Minimizing the least eigenvalue of bicyclic graphs with fixed diameter*

Guanglong Yu a,b† Yarong Wu b,c Jinlong Shu b

^aDepartment of Mathematics, Yancheng Teachers University,
Yancheng, 224002, Jiangsu, P.R. China

^bDepartment of Mathematics, East China Normal University,
Shanghai, 200241, P.R. China

^cSMU college of art and science, Shanghai maritime University,
Shanghai, 200135, P.R. China

Abstract

Let $\mathscr{B}(n,d)$ be the set of bicyclic graphs with both n vertices and diameter d, and let θ^* consist of three paths $u_0w_1v_0$, $u_0w_2v_0$ and $u_0w_3v_0$. For four nonnegative integers n,d,k,j satisfying $n \geq d+3, d=k+j+2$, we let B(n,d;k,j) denote the bicyclic graph obtained from θ^* by attaching a path of length k to u_0 , attaching a path of length j to vertex v_0 and n-d-3 pedant edges to v_0 , and let $\mathscr{B}(n,d;k,j)=\{B(n,d;k,j)|k+j\geq 1\}$. In this paper, the extremal graphs with the minimal least eigenvalue among all graphs in $\mathscr{B}(n,d;k,j)$ are well characterized, some structural characterizations about the extremal graphs with the minimal least eigenvalue among all graphs in $\mathscr{B}(n,d)$ are presented as well.

AMS Classification: 05C50

Keywords: Least eigenvalue; Diameter; Bicyclic graph

^{*}Supported by NSFC (Nos. 11271315, 11171290).

[†]E-mail addresses: yglong01@163.com, wuyarong1@yahoo.com.cn, jl-shu@math.ecnu.edu.cn.

1 Introduction

All graphs considered here are simple and undirected. Denote by V(G) and E(G) the vertex set and edge set of a graph G respectively. |V(G)| is always called the order of G. For $S \subseteq V(G)$, let G[S] denote the subgraph induced by S. For a vertex set $\{v_1, v_2, \ldots, v_k\}$, we denote by $G[v_1, v_2, \ldots, v_k]$ simply for $G[\{v_1, v_2, \ldots, v_k\}]$ sometimes. Let $N_G(v)$ denote the set of the vertices adjacent to v in G. The degree of v in G, denoted by $d_G(v)$, d(v) or deg(v), is equal to $|N_G(v)|$.

Let $W = v_0 e_1 v_1 e_2 \cdots e_k v_k$ $(e_i = v_{i-1} v_i \text{ for } 1 \leq i \leq k)$ denote a walk in a graph G. A walk is also denoted simply by $W = (v_0, v_1, \ldots, v_k)$, $W = v_0 v_1 \cdots v_k$ or $W = e_1 e_2 \cdots e_k$ if there is no ambiguity; the positive integer k is called the length of the walk W, denoted by L(W). A cycle with length k is always called k-cycle, denoted by C_k . A path with order n is denoted by P_n . In a graph G, the length of the shortest path from v_i to v_j is called the distance between v_i and v_j , denoted by $d_G(v_i, v_j)$ or $d(v_i, v_j)$. $d(G) = \max\{d(v_i, v_j) | v_i, v_j \in V(G)\}$ is called the diameter of the graph G.

Definition 1.1 Let A be a nonnegative irreducible square matrix. The spectral radius, denoted by $\rho(A)$, is the maximum of the moduli of its eigenvalues.

Theorem 1.2 (Perron-Frobenius [9]) Let A be a nonnegative irreducible square real matrix with order n. Suppose $\lambda_1, \lambda_2, \ldots, \lambda_n$ are all the eigenvalues of A. Then

- (i) $\rho(A)$ is a simple eigenvalue of A and $|\lambda_i| \leq \rho(A)$ for any eigenvalue λ_i $(1 \leq i \leq n)$;
- (ii) there exists a positive unit eigenvector corresponding to $\rho(A)$, which is called the Perron vector of A.

Let A(G) be the adjacency matrix of a graph G. The characteristic polynomial of A(G) is called the characteristic polynomial of graph G, denoted by P(G) (or $P(G,\lambda)$). Suppose $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the eigenvalues of A(G). The largest eigenvalue of A(G) is called the spectral radius of G, denoted by $\rho(G)$. The Perron vector $X = (x_{v_1}, x_{v_2}, \ldots, x_{v_n})^T$ is the non-negative unit eigenvector corresponding to $\rho(G)$, where x_{v_i} corresponds to the vertex v_i . By the Perron-Frobenius theorem, the Perron vector is a positive vector for a connected graph. The least eigenvalue

 $\lambda_n(G)$ of graph G can be denoted by $\lambda(G)$ simply. It is well known that $\lambda(G) = -\rho(G)$ for a bipartite graph (see [3]).

Definition 1.3 A connected graph G with order n is called a bicyclic graph if |E(G)| = n + 1. Let $\mathcal{B}(n, d) = \{G | G \text{ be a bicyclic graph with both order } n \text{ and diameter } d\}$ and $\lambda_B = \min\{\lambda_n(G) | G \in \mathcal{B}(n, d), n \geq d + 3, d \geq 3\}$.

Definition 1.4 Let θ^* consist of three paths $u_0w_1v_0$, $u_0w_2v_0$ and $u_0w_3v_0$. For four nonnegative integers n,d,k,j satisfying $n \geq d+3,d=k+j+2$, we let B(n,d;k,j) denote the bicyclic graph obtained from θ^* by attaching a path of length k to u_0 , attaching a path of length j to vertex v_0 and n-d-3 pedant edges to v_0 (see Fig. 1.1). Let $\mathcal{B}(n,d;k,j) = \{B(n,d;k,j)|d \geq 3\}$ and let $\lambda_B = \min\{\lambda_n(G)|G \in \mathcal{B}(n,d;k,j)\}$.

Fig. 1.1. B(n, d; k, j)

The investigation on the lower bound of the least eigenvalue of a graph is of great significance and interest (see [1], [2], [4], [7], etc.). In 2008, M. Petrović [10] characterized the bicyclic graphs with the minimal least eigenvalue among all the graphs with given order. In this paper, we consider the bicyclic graphs with the minimal least eigenvalue λ_B among $\mathcal{B}(n,d)$ $(n \geq d+3, d \geq 3)$. The paper is organized as follows: Section 1 introduces the basic ideas of spectra of graphs and their supports; Section 2 introduces series of working lemmas; Section 3 presents some basic results; Section 4 presents some structural characterizations about the extremal graphs with the minimal least eigenvalue among all graphs in $\mathcal{B}(n,d)$; Section 5 characterizes the extremal graphs with the minimal least eigenvalue among all graphs in $\mathcal{B}(n,d;k,j)$; Section 6 conjectures that the extremal graphs with the minimal least eigenvalue among all graphs in $\mathcal{B}(n,d;k,j)$ are also the extremal graphs with the minimal least eigenvalue among all graphs in $\mathcal{B}(n,d;k,j)$ are also the extremal graphs with the minimal least eigenvalue among all graphs in $\mathcal{B}(n,d;k,j)$

2 Preliminaries

Lemma 2.1 ([12]) Let A be an $n \times n$ real symmetric irreducible nonnegative matrix and $X \in \mathbb{R}^n$ be an unit vector. If $\rho(A) = X^T A X$, then $AX = \rho(A)X$.

Lemma 2.2 ([14]) Let G be a connected bipartite graph with order n. Let $X = (x_1, x_2, ..., x_n)^T$ be a real unit vector such that $\lambda(G) = X^T A X$. Then $x_i \neq 0$ for each $1 \leq i \leq n$.

Let $\mathcal{U}(n,d)$ denote the set of unicyclic graphs with both order n and diameter d.

Fig. 2.1. $U_{p,q}^k$

Lemma 2.3 ([14]) For every pair of positive integers n,d with $3 \leq d \leq n-2$, there is (up to isomorphism) an unique graph in $\mathcal{U}_{n,d}$ that has the minimal least eigenvalue among all graphs in $\mathcal{U}_{n,d}$, namely, $U_{\lfloor \frac{d-3}{2} \rfloor, \lceil \frac{d-1}{2} \rceil}^{l-d-2}$ for $3 \leq d \leq n-6$ and $U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-2}{2} \rceil}^{l-d-2}$ for $n-5 \leq d \leq n-2$, where $U_{p,q}^k$ (see Fig. 2.1) denotes the graph obtained from a 4-cycle by attaching k pendant edges and a path with length q to a vertex u, and attaching a path with length p to the vertex not adjacent to u.

Lemma 2.4 ([8]) Let the connected graph $G_{k,l}^m$ be obtained from G by attaching two pendant paths P_{k+1} and P_{l+1} at vertices u and v respectively, d(u,v)=m. If $k \geq l \geq 1$, then $\rho(G_{k,l}^m)>\rho(G_{k+1,l-1}^m)$ if $G_{k,l}^m$ satisfies one of the following conditions:

- (1) $m = 0, \deg_G(u) \ge 1 \text{ and } k \ge l \ge 1;$
- (2) $m = 1, \deg_G(u) \ge 2, \deg_G(v) \ge 2, \text{ and } k \ge l \ge 1;$
- (3) m > 1, $\deg_G(u) \ge 2$, $\deg_G(v) \ge 2$, and $k l \ge m, l \ge 1$.

Lemma 2.5 ([13]) Let u, v be two vertices of a connected graph G. Suppose v_1, v_2, \ldots, v_s $(1 \leq s \leq d_v)$ are some vertices of $N_G(v) \setminus N_G(u)$ and $X = (x_1, x_2, \ldots, x_n)^T$ is the Perron vector of G, where x_i corresponds to the vertex v_i $(1 \leq i \leq n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) $(1 \leq i \leq s)$. If $x_u \geq x_v$, then $\rho(G) < \rho(G^*)$.

Lemma 2.6 ([13]) Let graphs G and G^* be as in Lemma 2.5. If G^* is also connected, suppose $X = (x_1, x_2, x_3, ..., x_{n-1}, x_n)^T$ is the Perron vector of G^* where x_i corresponds to vertex v_i , ||X|| = 1, then $x_u \ge x_v$.

Let G, H be two disjoint connected graphs with $u \in V(G)$ and $w \in V(H)$. We denote by $G\underline{u}\underline{w}H$ the graph obtained from G and H by identifying u with w (See Fig. 2.2).

Fig. 2.2 GuwH and GvwH.

Lemma 2.7 ([4]) Let G, H be two disjoint nontrivial connected graphs with $u, v \in V(G)$ and $w \in V(H)$. Let X be an unit eigenvector corresponding to $\lambda(G\underline{u}\underline{w}H)$. If $|x_u| \leq |x_v|$, then $\lambda(G\underline{u}\underline{w}H) \geq \lambda(G\underline{v}\underline{w}H)$. The equality holds if and only if X is also an eigenvector corresponding to $\lambda(G\underline{v}\underline{w}H)$, $x_u = x_v$ and $\sum_{i \in N_H(w)} x_i = 0$.

Lemma 2.8 ([6, 8]) Let G_1 and G_2 be two graphs. If G_2 is a proper subgraph of G_1 . Then $\rho(G_2) < \rho(G_1)$ and for $\lambda \ge \rho(G_1)$, $P(G_2, \lambda) > P(G_1, \lambda)$.

Lemma 2.9 ([8]) Let G and H be two connected graphs such that $P(G, \lambda) > P(H, \lambda)$ for $\lambda \geq \rho(H)$ or $\lambda = \rho(G)$, then $\rho(G) < \rho(H)$.

Let G be a connected simple graph with $uv \in E(G)$. The graph G_{uv} is obtained from G by subdividing the edge uv, that is, introducing a new vertex on the edge uv; while the graph G^{uv} is obtained by contracting uv, that is, deleting the edge uv, deleting possible multiple edge and identifying the two vertices u, v. Suppose $G[v_1, v_2, \ldots, v_k]$ $(k \ge 1)$ is a path of graph G, $d_G(v_i) = 2$ $(2 \le i \le k - 1)$ and $d_G(v_i) \ge 3$ (i = 1, k) (or $G[v_1, v_2, \ldots, v_k]$ is a cycle if $k \ge 3$, $d_G(v_i) = 2$ $(2 \le i \le k)$ and $d_G(v_1) \ge 3$), then the induced graph $G[v_1, v_2, \ldots, v_k]$ $(k \ge 2)$ can be called an internal path of G. Let \mathcal{T}_n $(n \ge 6)$ be the graph obtained from a path $v_1v_2 \cdots v_{n-4}$ by attaching two pendant edges to v_1 and another two to v_{n-4} . Hoffman and Smith showed the following result.

Lemma 2.10 ([5]) Let G be a connected graph and $G \ncong \mathcal{T}_n, G \ncong \mathcal{C}_n$. If the edge uv belongs to an internal path of G, then $\rho(G_{uv}) < \rho(G)$.

Lemma 2.11 ([11]) Let v be a vertex of graph G and C(v) be the set of

cycles containing v. Then

$$P(G,\lambda) = \lambda P(G-v,\lambda) - \sum_{u \in N_G(v)} P(G-v-u,\lambda) - 2\sum_{C \in C(v)} P(G-V(C),\lambda).$$
(1)

Let u be a pendant vertex of a graph G and v be its neighbor. It follows from Lemma 2.9 that

$$P(G,\lambda) = \lambda P(G-u,\lambda) - P(G-u-v,\lambda). \tag{2}$$

3 Some basic results

Let $G = G_1v_0v_1P_k$ denote the graph obtained from graph G_1 and path P_k by adding an edge v_0v_1 between the vertex v_0 of G_1 and a pedant vertex v_1 of P_k (see Fig. 3.1).

Fig. 3.1. $G_1v_0v_1P_{k+1}$

Lemma 3.1 Let A be the adjacency matrix of the graph $G = G_1v_0v_1P_k$ (see Fig. 3.1) with order n, λ_i $(1 \le i \le n)$ be the ith largest eigenvalue of A. Suppose $X_i = (x_{i,0}, x_{i,1}, x_{i,2}, \ldots, x_{i,k}, x_{i,k+1}, \ldots, x_{i,n-1})^T$ is an eigenvector corresponding to eigenvalue λ_i and $x_{i,s}$ $(0 \le s \le n-1)$ corresponds to vertex v_s . Let $f_1 = \lambda_i$ and $f_{j+1} = \lambda_i - \frac{1}{f_j}$. Then $x_{i,k-j} = f_j x_{i,k-j+1}$ for $1 \le j \le k$ and we have

(i)
$$\begin{cases} \frac{\lambda_i}{2} \le f_j \le \lambda_i, & if \ \lambda_i \ge 2; \\ \frac{\lambda_i}{2} \ge f_j \ge \lambda_i, & if \ \lambda_i \le -2; \end{cases}$$

(ii)
$$|f_{j+1}| < |f_j| \ if \ |\lambda_i| \ge 2;$$

(iii)
$$f_{i+1}f_i \ge |\lambda_i|$$
 $(1 \le j \le k-1)$ if $|\lambda_i| \ge 2.2$;

In particular,

$$\begin{cases} f_{j+1}f_{j} \geq 3 \ (1 \leq j \leq k-1) & if \ |\lambda_{i}| \geq 2.3095; \\ f_{j+1}f_{j} \geq 3|\lambda_{i}| \ (1 \leq j \leq k-1) & if \ |\lambda_{i}| \geq 4. \end{cases}$$

Proof. (i) Noting that $x_{i,k-1} = \lambda_i x_{i,k} = f_1 x_{i,k}$ and $x_{i,k-2} + x_{i,k} = \lambda_i x_{i,k-1}$, we get

$$x_{i,k-2} = (\lambda_i - \frac{1}{\lambda_i})x_{i,k-1} = (\lambda_i - \frac{1}{f_1})x_{i,k-1} = f_2x_{i,k-1}.$$

So, by induction, $f_{j+1} = \lambda_i - \frac{1}{f_i}$ and $x_{i,k-j} = f_j x_{i,k-j+1}$ for $1 \le j \le k$.

We prove that $\frac{\lambda_i}{2} \leq f_j \leq \lambda_i$ if $\lambda_i \geq 2$ firstly. It is easy to check that $\frac{\lambda_i}{2} \leq f_2$ if $\lambda_i \geq 2$. Suppose that $\frac{\lambda_i}{2} \leq f_j \leq \lambda_i$ for j < N. Because $f_N = \lambda_i - \frac{1}{f_{N-1}}$, so $-\frac{2}{\lambda_i} \leq -\frac{1}{f_{N-1}} \leq -\frac{1}{\lambda_i}$, $\lambda_i - \frac{2}{\lambda_i} \leq f_N \leq \lambda_i - \frac{1}{\lambda_i}$. Note that if $\lambda_i \geq 2$, then $\lambda_i - \frac{2}{\lambda_i} \geq \frac{\lambda_i}{2}$. Therefore, $\frac{\lambda_i}{2} \leq f_N \leq \lambda_i$. By induction, we get $\frac{\lambda_i}{2} \leq f_j \leq \lambda_i$ if $\lambda_i \geq 2$. If $\lambda_i \leq -2$, $\frac{\lambda_i}{2} \geq f_j \geq \lambda_i$ can be similarly proved.

Same as (i), (ii) and (iii) can be proved.

Let $G = G_1 v_0 G_2$ denote the graph obtained from graph G_1 by attaching graph G_2 to the vertex v_0 of G_1 .

Fig. 3.2 $\mathcal{H}_1, \mathcal{H}_2$

Let $\mathscr{H}_1 = G_1 v_0 C_k v_{\frac{k}{2}} P_{t-\frac{k}{2}+1}$ where k is even and $d_{G_1}(v_0) \geq 2$ (see Fig. 3.2), $V(C_k) = \{v_0, \, v_1, \, v_2, \, \dots, \, v_{\frac{k-4}{2}}, \, v_{\frac{k-2}{2}}, \, v_{\frac{k}{2}}, \, u_1, \, u_2, \, \dots, \, u_{\frac{k-2}{2}}\},$ $V(P_{t-\frac{k}{2}+1}) = (v_{\frac{k}{2}}, v_{\frac{k}{2}+1}, \dots, v_t) \text{ and } V(G_1) = \{v_0, \, s_1, \, s_2, \, \dots, \, s_{n-t-\frac{k-2}{2}-1}\}.$ Let graph $\mathscr{H}_2 = G_1 v_0 C_k$ where k is odd (see Fig. 3.2), $V(G_1) = \{v_0, \, s_1, \, s_2, \, \dots, \, s_{n-k}\}, \, V(C_k) = \{v_0, \, v_1, \, v_2, \, \dots, \, v_{\frac{k-1}{2}}, \, u_1, \, u_2, \, \dots, \, u_{\frac{k-1}{2}}\}.$

Lemma 3.2 (i) For the graph \mathcal{H}_1 (see Fig. 3.2), there must be a nonzero eigenvector $X_i = (x_{i,v_0}, x_{i,s_1}, x_{i,s_2}, \ldots, x_{i,s_{n-t-\frac{k-2}{2}-1}}, x_{i,v_1}, x_{i,v_2}, \ldots, x_{i,v_{\frac{k-2}{2}}}, x_{i,v_{\frac{k}{2}}}, x_{i,v_{\frac{k}{2}}}, x_{i,v_{1}}, x_{i,v_{2}}, \ldots, x_{i,v_{\frac{k-2}{2}}}, x_{i,v_{\frac{k+2}{2}}}, x_{i,v_{\frac{k+2}{2}}}, \ldots, x_{i,v_{t}})^T$ corresponding to eigenvalue λ_i where $x_{i,v}$ corresponds to vertex v satisfying the following:

1°
$$x_{i,v_j} = x_{i,u_j} \ (1 \le j \le \frac{k-2}{2});$$

$$\begin{array}{l} 2^{\circ}\ x_{i,v_{t-j}}=f_{j}x_{i,v_{t-j+1}}\ (1\leq j\leq t,\, t\neq \frac{k-2}{2}),\, 2x_{i,v_{\frac{k-2}{2}}}=f_{t-\frac{k-2}{2}}x_{i,v_{\frac{k}{2}}},\\ where\ f_{1}=\lambda_{i},\, f_{j+1}=\lambda_{i}-\frac{1}{f_{i}}; \end{array}$$

$$3^{\circ}$$
 f_{j} $(1 \leq j \leq t)$ satisfies (i), (ii), (iii) in Lemma 3.1.

(ii) For the graph \mathcal{H}_2 (see Fig. 3.2), there must be a nonzero eigenvector $X_i = (x_{i,v_0}, x_{i,s_1}, x_{i,s_2}, \ldots, x_{i,s_{n-k}}, x_{i,v_1}, x_{i,v_2}, \ldots, x_{i,v_{\frac{k-1}{2}}}, x_{i,u_1}, x_{i,u_2}, \ldots, x_{i,u_{\frac{k-1}{2}}})^T$ corresponding to eigenvalue λ_i where $x_{i,v}$ corresponds to vertex v satisfying the following:

1°
$$x_{i,v_j} = x_{i,u_j} \ (1 \le j \le \frac{k-1}{2});$$

2°
$$x_{i,v_{t-j}} = f_j x_{i,v_{t-j+1}}$$
 $(1 \le j \le \frac{k-1}{2})$, where $f_1 = \lambda_i - 1$, $f_{j+1} = \lambda_i - \frac{1}{f_j}$;

$$3^{\circ} f_j \ (1 \leq j \leq \frac{k-1}{2})$$
 satisfies (i), (ii) in Lemma 3.1;

5°
$$f_{j+1}f_j \ge |\lambda_i| \ (1 \le j \le \frac{k-3}{2}) \text{ if } |\lambda_i| \ge 2.$$

 $\begin{array}{l} \textbf{Proof.} \quad (i) \ \text{For} \ \mathscr{H}_1, \ \text{suppose} \ X_i \ \text{does not satisfy 1°. Then there exists} \\ x_{i,v_j} \neq x_{i,u_j} (1 \leq j \leq \frac{k-4}{2}). \ \ \text{Let} \ S_1 = \{x_{i,v_0}, \, x_{i,s_1}, \, x_{i,s_2}, \, \ldots, \, x_{i,s_{n-t-\frac{k-2}{2}-1}}, \\ x_{i,v_{\frac{k}{2}}}, \, x_{i,v_{\frac{k+2}{2}}}, \, x_{i,v_{\frac{k+4}{2}}}, \, \ldots, \, x_{i,v_t}\}, \ V_1 = \{v_0, \, s_1, \, s_2, \, \ldots, \, s_{n-t-\frac{k-2}{2}-1}, \, v_{\frac{k}{2}}, \\ v_{\frac{k+2}{2}}, \, v_{\frac{k+4}{2}}, \, \ldots, \, v_t\}, \ S_2 = \{x_{i,v_1}, \, x_{i,v_2}, \, \ldots, \, x_{i,v_{\frac{k-2}{2}}}, \, x_{i,u_1}, \, x_{i,u_2}, \, \ldots, \, x_{i,u_{\frac{k-2}{2}}}, \\ \text{and let} \ X_i^{'} = (x_{i,v_0}^{'}, \, x_{i,s_1}^{'}, \, x_{i,s_2}^{'}, \, \ldots, \, x_{i,s_{n-t-\frac{k-2}{2}-1}}^{'}, \, x_{i,v_1}^{'}, \, x_{i,v_2}^{'}, \, \ldots, \, x_{i,v_{\frac{k-2}{2}}}^{'}, \\ x_{i,v_{\frac{k}{2}}}^{'}, \, x_{i,u_1}^{'}, \, x_{i,u_2}^{'}, \, \ldots, \, x_{i,u_{\frac{k-2}{2}}}^{'}, \, x_{i,v_{\frac{k+2}{2}}}^{'}, \, x_{i,v_{\frac{k}{2}+2}}^{'}, \, \ldots, \, x_{i,v_t}^{'})^T \ \text{satisfy} \end{array}$

$$\left\{ \begin{array}{ll} x_{i,v}^{'} = x_{i,v} & v \in V_1; \\ \\ x_{i,v_j}^{'} = x_{i,u_j}, \ x_{i,u_j}^{'} = x_{i,v_j} & 1 \leq j \leq \frac{k-2}{2}. \end{array} \right.$$

Then X_i' is also an eigenvector corresponding to λ_i .

Let $S_3=\{x_{i,v_1}^{'}+x_{i,v_1},\ x_{i,v_2}^{'}+x_{i,v_2},\ \ldots,\ x_{i,v_{\frac{k-2}{2}}}^{'}+x_{i,v_{\frac{k-2}{2}}}\}$. If there exists one element in $S_1\bigcup S_3$ is nonzero, then $Y=X_i+X_i^{'}$ is also a nonzero eigenvector corresponding to λ_i and satisfies 1°. If each element in $S_1\bigcup S_3$ is zero. Note that X_i is nonzero, so there exists at least one element in S_2 is nonzero. Suppose $x_{i,v_j}\neq 0\ (1\leq j\leq \frac{k-2}{2})$ and $x_{i,v_l}=0\ (1\leq l\leq j)$. By a rotation, then we obtain a nonzero vector Y_i corresponding to λ_i , where

$$\begin{cases} y_{i,v_0} = x_{i,v_l}, \ y_{i,v_1} = x_{i,v_{l+1}}, \ \dots, \ y_{i,v_{\frac{k}{2}-l}} = x_{i,v_{\frac{k}{2}}}, \\ y_{i,v_{\frac{k}{2}-l+1}} = x_{i,u_{\frac{k-2}{2}}}, \ y_{i,v_{\frac{k}{2}-l+2}} = x_{i,u_{\frac{k-4}{2}}}, \ \dots, y_{i,v_{\frac{k}{2}}} = x_{i,u_{\frac{k-2}{2}-(l-1)}}, \\ y_{i,u_{\frac{k-2}{2}}} = x_{i,u_{\frac{k-2}{2}-l}}, \ y_{i,u_{\frac{k-2}{2}-1}} = x_{i,u_{\frac{k-2}{2}-l-1}}, \ \dots, \ y_{i,u_{l+1}} = x_{i,u_1} \\ y_{i,u_l} = x_{i,v_0}, \ y_{i,u_{l-1}} = x_{i,v_1}, \ \dots, \ y_{i,u_1} = x_{i,v_{l-1}}; \\ y_{i,v} = x_{i,v}, \quad v \in V_1. \end{cases}$$

As $X_{i}^{'}$, we can construct an eigenvector $Y_{i}^{'}$ corresponding to λ_{i} such that $Z=Y_{i}+Y_{i}^{'}$ is also a nonzero eigenvector corresponding to λ_{i} satisfying 1°.

Similar to the proof of Lemma 3.1, we can prove 2°, 3° of (i).

In a same way, we can prove that (ii) holds.

4 Structural characterizations of the extremal graphs with the minimal least eigenvalue in $\mathscr{B}(n,d)$

Definition 4.1 Let $G \in \mathcal{B}(n,d)$. We call the shortest path $P_{i,j}$ from vertex v_i to v_j a diameter-path in G if the length of $P_{i,j}$ is equal to d, where v_i and v_j are called the end vertices of $P_{i,j}$.

Definition 4.2 Let G consist of connected graph G_1 and tree T_i $(1 \le i \le k)$ (see Fig. 4.1) with order t_i $(t_i \ge 2)$, where $V(T_i) \cap V(G_1) = \{v_i\}$. Vertex v_i is called the root of the tree T_i on G_1 ; T_i is called nontrivial attaching tree to G_1 with root v_i (or rooted at v_i). We say a path P pass through T_j if $|V(P) \cap V(T_j)| \ge 1$.

Let $U_{p,q}^{s,t}$ (see Fig. 4.2) denote the graph obtained from a 4-cycle by attaching t pendant edges and a path with length q to a vertex u, and attaching s pendant edges and a path with length p to the vertex v not adjacent to u.

Lemma 4.3 Let $G \in \mathcal{B}(n,d)$ $(n \ge d+3, d \ge 3)$ and $\lambda_n(G) = \lambda_B$. Then there G is a bipartite graph.

Proof. Suppose the lemma does not hold. Then there exist an odd cycle in G. Suppose that C_1 is an odd cycle, and suppose that $X=(x_1,x_2,x_3,\ldots,x_{n-1},x_n)^T$ is an unit eigenvector corresponding to eigenvalue $\lambda(G)$ in which x_i corresponds to vertex v_i . There must be an edge $e_1=v_sv_{s+1}$ on C_1 such that $x_sx_{s+1}>0$ or $x_sx_{s+1}=0$. Let $\mathcal{H}_1=G-e_1$, $d=d(\mathcal{H}_1)$. Then $d\geq d$, $\lambda(\mathcal{H}_1)\leq \lambda(G)$, and $\lambda(\mathcal{H}_1)$ is an unicyclic graph. By Lemma 2.3, we have $\lambda(\mathcal{H}_1)\geq \lambda(U_1^{n-d'-2})$ or $\lambda(\mathcal{H}_1)\geq \lambda(U_1^{n-d'-2})$. By Lemmas 2.4 and 2.3, there exists an $U_{p,q}^{s,t}$ (p+q+2=d,s+t+p+q+4=n) such that $\rho(U_{p,q}^{s,t})>\rho(U_{p,q}^{n-d'-2})$ or $\rho(U_{p,q}^{s,t})>\rho(U_{p,q}^{n-d'-2})$. Note that $U_{p,q}^{s,t}$, $U_{p,q}^{n-d'-2}$ and $U_{p,q}^{n-d'-2}$ are all bipartite. Therefore, $\lambda(U_{p,q}^{s,t})<\lambda(U_{p,q}^{n-d'-2})$ or $\lambda(U_{p,q}^{s,t})<\lambda(U_{p,q}^{n-d'-2})$. By Lemma 2.3, we have $\lambda(U_{p,q}^{s,t})>\lambda(U_{p,q}^{n-d-2})$ or $\lambda(U_{p,q}^{s,t})>\lambda(U_{p,q}^{n-d-2})$. By Lemma 2.3, we have $\lambda(U_{p,q}^{s,t})>\lambda(U_{p,q}^{n-d-2})>\lambda(U_{p,q}^{n-d-2})$, or $\lambda(U_{p,q}^{s,t})>\lambda(U_{p,q}^{n-d-2})$.

For $U_{\lfloor \frac{d-3}{2} \rfloor, \lceil \frac{d-1}{2} \rceil}^{n-d-2}$ or $U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-2}{2} \rceil}^{n-d-2}$ (see Fig. 2.1), let $\mathcal{H}_2 = U_{\lfloor \frac{d-3}{2} \rfloor, \lceil \frac{d-1}{2} \rceil}^{n-d-2} + tv$, $\mathcal{H}_3 = U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-2}{2} \rceil}^{n-d-2} + tv$. Then $\rho(\mathcal{H}_2) > \rho(U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-1}{2} \rceil}^{n-d-2})$, $\rho(\mathcal{H}_3) > \rho(U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-2}{2} \rceil}^{n-d-2})$. Note that $U_{\lfloor \frac{d-3}{2} \rfloor, \lceil \frac{d-1}{2} \rceil}^{n-d-2}$, $U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-2}{2} \rceil}^{n-d-2}$, \mathcal{H}_2 and \mathcal{H}_3 are all bipartite. Therefore, $\lambda(U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-1}{2} \rceil}^{n-d-2}) > \lambda(\mathcal{H}_2)$, $\lambda(U_{\lfloor \frac{d-2}{2} \rfloor, \lceil \frac{d-2}{2} \rceil}^{n-d-2}) > \lambda(\mathcal{H}_3)$. Hence $\lambda(G) > \lambda(\mathcal{H}_2)$ or $\lambda(G) > \lambda(\mathcal{H}_3)$, which contradicts $\lambda_n(G) = \lambda_B$. Then the lemma follows. \square

Definition 4.4 The union of simple graphs H and G is the simple graph $G \bigcup H$ with vertex set $V(G) \bigcup V(H)$ and edge set $E(G) \bigcup E(H)$. The intersection $G \cap H$ of simple graphs H and G is defined analogously.

Lemma 4.5 Let $G \in \mathcal{B}(n,d)$ $(n \ge d+3, d \ge 3)$ and $\lambda_n(G) = \lambda_B$. Suppose C_1 and C_2 are two different cycles in G. Let $\mathcal{D} = C_1 \bigcup C_2$. Then

- (i) C_1 and C_2 have common vertices in G;
- (ii) in fact, D is the union of two 4-cycles;
- (iii) \mathscr{D} have common vertices with a diameter-path P_d , and all the vertices in $V(G)\backslash V(\mathscr{D}\bigcup P_d)$ are pendant vertices attaching to one vertex of \mathscr{D} .

Proof. Suppose the Lemma does not hold. By Lemma 4.3, we know that $L(C_1) \geq 4$, $L(C_2) \geq 4$.

Case 1 $C_1 \cap C_2 = \phi$.

Subcase 1.1 Both C_1, C_2 have common vertices with a diameter-path P_d .

Suppose $C_1 \cap P_d = P_1$, $C_2 \cap P_d = P_2$ and $C_1 = P_1 \cup P_1'$, $C_2 = P_2 \cup P_2'$. Then $L(P_1) \leq [\frac{L(C_1)}{2}]$, $L(P_2) \leq [\frac{L(C_2)}{2}]$. Suppose the path between C_1 and C_2 on diameter-path P_d are path P_3 and $P_3 \cap C_1 = v_a$, $P_3 \cap C_2 = v_b$. Let $\mathscr{E} = C_1 \cup C_2 \cup P_d$ and $P_d = P_e \cup P_1 \cup P_3 \cup P_2 \cup P_f$, $(P_1' \cap P_d) \setminus \{v_a\} = \{v_e\} = P_e \cap C_1$, $(P_2' \cap P_d) \setminus \{v_b\} = \{v_f\} = P_f \cap C_2$ (see Fig. 4.3).

Denote by $T_{\mathscr{E},i_l}$ $(v_{i_l} \in V(\mathscr{E}), 1 \leq l \leq k)$ the nontrivial attaching tree to \mathscr{E} rooted at vertex v_{i_l} . Suppose $Y = (y_1, y_2, y_3, \ldots, y_{n-1}, y_n)^T$ is the Perron vector of G and y_i corresponds to vertex v_i . Suppose $y_{i_*} = \max\{y_{i_l}|1 \leq l \leq k\}$. Let

$$H = G - \sum_{1 \leq l \leq k} \sum_{v_g \in N_{T_{\mathcal{S}, i_l}}(v_{i_l})} v_{i_l} v_g + \sum_{1 \leq l \leq k} \sum_{v_g \in N_{T_{\mathcal{S}, i_l}}(v_{i_l})} v_{i_s} v_g.$$

Then $\rho(H) > \rho(G)$ by Lemma 2.4. Denote by $T^H_{\mathscr{E},i_s}$ the nontrivial attaching tree to \mathscr{E} rooted at v_{i_s} in H. Let H_1 be the graph obtained from H by transforming $T^H_{\mathscr{E},i_s}$ into a star with center v_{i_s} . Then $\rho(H_1) \geq \rho(H) \geq \rho(G)$ by Lemmas 2.4, 2.5 and $d(H_1) = d(G)$. Suppose $v_{i_s} \in V(P_f)$, and

suppose $Z=(z_1,\,z_2,\,z_3,\,\ldots,\,z_{n-1},\,z_n)^T$ is the Perron vector of H_1 and z_i corresponds to vertex $v_i,\,z_b=\max\{z_a,z_b\},\,z_{i_s}=\max\{z_{i_s},z_f\}$. Suppose $N_{P_1'}(v_a)=\{v_c\},\,N_{P_2'}(v_f)=\{v_d\}$. Let $H_2=H_1-v_av_c+v_bv_c-v_dv_f+v_dv_{i_s}$. Then $\rho(H_2)>\rho(H_1)$ by Lemmas 2.5. Denote by $C_{2,1},C_{2,2}$ the two cycles which have common vertex v_b in H_2 . If $L(C_{2,1})\geq 5$ or $L(C_{2,2})\geq 5$, We can get graph H_3 from H_2 by contracting an edge of an internal path with length $l\geq 2$ on $C_{2,1}$ or $C_{2,2}$ in H_2 . Denote by C_{1,H_3},C_{2,H_3} the two cycles in H_3 . Proceeding like this, we can get graph \mathcal{H} such that the two cycles $C_{2,\mathcal{H}},C_{2,\mathcal{H}}$ in \mathcal{H} are both with length 4. Let $P_{d,H}$ be a diameter-path with length $d(\mathcal{H})$ in \mathcal{H} . We can obtain graph \mathcal{H}_1 from \mathcal{H} by attaching a pendant path with length $d(G)-d(\mathcal{H})$ to one end vertex of $P_{d,H}$ and $n-(|V(\mathcal{H})|+d(G)-d(\mathcal{H}))$ pendant vertices to vertex v_{i_s} . By Lemmas 2.5, 2.4, then $\rho(\mathcal{H}_1)>\rho(G),\,d(\mathcal{H}_1)=d(G)$. Note that \mathcal{H}_1 is bipartite. So $\lambda(\mathcal{H}_1)<\lambda(G)$, which contradicts $\lambda_n(G)=\lambda_B$.

In a same way, for the cases that $v_{i_s} \in V(P_3)$, or $v_{i_s} \in V(C_1)$, or $v_{i_s} \in V(C_2)$, or $v_{i_s} \in V(P_e)$, we can get the same conclusion as $v_{i_s} \in V(P_f)$.

Subcase 1.2 There exists no diameter-path such that both C_1, C_2 have common vertices with it.

Denote by P_d a diameter-path in G. Denote by P_{d,C_1} the path from C_1 to P_d , P_{d,C_2} the path from C_2 to P_d . Suppose $P_{d,C_2} \cap P_{d,C_1} = \phi$ (see Fig. 4.4), and suppose $P_{d,C_1} \cap C_1 = v_a$, $P_{d,C_1} \cap P_d = v_b$, $P_{d,C_2} \cap C_2 = v_c$, $P_{d,C_2} \cap P_d = v_f$. Suppose $Y = (y_1, y_2, y_3, \ldots, y_{n-1}, y_n)^T$ is the Perron vector of G and y_i corresponds to vertex v_i . Suppose $y_b \geq y_a$, $y_f \geq y_c$. Let

$$H = G - \sum_{v_g \in N_{C_1}(v_a)} v_a v_g + \sum_{v_g \in N_{C_1}(v_a)} v_b v_g - \sum_{v_g \in N_{C_2}(v_c)} v_c v_g + \sum_{v_g \in N_{C_2}(v_c)} v_f v_g.$$

Then $\rho(H) > \rho(G)$ by Lemma 2.4, and d(H) = d(G). Now P_d is still a diameter-path in H. Denote by C_1' the cycle having common vertex v_b with P_d and C_2' the cycle having common vertex v_f with P_d in H. As Subcase 1.1, we can prove that there exists a bipartite bicyclic graph \mathcal{H} , denote by \mathscr{D}' the union of the cycles in \mathcal{H} , such that $\rho(\mathcal{H}) > \rho(G)$, $d(\mathcal{H}) = d(G)$, \mathscr{D}' consists of the two different 4-cycles, but $\lambda(\mathcal{H}) < \lambda(G)$.

Similarly, we can get the same conclusion for the cases that $y_b < y_a, \ y_f < y_c; \ y_b \geq y_a, \ y_f < y_c; \ y_b < y_a, \ y_f \geq y_c$. As the case that $P_{d,C_2} \bigcap P_{d,C_1} \neq \phi$, we can get the same conclusion.

Case 2 $C_1 \cap C_2 \neq \phi$.

As Case 1, we can prove that there exists a bipartite bicyclic graph \mathcal{H} , denote by \mathscr{D}' the union of the cycles in \mathcal{H} , such that $\rho(\mathcal{H}) > \rho(G)$, $d(\mathcal{H}) = d(G)$, \mathscr{D}' consists of the two different 4-cycles, but $\lambda(\mathcal{H}) < \lambda(G)$.

This completes the proof of this lemma.

5 Extremal graphs with the minimal least eigenvalue in $\mathcal{B}(n,d;k,j)$

Theorem 5.1 If $G \in \mathcal{B}(n,d;k,j)$ and $\lambda_n(G) = \lambda_B$, then G satisfies that $j-2 \le k \le j+1$ and

(1) if d is even, let $S_1 = B(n,d;s,s)$, $S_2 = B(n,d;s-1,s+1)$. Then

$$\left\{ \begin{array}{l} G\cong S_1, \quad \ if \ \rho(S_1)\geq \frac{\sqrt{6(n-d-3)}}{2}; \\ \\ G\cong S_2, \quad \ if \ \rho(S_1)<\frac{\sqrt{6(n-d-3)}}{2}; \end{array} \right.$$

(2) if d is odd, then $G \cong B(n,d;s,s+1)$.

Proof. Because $d \geq 3$, then $H \subseteq G$ (see Fig. 5.1). By computation, we get $\rho(H) \approx 2.5576$, so $\rho(G) \geq 2.5576$. Suppose $X = (x_{u_0}, x_{u_1}, x_{u_2}, \dots, x_{w_1}, x_{w_2}, x_{w_3}, \dots, x_{v_0}, x_{v_1}, x_{v_2}, \dots)^T$ is the Perron vector of G, in which x_s corresponds to vertex $s, x_{v_0} \geq x_{u_0}$. By symmetry, then $x_{w_1} = x_{w_2} = x_{w_3}$. As Lemmas 3.1, 3.2, we get $x_{u_k} f_1 f_2 \cdots f_{k+1} f_{k+2} = 3x_{v_0} = 3f_j f_{j-1} \cdots f_1 x_{v_j}$, where f_i $(1 \leq i \leq \max\{k+2,j\})$ satisfies that $f_1 = \rho(G)$, $f_{i+1} = \rho(G) - \frac{1}{f_i}$, $x_{u_{k-i}} = f_i x_{u_{k-i+1}}$ $(1 \leq i \leq k)$, $3x_{w_1} = f_{k+1} x_{u_0}$, $3x_{v_0} = f_{k+2} 3x_{w_1}$, $x_{v_{j-i}} = f_i x_{v_{j-i+1}}$ $(1 \leq i \leq j)$, and f_i satisfies the (i), (ii), (iii) in Lemma 3.1.

If $k \geq j+2$, then

$$x_{u_{k-1}}f_2\cdots f_jf_{j+1}f_{j+2}f_{j+3}\cdots f_{k+2}=3x_{v_0}=3f_jf_{j-1}\cdots f_1x_{v_j}.$$

By Lemma 3.1, we get that $f_{j+1}f_{j+2}f_{j+3}\cdots f_{k+2} \geq 3\rho(G)$, then $x_{v_j} \geq x_{u_{k-1}}$. Let $G_1 = G - u_{k-1}u_k + u_kv_j$. By Lemma 2.5, then $\rho(G_1) > \rho(G)$. Note that both G_1, G are bipartite. So $\lambda_n(G_1) < \lambda_n(G)$, which contradicts that $\lambda_n(G) = \lambda_{\mathbf{B}}$. Hence $k \leq j+1$. If $k \leq j-3$, then $x_{u_k}f_1f_2\cdots f_{k+1}f_{k+2} = 3x_{v_0} = 3f_jf_{j-1}\cdots f_2x_{v_{j-1}}$. By Lemma 3.1, we have $3f_jf_{j-1}\cdots f_{k+3} \geq \frac{3\rho}{2} > \rho(G)$. So $x_{u_k} > x_{v_{j-1}}$. Let $G_1 = G - v_jv_{j-1} + u_kv_j$.

By Lemma 2.5, then $\rho(G_1) > \rho(G)$. Note that both G_1, G are bipartite. So $\lambda_n(G_1) < \lambda_n(G)$, which contradicts that $\lambda_n(G) = \lambda_{\mathbb{B}}$. Hence $k \geq j-2$.

Note that d=k+j+2. If d is even, then k+j is even. Note that $j-2 \le k \le j+1$. So there are only two possible cases for G, namely j=k or k=j-2. Hence, for G, there are only two cases that $G \cong S_1$ or $G \cong S_2$ (S_1 - S_{10} are as shown in Fig. 5.1). Let r=n-d-3. By Lemma 2.11,

$$\begin{split} P(S_{1},\lambda) &= \lambda^{r} P(S_{4},\lambda) - r\lambda^{r-1} P(S_{8},\lambda) P(S_{3} - v_{s+1},\lambda) \\ &= \lambda^{r+1} P(S_{5} - v_{s+1},\lambda) - \lambda^{r} P(S_{4} - u_{s} - u_{s-1},\lambda) \\ &- r\lambda^{r} P(S_{8} - u_{s},\lambda) P(S_{3} - v_{s+1},\lambda) + r\lambda^{r-1} P(S_{8} - u_{s} - u_{s-1},\lambda) P(S_{3} - v_{s+1},\lambda), \\ P(S_{2},\lambda) &= \lambda^{r} P(S_{5},\lambda) - r\lambda^{r-1} P(S_{8} - u_{s},\lambda) P(S_{3},\lambda) \\ &= \lambda^{r+1} P(S_{5} - v_{s+1},\lambda) - \lambda^{r} P(S_{4} - v_{s} - u_{s},\lambda) - r\lambda^{r} P(S_{8} - u_{s},\lambda) P(S_{3} - v_{s+1},\lambda) \\ &+ r\lambda^{r-1} P(S_{8} - u_{s},\lambda) P(S_{3} - v_{s+1} - v_{s},\lambda). \end{split}$$

So

$$\begin{split} &P(S_2,\lambda) - P(S_1,\lambda) = \lambda^r [P(S_4 - u_s - u_{s-1},\lambda) - P(S_4 - v_s - u_s,\lambda)] + \\ & r \lambda^{r-1} [P(S_8 - u_s,\lambda) P(S_3 - v_{s+1} - v_s,\lambda) - P(S_8 - u_s - u_{s-1},\lambda) P(S_3 - v_{s+1},\lambda)] \\ &= \lambda^r [P(S_4 - u_s - u_{s-1} - v_s - u_{s-2},\lambda) - P(S_4 - v_s - u_s - v_{s-1} - u_{s-1},\lambda)] \\ &+ r \lambda^{r-1} [P(S_8 - u_s - u_{s-1},\lambda) P(S_3 - v_{s+1} - v_s - v_{s-1},\lambda) - \\ &P(S_8 - u_s - u_{s-1} - u_{s-2},\lambda) P(S_3 - v_{s+1} - v_s,\lambda)] = \cdots \\ &= \lambda^r [P(S_9,\lambda) - P(S_{10},\lambda)] + r \lambda^{r-1} [P(S_7,\lambda) P(S_6 - v_3,\lambda) \\ &- P(S_7 - u_2,\lambda) P(S_6,\lambda)] \\ &= \lambda^r [P(S_9 - v_3 - u_1,\lambda) - P(S_{10} - v_2 - u_2,\lambda)] + r \lambda^{r-1} [3\lambda^3 P(S_6,\lambda) \\ &- 3\lambda^2 (P(S_6 - v_3,\lambda))^2] \\ &= \lambda^r [P(S_7 - u_2,\lambda) - P(S_{10} - u_2 - u_1 - v_1 - v_2,\lambda)] - 3r \lambda^{r+1} \\ &= 2\lambda^{r+3} - 3r \lambda^{r+1} = \lambda^{r+1} (2\lambda^2 - 3r). \end{split}$$

Therefore, by Lemma 2.9, we have $\left\{ \begin{array}{ll} \rho(S_2) \leq \rho(S_1), & \text{ if } \rho(S_1) \geq \frac{\sqrt{6r}}{2}; \\ \rho(S_2) > \rho(S_1), & \text{ if } \rho(S_1) < \frac{\sqrt{6r}}{2}. \end{array} \right.$

Note that G is bipartite. Then $\lambda_n(G) = -\rho(G)$. So (1) is proved

In a same way, (2) can be proved.

6 Conjecture about the extremal graphs with the minimal least eigenvalue in $\mathcal{B}(n,d)$

By many computations and comparisons with computer, we find the trend that G is isomorphic to a B(n,d;k,j) if $\lambda_n(G) = \lambda_B$ for a graph $G \in \mathcal{B}(n,d)$ $(n \ge d+3, d \ge 3)$.

Conjecture 6.1 When $n \to \infty$, if $\lambda_n(G) = \lambda_B$ for a graph $G \in \mathcal{B}(n,d)$ $(n \ge d+3, d \ge 3)$, then $G \in \mathcal{B}(n,d;k,j)$ $(k+j \ge 1)$ and G satisfies the conclusions in Theorem 5.1.

Acknowledgment

We offer many thanks to the referees for their kind reviews and helpful suggestions.

References

- [1] F. K. Bell, D. Cvetković, P. Rowlinson, S. K. Simić, Graphs for which the least eigenvalue is minimal, I, Lineadr Algebra Appl. 429(2008), 234-241.
- [2] F. K. Bell, D. Cvetković, P. Rowlinson, S. K. Simić, Graphs for which the least eigenvalue is minimal, II, Linear Algebra Appl. 429(2008), 2168-2179.
- [3] D. M. Cvetković, M. Doob, H. Sachs, Spectra of graphs, third edition, Johann Abrosius Barth Verlag, 1995.
- [4] Y. Z. Fan, Y. Wang, Y. B. Gao, Minimizing the least eigenvalue of unicyclic graphs with applicathion to spectral spread, Linear Algebra Appl. 429(2008), 577-588.
- [5] A.J. Hoffman, J.H. Smith, in: Fiedler (Ed.), Recent Advances in Graph Theory, Academia Praha, New York, 1975, 273-281.
- [6] A.J.Hoffman, J. H. Smith, On the spectral radii of topologically equivalent graphs, in: M. Fiedler (Ed.), Recent Advances in Graph Theory, Academic Praha, 1975, pp. 273C281.
- [7] Y. Hong, J. L. Shu, Sharp lower bounds the least eigenvalue of planar graphs, Linear Algebra Appl. 296(1999)227-232.
- [8] Q. Li, K. Feng, On the largest eigenvalues of graphs, Acta Math. Appl. Sinica 2(1979)167-175(in Chinese).
- [9] O. Perron, Zur theorie dor matrizan, Math Ann., 64(1907), 248-263.
- [10] Miroslav Petrović, Bojana Borovićanin, Tatjana Aleksić, Bicyclic graphs for which the least eigenvalue is minimum, Linear Algebra and its Applications 430 (2009) 1328C1335.

- [11] A.J. Schwenk, Computing the Characteristic polynomial of a graph, in Graphs and Combinatorics, Lectures Notes in Mathematics, Spinger Berlin. 406(1974)153-172.
- [12] J. L. Shu, Y. Hong, R. K. Wen, A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl. 347(2002)123-129.
- [13] B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on k peendent vertices, Linear Algebra Appl. 395(2005), 343-349.
- [14] M. Zhai, R. Liu, J. L. Shu, Minimizing the least eigenvalue of unicyclic graphs with fixed diameter, Discrete Mathematics (2009), doi:10.1016/j.disc.2009.09.017.