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Abstract: Let (D) denote the total domination number of a digraph D and
let Cr, OC,, denote the Cartesian product graph of C, and C,, where C, denotes
the directed cycle of length m, m < n. In [On domination number of Cartesian
product of directed cycles, Information Processing Letters 110 (2010) 171-173.],
Liu et al. determined the domination number of Co0C,,, C300C,, and C,00C,.
In this paper, we determine the exact values of 4,(CnOC,) when at least one of
mandniseven,ornisodd and m=1,3,50r 7.
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1 Introduction

We use [11] for terminology and notations not defined here, consider finite di-
graphs and always assume the digraph without loop and multiple arcs. In partic-
ular, denote V(D) the vertex set and A(D) the arcset of D. Aset SC V(D) isa
total dominating set if for any v € V(D), there exists u € S such that uv € A(D).
For two vertices u, v € V(G), we say u dominates v if uv € A(D). The total dom-
ination number of D, denoted by 4:(D), is the minimum cardinality of a total
dominating set of D. A total dominating set S is called a v¢(D)-set if |S| = (D).

Let Dy = (W1, A1) and D2 = (V2, A2) be two digraphs with vertex sets V; =
{z1,z2,--- ,z:} and Vo = {y1,y2, -+ , 4} and arc sets A; and A3, respectively.
The Cartesian product graph D = D100D; has vertex set V = Vi x V3, and
(z,y)}(z',y') € A(D10D,) if and only if either zz’ € A; and y = ¢, or z = 2’
and yy’ € Az2. The subdigraph DY of D;0D; has vertex set V¥ = {(z,y)| for any
z € Vi, fixed y € V2}, and arc set AY = {(z,y)(z',y)|zz’ € A1}. It is clear that
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DY = (V{¥,A}) = D,. Similarly, The subdigraph D3 of D;[0D> has vertex set
V§ = {(z,y)| for any y € Vs, fixed 7 € Vi), and arc set A = {(z,4)(=,v)luy’ €
Az}. It is clear that DF = (V§, A3) = D,.

Total domination in graphs was introduced by Cockayne, Dawes, and Hedet-
niemi (1}, which is now well studied in graph theory. The literature on this
subject has been surveyed and detailed in the two books by Haynes, Hedetniemi,
and Slater (2, 3]. The decision problem to determine the domination number
and total domination number of a graph remains NP-hard. Laskar, Pfaff, Hedet-
niemi, and Hedetniemi [4] constructed the first linear algorithm for computing
the total domination number of a tree. Furthermore, there are many articles
which obtained the upper bounds and the lower bounds on the total domination
number of some special connected graphs [5, 6, 7, 8, 9, 10]. Recently, Liu et al.
[12] determined the domination number of the Cartesian product graph of two
directed cycles Crn, C,, when m = 2,3,4. In this paper, we determine the exact
values of v:(C/»[0C,) when at least one of m and n is even; and n is odd and
m=1350r7.

2 DMain results

We emphasize that V(Cy) = {0,1,2,--:,n — 1} and A(Crn) = {(i + 1,9)}i =
0,1,2,--- ,n — 1}, considered modulo n, throughout this paper.

Lemma 2.1. Let S be any total dominating set of CmUCy, then for any i €
{Oila"' yn— 1}: Isnc:nl'l'lsnc::ll 2m~

Proof. Let S be a total dominating set of Cn[0C,. Suppose the vertices in
S N C;, induce s vertex-disjoint directed paths Pi, Pz, .-, P, in C;,. Denote
(pj,i) (resp. (p},%)) the vertex of P; of outdegree (resp. indegree) 0,1 < j < s.

It is not difficult to see that the vertices in V' = V(CL)\ U (V(P:) U {(px —
k=1

L)) U{(pr,9)Il < k < s} is not dominated by SN Cy,. Therefore we need

at least |V'| vertices in Ci¥! to dominate the vertices in V’, and so we have

ISNCl+[SNCTY 2 L VBN +IVCn)l = X V(P =m. o
1= i=

Theorem 2.1. If at least one of m and n is even, then v;(CmOCn) = B2,

Proof. Without loss of generality, we assume that n is even. Let $ = V(C})uU
V(C3)u ... V(CE:™1). Clearly, S is a total dominating set of Cy[0Cn. Thus,
7(Cr0Cy) < 5.

Let S be a total domination set of C,,OC,, with minimum size. By Lemma 2.1,
we have (|SNCYI+{SNCL) +(ISNCL|+]|SNCE ) +- - - +(ISNCE+|SNCY)) >
mn. That is, |S] > 2. Thus, we complete the proof. O
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Next, we consider the case when both m and n are odd. We determine the
value of 4:(CnOC.,.) when n is odd and m = 1,3,5 or 7 in the following.

Assume m = 1, we immediately obtain the following theorem.

Theorem 2.2. Assume that n > 3 is odd. Then v(C10C,) =n.

Theorem 2.3. Assume that n > 3 is odd. Then

ntl  ifn =1,5(mod 6);
1(Cs0C) = { .312&, i;n = 3(111(;:1 6). )

Proof. Let S be a 'yg(C':;DC'..)-set By Lemma 2.1, we have (|SNCS|+|SNC}) +
(SNCH+1SNCE) +---+(ISNC3 Y +|SNCT|) > 3n. That is, |S| > 3.
Note that both 3 and n are odd, |S| > 3oL,

If n = 1,5(mod 6), we define a vertex set 5 as follows: S consists of vertices
(0,7) and (1,1), © = 0(mod 6); (1,2), ¢ = 1(mod 6); (1,%) and (2,3), ¢ = 2(mod 6);
(2,%), i = 3(mod 6); (0,) and (2,%), i = 4(mod 6); (0, ), ¢ = 5(mod 6). Clearly,
Sy is a total domination set of Cs0C, and |S1| = 9. 231 +2 = 324l jfn =
1(mod 6), |S1| =9 - "'5 +8= ——}’- if n = 5(mod 6). Therefore, 4:(C30Cr) =
3241 whenn=1,5 (mod 6).

If n = 3(mod 6), suppose there exists a 7:(C300Cn)-set S’ such that |S'| =
3ntl We distinguish two cases.

Case 1. For any i € {0,1,---,n — 1}, [C3 N S| < 3. By Lemma 2.1, there
are 2L Ci’s with |C5 N S’| = 2, and there are 23! Ci’s with |CiN §'| =
Furthermore, there exists an integer j € {0,1,--- ,n — 1} such that |CJ N S'| =
|c3+t ﬂS’| = 2, and for any other & € {0,1,- ~1}\ {4}, if|CENS| =2
(resp. |Ck N S"| = 1), then [CE*' n S'l =1 (resp |C"‘°"’1 N 8’| = 2). Without
loss of generality, let |C° NS|=|C;"'nS|=2and C3NS = {(0,0), (l 0)}
we have [C3 NS | =|CENS|=--- {C"“ZOS'I—l |c3 nS’1—|02 S =
<o = |0 N S| = 2. It follows that C} NS’ = {(1,1)}. Similarly, C3Nn S’ =
{(1,2),(2,2)}, C3 NS = {(2,3)}, Cs N S = {(0,4),(2,4)}, C3n S = {(0,5)},
c§ns = {(0,6),(1,6)},---,C3'n8 = {(1,n - 1),(2,n — 1)} (Note that
n = 3(mod 6)). Clearly, no vertex in C;~' N S and C§ NS’ can dominate
(2,n — 1). This contradicts that S’ is a 4:(C30C, )-set.

Case 2. There exists an integer i € {0,1,--- ,n — 1}, such that |[C; N S'| = 3.
Without loss of generality, let |C§ N S| =3. We have S| =|C3N S|+ (IC] N
Sl+lcinsSh+(C3nS|+|CinSN+---+(Cs2nS [+ |C3~ 0 s >
3+3. 251 = 3243 4 contradiction.

Hence, v:(C30C,) > 2%t when n = 3(mod 6) It is easy to see that Sz =
Sy U {0,n-1}isa ’yc(CsI:ICn)-set and |Sz| = 3213 Therefore, v:(C30Cn ) =
3243 when n = 3(mod 6).
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Theorem 2.4. Assume that n > 5 is odd. Then

s2tl ifn=1,3,7,9(mod 10);
7(CsHCn) = { 848 i n = 5(mod 10).

Proof. Let Sbea 'yg(Csl'_'ICn)-set By Lemma 2.1, we have (|]SNCZ|+|SNCE|) +
(ISNCEH+|SNCE) +---+(SNCEY +|SN cg|) > 5n. That is, |S| > 3¢,
Note that both 5 and n are odd, then |S| > —+—

Ifn = 3, 7(mod 10), we define a vertex set S; as follows: S; consists of vertices
(0,7), (1,%) and (2,%), ¢ = O(mod 10); (2,%) and (3,), i = 1(mod 10); (0,1),
(3,%) and (4,4), i = 2(mod 10); (0,4) and (1,4), i = 3(mod 10); (1,4), (2,1) and
(3,%), i = 4(mod 10); (3,%) and (4,%), i = 5(mod 10); (0,3), (1,%) and (4,1), i =
6(mod 10); (1,4) and (2,1), ¢ = 7(mod 10); (2,1), (3,7) and (4, ), i = 8(mod 10);
(0,i) and (4,7), ¢ = Q(mod 10) Clearly, S; is a total domination set of Cs00C,
and |51] = 25- 252 + 8 = 3t if n = 3(mod 10), |51 =25 3xL +18 = Sntl jf
n = 7(mod 10).

If n = 1,9(mod 10), we define a vertex set S as follows: S; consists of vertices
(0,9), (1,%) and (3,7), ¢ = O(mod 10); (1,%) and (3,%), ¢ = 1(mod 10); (1,7),
(3,) and (4,4), i = 2(mod 10); (1,%) and (4,4), ¢ = 3(mod 10); (1,3), (2,i) and
(4,4), ¢ = 4(mod 10); (2,4) and (4,1), i = 5(mod 10); (0,%), (2,i) and (4,%), i =
6(mod 10); (0,4) and (2,1), i = 7(mod 10); (0,%), (2,1) and (3,4), i = 8(mod 10);
(0,7) and (3,2), ¢ = 9(mod 10) Clearly, S2 is a total domination set of CsDC

and |Sz| = 25 22 + 3 = 324 if n = 1(mod 10), |S2| = 25 - o9 + 23 = S0l jf
n = 9(mod 10).
Therefore, 7:(Cs0Cn) = 32+ when n = 1,3, 7,9(mod 10).

Suppose n = 5(mod 10) and let S’ be a 7:(Cs00Cy)-set with |§'| = Snil,
Similar to the proof of Theorem 2.3, there exists at least one vertex can not be
dominated by the vertices in §’. Hence, 7.(Cs0C,) > 32+,

Now we show ~.(Cs0OCn) > 4 by contradiction. Suppose there exists a
7t(Cs0Cr)-set S” such that |S”| = 222 when n = 5(mod 10). We distinguish
three cases.

Case 1. There exists some integer i € {0,1,--+ ,n—1} such that [CiNS"| =

Without loss of generality, let |CSNS”| = 5. We have |S"| = |C°ﬁS"|+(|Cs N
S"|+|1CENS )+ -+ (ICET2NS"|+|C27INS"|) 2 5+ 5. 251 = SndS 5, 3n43
a contradiction.

From now on, we assume that there is no integer 7 such that |C N S”| = 5.

Case 2. There exists some integer i € {0,1,--- ,n — 1} such that |C{N S| = 4.

Without loss of generality, let |C? N §”| = 4. Clearly, 382 = || = |C? N
S”l + (lcl N Snl + |02 N Sul) + (Ios nsul + |C5 N S"l) +- + (I n—2 N Snl +
ICe~1NS"|) 2445 251 = 5243 Hence, we have |[CEN s"|+| ci¥1n ns"|=5



for t € {1,3,--- ,n — 2}. Combining with Lemma 2.1, we can distinguish four
subcases as follows (For any other subcase, it is not difficult to see that the
subcase is same as one of the Subcases 2.1, 2.2, 2.3, 2.4 by picking a suitable C§
as the new C9).

Subcase 2.1. |CINS"| =|CEnS"| = - =|C2"InS"| =4,[CinS"| =
[C3nS'|=...=|Ct"2NnS"|=1.

Without loss of generality, let C2 N S” = {(0,0),(1,0),(2,0),(3,0)}. Then
CinS" = {(3,1)}, C]n 8" = {(0,2),(1,2),(3,2),(4,2)}, -+, C?:Ins” =
{(1,n=1),(2,n-1),(3,n—1),(4,n~1)} (note that n = 5(mod 10)), but (4,n—1)
can not be dominated by the vertices in C5NS” and C2~'NS”, a contradiction.

Subcase 2.2. There exists an even integer ¢ € {0,1,---,n — 3} such that

IC8ns"|=|C2ns"|=-..=|Cins"|=4,|Cins"|=|CEN5"| = =

lcn—l nS/II = l’lcz+lnsul = IC:+3nsll| = = ICn—znsul - 2’|Ca+2nS//| =
5 S 5 5 5

|Ci NS =--.=|C8'NS"|=3.

Without loss of generahty, let C2NS” = {(0,0), (1 0) (2,0), (3 0)}. Then
CinsS"={3, 1}, -+, CinS" = {(%,9,(¥ +1,9), (3 +2,9), (¥ +3,9)}. It
follows that {(3 + 3, + 1)} ccitin S” and then C"a'2 ns” C{(FE+3i+
2),(¥+4,i+2),(¥+5i+2,(¥+6,:i+2)},---,057'nS" C {(azh
1),(9"‘2—"1+1,n—1),(?12;—‘l+2,n—1),(i<"2—'11+3,n—1)} ={(1,n-1),(2,n—
1),(3,n —1),(4,n — 1)} (note that n = 5(mod 10)), but (4,7 — 1) can not be
dominated by the vertices in C2 N S§” and CF~' N 8", a contradiction.

By the argument similar to that of Subcase 2.2, the contradiction in each of
the following two subcases is easy to obtain. So we do not give the detailed proof
here.

Subcase 2.3. There exists an even integer i € {0,1,--- ,n — 3} such that

IC8NS"| =|C3NS"|=---=|CiNnS"| =4,|CinS"| = |C3NS"|=-.. =
|CiNS"| =1,|C' N8| = [Ci3NnS"| = - = [CP-2N8"| = 3,|Ci*2NS"| =
ICH NS | =..-=|CE NS =2
Subcase 2.4. Thereexisti,j € {0,1,--- ,n—3} such that ¢ < j and |CENS"| =
|02 Sul _ .. !C' Sul = 4 ICS Sul = ICa S"l = = ‘Cg-l n Snl =
1 |Cx+] n Sul Ici+3 N Sul — |C] 1 n Slll — ICJ+2 N S”l lCJ+4 n Sul —
ICS—ImSul =2, |Cx+2nsnl ,Ct+4nsul = |CJnSII| = ICé'“r'\S”I =
|cJ+3 NS = =|Cr 2§ =3.

So we complete the proof of Case 2.

Case 3. There exists no i € {0,1,--- ,n — 1} such that |Ci N §”| = 5 or 4.

Since |$"| = 3243 there exist exactly three integers 4,5,k € {0,1,--- ,n—1}
such that i < j < k and |[CiNS"| = |CE*'NS”| =3, |CinS"| = |C{t nS"| =3,
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IC§ N S"| = |CE*' N S"| = 3. Without loss of generality, let ¢ = 0, and we
distinguish three subcases: (1) j=i+1,k=37+1;(2)j=i+1,k# j+1 and
k#n—-1;3)j#i+1,k#j+1and k # n— 1. (For any other subcase, it is
not difficult to see that the subcase is same as one of the Subcases 3.1, 3.2, 3.3
by picking a suitable C§ as the new C?.)

Subcase 3.1. j=i+1, k=j+1.

By Lemma 2.1, we have |CINS"| = |CsﬂS”l =|C2nS"| = |C3nS"| =3, |Cin
S"l — ICG SIII _ |C.5-1 nslI' = 105 S”I = |C7 Slll —.. Icm—Z
S| = 3. Without loss of generality, we assume C§ N S” = {(0,0),(1,0),(2,0)} or
{(0,0),(1,0),(3,0)}.

IfC{nS” = {(0,0),(1,0),(2,0)}, we have CF~'NS" = {(0 n—1),(4,n—-1)},
and then C¢~2N S = {(2,n - 2),(3,n — 2) (4 n-2)} -+, Ce7 NS =
{(0,n — 11), (4,n — 11)}, it is clear that C§ N S" = {(0, 4), (4, 4)} (Note that
n = 5(mod 10)). Thus C§ N S” = {(2,3),(3,3),(4,3)}, and so {(1, 2) (2,2)} C
C2N S". Since CINS” = {(0,0),(1,0),(2,0)}, {(2,1),(3,1)} C CLn 8", If
C'l ns” = {(1, 1) (2,1),(3,1)}, then at least one of (3,1) and (4,1) can not be
dominated. If C3NS" = {(0,1),(2,1), (3,1)}, then at least one of (0,1) and (3,1)
can not be dominated. If C3 N S” = {(2,1),(3,1),(4,1)}, then at least one of
(0,1) and (4, 1) can not be dominated, a contradiction.

Similarly as above we can deduce the contradiction of the case CI N S” =

{(0,0),(1,0),(3,0)}.

Subcase 3.2. j=i+1l,k#j+1landk#n—-1.

By Lemma 2.1, we have |C§ N S"| = |C:NS"|=|CEN S"l =3,|C¢nS"| =
|Cs S”l —_ . Ick Sul |Ck+lnsl/| ICk+3nsu| = ICs —2nsul = 3
[C3ns”| = !Cé NS |=...=|C&INS"| = |ICE2NS" | =-..=|CP ' NS =
2. Without loss of generality, we assume Cf N S” = {(0 O),(l,O),(2,0)} or
{(0,0),(1,0),(3,0)}.

IfCInS” = {(0,0),(1,0),(2,0)}, we have CF~'NS" = {(0,n— l) (4,n—-1)},
and then C272NS" = {(2,n - 2),(3,n - 2),(4,n - 2)}, .-+, CE*'Nng" =
{n—-k-1k+1), (n—k E+1),(n—k+1,k+1)} It follows that {(n — k —
2.k), (n=k=1,k)} C G¥NS”, and {(n—k,k—2), (n—k+1,k=2)} € C5?nS",

,{(n—=4,2),(n-3,2)} = {(1,2),(2,2)} C CZnS" (Note that n = 5(mod 10)).
Smce cInS” = {(0,0),(1,0),(2,0)}, {(2,1),(3,1)} CCINnS" IfCINnS" =
{(1,1),(2,1),(3,1)}, then at least one of (3,1) and (4,1) can not be dominated.
IfCins” = {(0,1),(2,1),(3,1)}, then at least one of (0,1) and (3,1) can not
be dominated. If C} N §" = {(2,1),(3,1),(4,1)}, then at least one of (0,1) and
(4,1) can not be dominated.

Similarly, the other case also contains a contradiction.

Subcase 3.3. j#i+1l,k#j+landk#n—1.



By the argument similar to that of Subcase 3.2, we can always find some
vertex which can not be dominated.

Therefore, S” is not a 7:(Cs0Cn)-set. And 4:(Cs0C,) > 5—"5& when n =
5(mod 10). It is easy to see that Sz = S U{(0, n 1) (4,n—1)} is a 7 (Cs0C,)-
set, and |S3] = m’— Therefore, 4:(Cs00Cr) = 28 when n = 5(mod 10). O

Theorem 2.5. Assume that n > 7 is odd. Then

n+l : -
_J &, ifn=1,3,5,9,11,13(mod 14);
7(Cr0Cs) = { Int? ) if n = T(mod 14).

Proof. Let S be any 4:(C700C,)-set. By Lemma 2.1, we have (|]SNC7| +|SN
CH)+(ISNCH+ISNCE +- -+ (ISNCEY+|SACE]) > Tn. That is, |5] > In
Since 7,n are both odd, |§| > .

If n = 3,11(mod 14), we define a vertex set S; as follows: S; consists of
vertices (0,1), (1,¢), (2,7) and (3,4), 2 = 0(mod 14); (3,17), (4,7) and (5,i) i =
1{mod 14); (0,1), (1,4), (5,%) and (6,7), i = 2(mod 14); (1,37), (2,¢) and (3,7),
i = 3(mod 14); (3,4), (4,7), (5,%) and (6,%), i = 4(mod 14); (0,%), (1,4) and (6,%),
i = 5(mod 14); (1,4), (2,4), (3,1) and (4,), i = 6(mod 14); (4,%), (5,) and (6,1),
i = 7(mod 14); (0,1), (1,%), (2,%) and (6,%), i = 8(mod 14); (2,1), (3,4) and (4, 1),
i = 9(mod 14); (0, ), (4, 1), (5,2) and (6,%), ¢ = 10(mod 14); (0, %), (1,) and (2, %),
i = 11(mod 14); (2,1), (3,%), (4,%) and (5,%), i = 12(mod 14); (0,%), (5,%) and
(6,7), ¢ = 13(mod 14). It can be seen that S is a total domination set of C’7DC’n,
|S1] =49 - %22 + 11 = I8t if n = 3(mod 14) and |S)| = 49 - 25} +39 =
ifn= ll(mod 14).

If n = 5,9(mod 14), we define a vertex set S2 as follows: S consists of
vertices (0,1), (1,4), (3,%) and (4,4), ¢ = 0(mod 14); (1,%), (4,%) and (5,4) i =
1(mod 14); (1,4), (2,4), (5,%) and (6,7), ¢ = 2(mod 14); (2,1), (3,7) and (6,7),
i = 3(mod 14); (0,), (3,4), (4,4) and (6,3), i = 4(mod 14); (0,4), (1,7) and
(4,1), i = 5(mod 14); (1,1), (2,4), (4,%) and (5,1), i = 6(mod 14); (2, %), (5,7) and
(6,7), i = 7(mod 14); (0,4), (2,3), (3,i) and (6,4), 1 = 8(mod 14); (0,4), (3,%) and
(4,%), @ = 9(mod 14); (0,4), (1,%), (4,7) and (5,%), i = 10(mod 14); (1,1), (2,1)
and (5,7), ¢ = 11(mod 14); (2,%), (3,3), (5,) and (6,1), i = 12(mod 14); (0,7),
(3,%) and (6,%), i = 13(mod 14). Clearly, S is a total domination set of CyOCh,
|S2| = 49 - 238 + 18 = %L if n = 5(mod 14) and |Sz| = 49 - 252 + 32 = Inkl jf
n = 9(mod 14).

If n = 1,13(mod 14), we define a vertex set S3 as follows: S3 consists of
vertices (0,1), (1,7), (3,%) and (5,7), ¢ = O(mod 14); (1,3), (3,7) and (5,i) i =
1(mod 14); (1,7), (3,), (5,%) and (6,i), ¢ = 2(mod 14); (1,i), (3,%) and (6,%),

= 3(mod 14); (1,%), (3,1), (4,%) and (6,%), i = 4(mod 14); (1,4), (4,%) and
(6,%), i = 5(mod 14); (1,3), (2,7), (4,%) and (6,3), i = 6(mod 14); (2,4), (4,3) and
(6,%), i = 7(mod 14); (0,7), (2,7), (4,7) and (6,1%), i = 8(mod 14); (0, ), (2,%) and
(4,7), i = 9(meod 14); (0,4), (2,4), (4,7) and (5,4), i.= 10(mod 14); (0,%), (2,1)
and (5,7), ¢ = 11(mod 14); (0,1), (2,4), (3,%) and (5,1), ¢ = 12(mod 14); (0,1),
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(3,7) and (5,1), ¢t = 13(mod 14) Clearly, S3 is a total domination set of C700C,,
|1S3| = 49 - ""3 + 46 = Intl if n = 13(mod 14) and |S3| = 49 - ol g4 =Intl
ifn= l(mod 14)

If n = 7(mod 14), by an argument similar to the proof of Theorem 2.4, there
exists no 7¢(C70Cn)-set S’ such that |S'] = I8l or %43 or Int®  Hence,
%(C70C,) > 2 when n = 7(mod 14). It is easy to see that. Sy =S U
{(0,n-1),(5,n— 1) (6,n—1)} is a 7:(C70Cn)-set, and |Ss] = ItT. Therefore,
¥(C70C,) = 22X when n = 7(mod 14). a
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