vav;, .

Then p(Hp) > p(Hl) by Lemmas 2.5. Denote by Cs,;,C5 2 the two cycles
which have common vertex vy in Hz. If L(Cs,;) > 5 or L(Ca2) > 5, We
can get graph H3 from H; by contracting an edge of an internal path with
length { > 2 on Cy,; or Cy,2 in Hz . Denote by Cy g,,Ca, i, the two cycles
in H3. Proceeding like this, we can get graph # such that the two cycles
Co,1,C2 in H are both with length 4. Let Py be a diameter-path
with length d(#) in H. We can obtain graph #; from H by attaching
a pendant path with length d(G) — d(H) to one end vertex of P; 5 and
n — ([V(H)| + d(G) — d(#)) pendant vertices to vertex v;,. By Lemmas
2.5, 2.4, then p(H,) > p(G), d(H1) = d(G). Note that H; is bipartite. So
A(H1) < MG), which contradicts A, (G) =

In a same way, for the cases that v;, € V(P), or v;, € V(C)), or
vi, € V(Cy), orv;, € V(P.), we can get the same conclusion as v;, € V(Py).

Subcase 1.2 There exists no diameter-path such that both C;, Cs have
common vertices with it.

Denote by P; a diameter-path in G. Denote by Py ¢, the path from
C to Py, Py, the path from C; to Py. Suppose Pyc, (| Pic, = ¢ (see
Fig. 4.4), and suppose Pyc, (1C1 = vo, Pyc, N Ps = v, Puc,NCo =
Ve, Pa,c, () Pa = vs. Suppose Y = (y1, y2, ¥3, - - - Yn—1, ¥n)7 is the Perron
vector of G and y; corresponds to vertex v;. Suppose yp > Y4, Y5 = ye. Let

H=G- Z VaVq+ Z UpVg— Z VeVg+ Z Vfvg.

v,ENcl (va) vgeNCI (va) vgeNCQ(Uc) vy€N02(vc)

Then p(H) > p(G) by Lemma 2.4, and d(H) = d(G). Now Py is still a
dla.meter-path in H. Denote by Cl the cycle having common vertex v, with
Py and C'2 the cycle having common vertex vy with P; in H. As Subcase
1.1, we can prove that there exists a bipartite bicyclic graph #, denote by
72 the union of the cycles in H, such that p(H) > p(G), d(H) = d(G), 2
consists of the two different 4-cycles, but A(H) < A(G).

Similarly, we can get the same conclusion for the cases that y, <

Yar ¥f < Ye; Yo = Ya» Yf < ¥Ye; Yo < Ya, Y5 = Ye. As the case that
Pac,NPic, = ¢, for the case that Py, Puc, # ¢, we can get the

same conclusion.

" Case 2 C1NC; # ¢.
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As Case 1, Wwe can prove that there exists a bipartite bicyclic graph
H, denote by 2 the union of the cycles in H, such that p(H) > p(G),
d(H) = d(G), 2 consists of the two different 4-cycles, but A(H) < MG).

This completes the proof of this lemma. O

5 Extremal graphs with the minimal least
eigenvalue in %(n,d;k, j)
Theorem 5.1 If G € B(n,d;k,j) and A\ (G) = A, then G satisfies that
j—2<k<j+1and
(1) if d is even, let S, = B(n,d;s,s), Sp = B(n,d;s —1,s+1). Then

G=3,, ifp(Sl)Z—'_vﬁ(n;M;
G=S,, ifp(S1)<———W;

(2) if d is odd, then G = B(n,d;s,s+ 1).

S

H
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Ses S; Ss
S uzv—“-\@—%—ag
So S10

Flg 5.1. 31-5‘10

Proof. Because d > 3, then H C G (see Fig. 5.1). By computation,
we get p(H) = 2.5576, so p(G) > 2.5576. Suppose X = (Zy,, Zu,, Ty,
vvy Ty Twgy Twyy -« Tugy Loy Tugs ...)T is the Perron vector of G, in
which z, corresponds to vertex s, zy, > Ty,. By symmetry, then z,, =
Tw, = Tw,. As Lemmas 3.1, 3.2, we get zy, fifo- - fet1fer2 = 32y, =
3fifi-1++- fizy;, where f; (1 < i < max{k+2,j}) satisfies that f; = p(G),
1 ,
fi+l = P(G) - -f-i, xuk_.- = fixuk_;+1 (l S 1 S k); 3xw, = fk-{-lmuor 3xvo =
Jk423Twy, To,_, = fiu,_,,, (1 £ 1< j), and f; satisfies the (i), (ii), (iii) in
Lemnma 3.1.

If k> j+ 2, then

Tup_i for o fifje1fivafiva - fro = 3Tuy = 3fifi_1 - frzo,.

By Lemma 3.1, we get that fji1fjy2fi+a- - fera = 3p(G), then Ty; 2
ZTu,_,.- Let Gy = G — ug_1ur + uxvj. By Lemma 2.5, then p(G;) >
p(G). Note that both G;,G are bipartite. So A\(G1) < An(G), which
contradicts that A,(G) = Ag. Hence £ < j+ 1. Ifk < j—3, then

Ty, f1f2 fres1fere = 3Tvy = 3fjfj-1++* f2Ty;_,. By Lemma 3.1, we have

3
3fjfj..] o fry3 2 _2_P > p(G) So Tyy > Ty;_,- LetG, = G—Ujvj_1+UkUj.
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By Lemma 2.5, then p(G;) > p(G). Note that both G;,G are bipartite.
So A (G)) < An(G), which contradicts that A,,(G) = Ag. Hence k > j — 2.

Note that d = k+ j + 2. If d is even, then k + j is even. Note that
j—2 < k < j+1. So there are only two possible cases for G, namely j = k
or k = j — 2. Hence, for G, there are only two cases that G & S) or G = S,
(81-S10 are as shown in Fig. 5.1). Let r =n —d — 3. By Lemma 2.11,

P(S1,A) = ATP(S4,2) —T/\r_IP(Sg, A)P(S3—vs41,A)
= /\r+1P(Ss — VUs+1, )\) - /\TP(S4 —Ug — Ug-—-1, /\)
—P AT P(Sg—ug, A)P(S3—vs41, \)+r A1 P(Sg— g —ttg—1, A\) P(S3—vs41, ),
P(S3,A) = A"P(Ss, A) — rA""1 P(Sg — us, A)P(S3, A)
= A"t P(S5—v441, A) = A" P(S4—vs—ug, A)—TA" P(Sg—ts, A) P(S3—vs41, )
+rAT " P(Sg — ug, A)P(S3 — Ugp1 — Usy A).
So
P(SQ, A) - P(Sl, A) = /\TIP(S4 —Ug —Ug—), A) - P(S4 — Vg — Ug, A)]-i'

PAT=Y[P(Sg—tg, \)P(S3—Va41 —s, )= P(Ss ~ts —ts_1, \) P(Sa—vs41, N)]
= A"[P(S4 — s — Us—1 — Vs — Ug—2,A) = P(Sg — vg — s — V51 — Us—1, )]
AT [P(Ss — 1ty — tg—1, \)P(S5 — Vsi1 — Vs — Vs_1,A) —
P(Sg —uy — ug—1 — Us—2,A) P(S3 — Vg1 — Vs, A)] = - -~
= A[P(So,A) = P(S10, )] + rA""1[P(S7, \)P(S6 — v3, )
—P(S7 — ug2, \)P(Ss, A)]
= A"[P(Sg — v3 — u3,A) — P(S10 —v2 — uz,A)] + AT [3A3 P(Se, \)
—~3X2(P(S6 — v3,A))?
= AT[P(S7—uz, \) = P(S10—tig—u1 —v1 — vz, A)] = 3r AT+
= 2ATH3 _ 3pam+ = \TH(2)2 — 3r).
Ver

p(S) < p(S1)  if p(S1) 2 T
Therefore, by Lemina 2.9, we have 2 (1) p(S51) .

p(S2) > p(S1),  if p(S1) < =
Note that G is bipartite. Then A,(G) = —p(G). So (1) is proved.

In a same way, (2) can be proved. O
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6 Conjecture about the extremal graphs with
the minimal least eigenvalue in £(n, d)

By many computations and comparisons with computer, we find the trend
that G is isomorphic to a B(n,d;k,j) if \n(G) = Ap for a graph G €
#B(n,d) (n >d+3,d>3).

Conjecture 6.1 When n — 00, if A\n(G) = Ap for a graph G € B(n,d)
(n>d+3,d > 3), then G € Z(n,d;k,j) (k+j 2 1) and G satisfies the
conclusions in Theorem 5.1.
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