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Abstract A star coloring of an undirected graph G is a proper vertex
coloring of G such that any path on four vertices in G is not bicolored.
The star chromatic number x,(G) of an undirected graph G is the smallest
integer k for which G admits a star coloring with k colors. In this pa-
per, the star chromatic numbers for some infinite subgraphs of Cartesian
product of paths and cycles are established. In particular, we show that
xs(P0C;) =5 for i,7 > 4 and x,(C;0C;) = 5 for i, 5 > 30. We also show
that x,(POP;0OP,) = 6 for i,5,k > 4, xs(C30C30C) = 7 for k > 3,
Xs(Cy:0C4;0C4,0Cy¢) < 9 for 4, j, k, £ > 1. Furthermore, we give the star
chromatic numbers of d-dimensional hypercubes for d < 6.

1 Introduction

For a simple graph G, we denote by V(G) and E(G) the vertex set and
edge set of G, respectively. Let G be a graph and v € V(G), the open
neighborhood of v in G is denoted by N(v). That is to say Nv) = {uluv €
E(G)}. A proper k-coloring of a graph G is an assignment of colors from
{1,2,--- ,k} to the vertices of G such that adjacent vertices receive distinct
colors. The minimum k so that G has a proper k-coloring is called the
chromatic number of G, denoted by x(G). Let f be a proper-coloring of
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G. If G is assigned exactly with two colors under f, then we say G is
bicolored. Moreover, we say G is S-colored under f if § = Uyev(g)f(v).
The graph coloring problem consists of finding the chromatic number of a
graph, which is a well-studied NP-complete problem [1].

A star coloring of an undirected graph G is a proper vertex coloring of
G such that any path on four vertices in G is not bicolored. A star coloring
with k colors is called the k-star-coloring. The star chromatic number of an
undirected graph G, denoted by x(G), is the smallest integer k for which
G admits a k-star-coloring. The star coloring problem consists of finding
the minimum k such that a graph admits a k-star-coloring. Griinbaum [2]
noted that the condition that the union of any two color classes induce a
forest can be generalized to other bipartite graphs. Among other problems,
he suggested requiring that the union of any two color classes induce a star
forest, which is actually the star coloring problem. Later, it was well studied
and has been widely investigated [3,7].

A star coloring is thus a usual coloring with an additional condition: any
path on four vertices must contain three vertices with mutually different
colors. We add that star colorings are of similar nature as L(p, g)-labelings
in which labels of adjacent vertices differ by at least p and labels of vertices
at distance 2 differ by at least g. More precisely, star colorings are similar
to L(1,1)-labelings, which were also considered in the study of the coloring
of square of graphs [13]. Star colorings require that any path on four
vertices must receive at least three different colors while L(1,1)-labelings
require that any path on three vertices must receive three different colors.
For more information on L(p, g)-labelings we refer to recent papers [12], in
which graph products were studied.

Albertson et al. [9] showed that the star coloring problem is NP-
complete even restricted to planar bipartite graphs. Fertin et. al. [4] deter-
mined the exact value of the star chromatic number of different families of
graphs such as trees, cycles, complete bipartite graphs, outer planar graphs
and 2-dimensional grids. They also provided bounds for the star chromatic
numbers of other families of graphs, such as planar graphs, hypercubes, d-
dimensional grids (d > 3), d-dimensional tori (d > 2), graphs with bounded
treewidth and cubic graphs. However, the star coloring of planar graphs
has attracted lots of attention. Fertin et. al. [4] linked star coloring to
acyclic coloring and provided an upper bound 2304 for the star chromatic
number of a planar graph. Later, this upper bound was pushed down to 80
by (8] and to 30 by [6]. However, Albertson et. al. [9] improved this bound
to 20. Concerning the lower bound, Fertin et. al. [4] gave a planar graph
with its star chromatic number 6.

The Cartesian product of graphs G and H is the graph GO H with
the vertex set V(G) x V(H), and (g, h)(¢’, ') € E(GOH) if either g¢’ €
E(G) and h = k', or hh'/ € E(H) and g = g’. The Cartesian product is



commutative and associative, having the one vertex graph as a unit. The
subgraph of GO H induced by V(G) x {h}, where h € V(H), is isomorphic
to G, called a G-layer (over k) and denoted G*. For more information on
the Cartesian product of graphs see [5]. The path P, of length n — 1 is
the graph whose vertices are 0,1,...,7 — 1 and for which two vertices are
adjacent precisely if their difference is +=1. For an integer n > 3, the cycle of
length n is the graph C, whose vertices are 0,1,...,n — 1 and whose edges
are the pairs i,1+1, where the arithmetic is done modulo n. Let X; be P; or
C;. The subgraph X} of X;0C; is the graph induced by the vertices of k-th
column and we denote by V(XF) the vertex set {(0, k), (1,k),---, (i—1,k)}.
For convenience, when considering the Cartesian product of three graphs
(resp. two graphs), we write the vertex (%, j, k) (resp. (i,7)) as ijk (resp.
ij) and £(i, 5, k) (resp. f(i, 1)) as f(ijk) (resp. f(i3)).

In [4], the chromatic numbers of d-dimensional grid and tori were stud-
ied. Let Q4 be the d-dimensional hypercube, ie., Q4 = R0OP0--- ,0P;.

>
d times

In [4], it was shown that
Theorem 1 432 < x,(Q4) <d+1.

For any n; > 3, 1 < i < d, we denote by TGy = TG(ny,na,--- ,nq) the
toroidal d-dimensional grid having n; vertices in dimension ¢, which is the
Cartesian product of d cycles of length n;, 1 < < d. In [4], Fertin et al.
proved that

Theorem 2

2d+1, if 2d + 1 devides each n;
d+2<x:(TGa) < { 2d2 +d+1, otherwise

In this paper we are interested in the star coloring of Cartesian products
of paths and cycles, primarily motivated with investigations in [4] where
exact star chromatic numbers were determined for some specific products.
More precisely, we study the star chromatic number in the infinite families
of Cartesian product of paths and cycles. The chromatic numbers of Carte-
sian product of two cycles and some Cartesian product of three paths are
determined. Some bounds for the chromatic numbers of Cartesian product
of paths and cycles are provided. Moreover, the star chromatic numbers of
d-dimensional hypercubes are given for d < 6.

2 Preliminaries
Lemma 1 If G is a subgraph of H, then x4(G) < xs(H).
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Given two integers 7 and s, let S(r, s) denote the set of all nonnegative
integer combinations of r and s:

S(r,s) ={ar+Bs:a,B€ Z%}

The following result of Sylvester {11] is useful to provide star colorings for
infinite cases:

Lemma 2 (Sylvester [11]) If r,s > 1 are relatively prime integers, then
te S(rys) forallt > (s—1)(r —-1).

A k-star-coloring f of C;0C; can be represented by a pattern with ¢
rows and j columns. For example, the pattern

w N w
Ll
N W N
[

is a 4-star-coloring f of P3(1C4, where f(00) = 3, f(10) = 2, f(20)

£01) = 1, f(11) = 4, (20) = 1, F20) = 2, £(12) = 3, f(22) =
£(03) =1, £(13) = 4 and f(23) = 1.

3,
4,

Definition 1 Let p,q,%,5 > 3 with p < i and g < j and a k-star-coloring
f of C;OC; be represented by a pattern A. A coloring f is called a (k;p, q)-
star-coloring (or simply (k; p,q)-coloring ) of C;0C; if the following three
conditions are fulfilled: )

(1) the first p rows of A induce a k-star-coloring of C,0C},

(2) the first g columns of A induce a k-star-coloring of C;0C,,

(3) the upper left p x q pattern of A induces a k-star-coloring of Cp,0C,.

For example, let A be the pattern depicted in Fig. 6. Note that the first
4 rows of A induce a 5-star-coloring of C4JC);, the first 4 columns of A
induce a 5-star-coloring of C;;(0C}, and the upper left 4 x 4 pattern of A
induces a 5-star-coloring of C400C4, we conclude that A is a (5; 4, 4)-star-
coloring of C,;0C;.

Lemma 3

(1) Let p,q,%,5 2 3 withp < i,q < j. If f is a (k;p,q)-star-coloring of
C;0C;. Then x,(C,0C;) < k for any s € S(p,t) and t € S(q, 7).

(2) Let i,5,p > 3 and f be a (k;p,q)-star-coloring of C;0C;. Then
Xs(P-OC:) <k forr 21 andt € S(q,7).

(3) Let j,p > 3,i > 1 and f be a (k;i,p)-star-coloring of P,OC;. Then
xs(P;,0C;) < k for any t € S(q, ).
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Proof. (1) Let A be the corresponding pattern of the (k;p, g)-coloring f
of C;10C;. By repeating the topmost p rows for o times and i rows for
B times of A, and the leftmost ¢ columns for v times and j columns for
d times of A, we obtain a k-star-coloring of Cpa4ig0Cqy4js. Therefore,
Xs(Cpa+i80Cqvy+45) < k for integers a, 8,7, § which completes the proof.
(2) The proof is similar to part (1).

(3) The proof is similar to part (1). O

3 Results

3.1 Cartesian product of two graphs

Theorem 3 (Fertin et el. [{])

(1) xs(Pa0P2) = 3, xs(P0OPs) = 4, and for any m > 4, xs(P,0Pr) =
xs(Ps0Py,) = 4.

(2) For any n and m such that min{n,m} > 4, xs(P,0OPy,) =5.

Theorem 4 Let j > 3 Then

=0 ( mod 2)
=1 ( mod 2)

Proof. Let G = P;00C; with j > 3. We first show that x,(G) > 4. Other-
wise, suppose to the contrary that f is a 3-star-coloring x(G), we assume
w.lo.g., that f(00) = 2, f(10) =1, f(01) = 3 and f(11) = 2. By consider-
ing the path 00 —» 10 — 11 — 21, we have f(21) = 3. By considering the
path 00 — 01 — 11 — 21, we have f(21) = 2, a contradiction.

Now, we assume f is a 4-star-coloring x;(G). By case analysis, we have
that the vertices of each induced C; in G have distinct colors. Then we
assume w.l.o.g., that f(00) =1, f(10) =3, f(01) =2 and f(11) = 4.

If f(20) = 2, we have that (f(0k), f(1k), f(2k))= (1,3,2) for even
k and (f(Ok), f(1k), f(2k))= (2,4,1) for odd k. Therefore, if j is odd,
(f(0k),f(1_k2,f(2k)) = (1,3,2) for k = 0,j — 1, which is impossible since
PQ and P]™" are consecutive P;-layers.

If £(20) = 1, we have that (f(0k), f(1k), f(2k)) = (1,3,1) for even
k and (f(0k), f(1k), f(2k)) = (2,4,2) for odd k. Therefore, if j is odd,
(f(Ok),f(!kz,f(2k)) = (1,3,1) for k = 0,j — 1, which is impossible since
P{ and P{~" are consecutive P;-layers

Therefore, the lower bounds are established.

We give the upper bounds by providing the colorings in the following
two cases.

Case 1: j is even.

4, j
xs(Ps0Cj) = { 5 ;

b
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3121 3431213431213121
(a) 2434 (b) 2124342124342434
3121 3431213431213121
343121 34312134213121
(c) 212434 (d)21243421342434
343121 34312134213121

Fig. 1: (a) 4-star-coloring of P300C, (b) (4;3, 6)-coloring of P30C)¢ (c)
4-star-coloring of P300Cq (d) (4; 3, 6)-coloring of P300C4

The pattern depicted in Fig. 1 part (a) is a 4-star-coloring of P300C}.
It follows that P3s(]Cy, < 4 for integer a > 1. The pattern depicted in
Fig. 1 part (b) is a (4;3,6)-coloring of P3{]C)s. By Lemma 3, we have
P;0Cgq+4 < 4 for integer o > 2. The pattern depicted in Fig. 1 part
(c) is a 4-star-coloring of P300Cs. By Lemma 3, we have P3[0Cs, < 4 for
integer a > 1. The pattern depicted in Fig. 1 part (c) is a (4; 3, 6)-coloring
of P;0C,4. By Lemma 3, we have P300Cgq+2 < 4 for integer o > 2.
Case 2: j is odd.

45251 4525123 452651415
() 21413 () 2141341 (¢) 21413253
43121 4312153 43121541
452514135 452614156261
(d) 214132543 (e) 21413521413
431214121 43121413121

Fig. 2: (a) 5-star-coloring of Ps0Cs (b) (5;3,5)-coloring of P30C; (c)
(5;3,5)-coloring of P300Cs (d) (5;3,5)-coloring of P300Cy (e) (5;3,5)-
coloring of P300C;

The necessary colorings are shown in Fig. 2 and the proof is similar to
part (1). O
Theorem 5 Let i,j > 4 Then x,(P,0C;) = 5.

Proof.

The lower bound follows from Theorem 3 and Lemma 1. The patterns
depicted in Fig. 3 are (5;4, 4)-colorings of C400C;, C40Cy and C40C,
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respectively. Note that S(4,7)US(4,9)US(4, 10) is the set of integers more
than 3 except 5 and 6.

2415415 241542315 2415451415
(a) 1232132 (b) 123213432 (c) 1232132132
2514514 251425164 2514541514
3121321 312134521 3121323121

Fig. 3: (a) (5;4, 4)-coloring of C400C7 (b) (5;4,4)-coloring of C40Cy (c)
(5; 4, 4)-coloring of C4OC1o

By Lemma 3, we have x,(P;0C;) < 5 for ¢ > 4,5 > 7. The patterns
shown in Fig. 4 and Fig. 5 show that both C40C5 and C400Cs admit 5-
star-colorings, which provide the upper bounds for x,(#;0Cj;) for j = §5,6.

3 56 2 5 4 5 2 4 15 4 15

5 4 5 3 5 2 1 23 21 3 2

1 21 4 1 3 2 51 4 5 1 4

4 1. 3 1 2 1 31 213 2 1
Fig 4: C4DC5 Flg 5: C4DC7

Theorem 6 Leti,j > 30 Then x,(C;0C;) = 5.

Proof. The lower hound follows from Theorem 5 and Lemma 1. The pattern
depicted in Fig. 6 induces a (5; 4, 4)-coloring of C;0Cy;. By Lemma 3,
we have x,(C;0C;) < 5 for 4,5 € S(4,11). Then by Lemma 2, we have
xs(C;0C;) <5 for i,j > (4 — 1)(11 — 1) = 30.
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Fig. 6: (5; 4, 4)-coloring of Cy,0Cy,

3.2 POPOP

We now investigate some d-dimensional grids with d > 3. For larger 4, j, k >
3, it is too complicated enough to analysis the star-coloring of P;0P;0P;
by hand. Here we use the SAT reduction method adapted for the coloring
problem, which was proposed in [14] for the distance-constrained labeling
problem. Let G = (V, E) be a graph and k a positive integer. For every
v € V and every ¢ € {1,2,.-- ,k} introduce an atom z,;. Intuitively,
this atom expresses that the vertex v is assigned the color i. Consider the
following propositional formulas:

(1) forallve V,
V{F=1a:vvi

(2) forallve V,1<i<j<k,
ﬂ:c,,,i \4 ﬂftv'j

(3) for each path s -t > u — voflength3 and 1 <4,5 <k,
SLg i V Ty iy, V Ty

Clauses (1) and (2) ensure that each vertex is labeled with exactly one
label. Clauses (3) guarantee that an obtained coloring satisfied that it is
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not bicolored in any path of length 3. Therefore, the above propositional
formulas transform a star-coloring into a propositional satisfiability test
(SAT). We can see that an obtained SAT instance is satisfiable if and only
if G admits a k-star-coloring.

We solve the SAT instances transformed from k-star-coloring problems
described above by using the software MiniSat [15]. As a result, we confirm
that the graph P;0P,0P; and Qs admit no 5-star-coloring. Therefore, we
have

Lemma 4
xs(PO0P0PF;) > 5,
xs(PsOPy0P,) > 6,
xs(Q4) > 5.

Xa(QS) > 6.

Theorem 7

(1) xs(P,OP,0OF;) = 4 for k = 2,3, xs(P.OP,00P;) = 5 for k > 4.
(2) xs(PsOPs0OP;) = 4, xs(Ps0Ps0P;) = 5 for k > 4.

(3) xs(POP0P;) = 4, xs(P.OPs0P) =5 for k > 4.

(4) xs(P,OPy0OP:) =5 for k > 4.

(5) xs(P.OP;,OP,) =6 fori >3, > 4,k>4.

Proof. (1) We first show that P,OP,00P, admits no 3-star-coloring. Sup-
pose to the contrary that f is a 3-star-coloring of P,00P,(0P,. We assume
w.lo.g. that f(000) = f(110) = 1, f(100) = 2 and f(010) = 3. Then
f(001) € {2,3}. It can be seen that f(001) # 2, otherwise 110, 100, 000, 001
induce a bicolored Py, a contradiction. Similarly, we also have f(001) # 3.
Then we have x,(P,0P,0P;) > 4. The pattern depicted in Fig. 7 shows
a 4-star-coloring of P,00PR0P;, so x,(PR0OP,0OPR,) < x,(PROP0P;) < 4.

23 14 23 21 14 31 15
31 42 31 13 61 12 41
Fig. 7. ROP,0OP; Fig. 8: p,OR0OC,

By Lemma 4, we have x,(P,0P,0P;) > 5 for k > 4. The pattern de-
picted in Fig. 8 shows a 5-star-coloring of P,.O0P,[JC4, so xs(P.OP0F:) <
Xs(PQDPQDC4) < 5.
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(2) Note that X_,(P3DP3DP3) > xs(PZDPQDP:;) > 4 and
xs(Ps0OP;0Py) > x,(P0P,00P,) > 5, we have the desired lower bound-
s. The pattern depicted in Fig. 9 shows a 4-star-coloring of P;OP;0P3,
so xs(Ps0OP;0P;3) < 4. The pattern depicted in Fig. 10 shows a 5-star-

coloring of P;0P;00C2, so xs(Ps0Ps0F,) < x,(P:OP0C2) £ 5.

141 323 141
232 414 232
141 323 141

Fig. 9: P;0P;0Ps

234 151 423 151 342 151 234 151 423 151 342 151
515 342 515 234 515 423 515 342 515 234 515 423
234 151 423 151 342 151 234 151 423 151 342 151

Fig. 10: P3DP3E|C'12

(3) Note that Xs(PQDP:;DPs) > xs(PzDP2DP3) > 4 and
xs(P2OPs0Py) > xs(P0OP,0P,) > 5, we have the desired lower bounds.
On the other hand, since x,(P,0P;0P;) < x,(P0OP0PF;) for k > 3, we
have the desired upper bounds.

(4) Note that x,(P,O0Py0OPy) > xs(P,OP,0P,) > 5, we have the de-
sired lower bounds. The pattern depicted in Fig. 11 shows a 5-star-coloring

of P,O0P;0C10, s0 xs(P:OPiOP:) < xs(P20P;0C0) < 5.

4345 1214 3532 4143 5251 3435 2124 5352 1413 2521
5121 4353 2414 3525 1343 5212 4535 2141 3252 1434

Fig. 11: P,0P,0C;0

(5) The lower bound follows from Lemma 4. The pattern depicted
in Fig. 17 shows a 6-star-coloring of C4[1C4JC,, so x,(POP;0OP;) <
X,(C4DC4DC¢) < 6. O

3.3 ¢Oc;0C;

Lemma 5 C30C; admits no 5-star-coloring.
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Proof. Suppose to the contrary that f is a 5-star-coloring of C300C3. Then
there are at least two vertices have the same color, and we assume w.l.o.g.
that f(00) = f(11) = 1. It can be seen that f(01) # f(10) and we assume
w.lo.g. that f(01) = 2 and f(10) = 3. Then we assume w.lL.o.g. that
f£(02) = 4 and f(12) = 5. Then we have f(22) € {2,3}, f(02) € {4,5} and
f(12) € {4,5}. We have that if (f(02), f(12)) € {4,5}, f(22) can not be
either 2 or 3, a contradiction. O

Lemma 6 Let G = C30C;. If G admits a 6-star-coloring f, then for
any distinct vertices u,v,w € V(G), the result f(u) = f(v) = f(w) is
tmpossible.

Proof. Suppose to the contrary that there are three vertices that receive
the same color in a 6-star-coloring of G. We assume w.l.o.g. that f(00) =
f(11) = f(22) = 1. It can be seen that f(z) # 1 for any other vertex z.
Moreover, if there exist two other vertices that receive the same color, we
will obtain a bicolored P;. Therefore, G needs 7 colors, a contradiction.

0

By Lemma 5 and Lemma 6, it can be seen that the number of vertices
with color ¢ is either 1 or 2 for any i. Therefore, we have

Corollary 1 If f is a 6-star-coloring of C3(0C3, then for three different
colors, each is assigned to two vertices and for the other three different
colors, each is assigned to exactly one vertez.

Let f and g be two star-colorings of a graph G. We say f and g are
equivalent if there is an automorphism 7 on V(G) such that f(u) = g(7(uw))
for all u € V(G). By Corollary 1 and case analysis, we have,

Lemma 7 If f is a 6-star-coloring of C300C3, then it is equivalent to either
the graph depicted in Fig. 12 (a) or the graph depicted in Fig. 12 (b).

1 4 3 1 5 2

2 1 5 4 1 3

6 2 3 6
@) S

Fig. 12: Two 6-star-colorings in C300C30C;5.
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Lemma 8 If f is a 6-star-coloring of C30C300C3, then there are ezactly
27 induced Cys being three-colored and 54 induced Cys being four-colored.

Proof. There are totally 81 induced Cys in C300C300C3, where among 9
(C50C3)-layers, each has 9 induced Cys. By Lemma 7, we can see that in
each 6-star-coloring of C3[JC3-layer there are 3 induced Cjys with three col-
ors and 6 induced Cjys with four colors. Therefore, the proof is completed.

O

The following lemma plays a key role in the proof of Theorem 8, where
the technique of counting colored induced Cjs is used.

Lemma 9 If f is a 6-star-coloring of C30C30C3, then for any three dif-
ferent colors {c1, ca, c3}, there exists at most one {c1, ca, ca}-colored induced
C,.

Proof. Let G = C30C30C3. We now define nine (C30C3)-layers of G as
follows:

H, =G[{000, 010,020, 001,011, 021, 002, 012, 022},

H, =G[{100,110,120,101,111,121, 102,112,122},

Hs =G[{200, 210, 220, 201, 211, 221, 202, 212, 222},

H4 =G[{000, 010, 020, 100, 110, 120, 200, 210, 220}},

Hs =G[{001,011,021, 101,111,121, 201, 211, 221}],

He =G[{002,012,022,102,112, 122, 202, 212, 222},

H, =G[{000, 100, 200, 001, 101, 201, 002, 102, 202},

Hyg =G[{010,110, 210,011,111, 211,012,112, 212}],

Hy =G[{020, 120, 220,021, 121, 221, 022, 122, 222}].
Suppose to the contrary that there are at least two {c), ¢z, c3}-colored in-
duced Cjys in a 6-star-coloring of G for three different colors {c;, ¢z, 3},
then f restricted to any (C3[00C3)-layer is equivalent to either the colored
graph depicted in Fig. 12 (a) or Fig. 12 (b). We apply these 6-star-
colorings to the layer Hj in G in the following two cases.
(a) £(001) = f(111) = 1, f(101) = f(221) = 2, f(021) = f(211) = 3,
f(011) =4, f(121) =5, f(201) =6.
(b) £(001) = f(111) = 1, f(021) = f(211) = 2, f(121) = f(201) = 3,
F(101) = 4, £(011) = 5, f(221) = 6.
If we apply the case (a), we need to show that there are at most one copy
of C4 with colors (1,2,1,4) or (2,5,2,6) or (4,3,2,3). For the case (b) it is
similar. So there are totally six cases to consider. We here consider the case

(a) and show that there is at most one induced C4 with colors (1,2,1,4),
and we left to the readers for the other cases. Let F' be an induced C4
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with colors (1,2,1,4). By the definition of the star coloring, noting that
SIN() n{f(s)} = 0 and f(N(t)) N {f(s)} = O if f(r) = f(t) for a path
r — s — t, we have the following results.

«f(000) ¢ {1,2,4}, £(020) ¢ {2,3,4}, f(022) ¢ {2,3,4}, £(110) ¢ {1,2,4}
«f(110) ¢ {1,2,4}, £(112) ¢ {1,2,4}, £(210) ¢ {2,3,4}, £(212) ¢ {2,3,4}
*f(100) ¢ {2,5,6}, £(220) ¢ {2,5,6}, £(102) ¢ {2,5,6}, f(222) ¢ {2,5,6}.
From this result, it can be seen that H; and Hg contain no F. If H; contain-
s F, then V(F) = {100,120,102,122}. Since £(100) # 2 and f(102) # 2
(because f(101) = 2), this case is impossible. If Hj contains F', then
V(F) = {200,220,202,222}. Since f(200) # 2 and f(202) # 2 (because
f(221) = 2), this case is impossible. For the same reason, H; contains no
F for i € {4,6,7,9}. Since any C, lies in a (C300C3)-layer, we can see that
only one copy of F' lies in Hg, which contradicts with the assumption. O

Theorem 8 x(C30C30C;) =7.

Proof. Let G = C300C30C;. We will show that G admits no 6-star-coloring.
Suppose to the contrary that f is a 6-star-coloring of G. By Lemma 9, any
group of three colors lie in at most one copy of Cy4. Since there are totally
20 = (g) combinations of three colors, we have there are at most 20 copies
of induced C4 with three colors, which contradicts with Lemma 8.

Therefore, such a 6-star-coloring does not exist and the lower hound is
established. The pattern depicted in Fig. 13 shows a 7-star-coloring of G,
which completes the proof.

3 2 4 1 7 ] 7 6 3
a T~
-
2 1 5 7 3 6 4 7 2
"
6 5 3 5 4 2 3 2 1

Fig. 13: A 7-star-coloring of C300C30C}3
O

Let f be a 6-star-coloring of C300C300P,. By Lemma 7, f is equivalent
to either the graph depicted in Fig. 12 (a) or the graph depicted in Fig.
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12 (b). Then it is sufficient to consider the following two cases:

Case 1. f(001) = f(111) =1, f(101) = f(221) =2, f(021) = f(211) = 3,
f(011) =4, f(121) =5, f(201) =6.

Case 2. f(001) = f(111) =1, f(021) = F(211) =2, f(121) = f(201) = 3,
F(101) = 4, f(011) = 5, f(221) = 6.

Then we are able to obtain the following result, which shows the structure
of a 6-star-coloring of C300C30FP;.

Lemma 10 Let f be a 6-star-coloring of C301C3;0P;.

(a) If £(001) = f(111) = 1, f(101) = f(221) = 2, f(021) = f(211) =
3, f(011) = 4, f(121) = 5, f(201) = 6, then f(010) = 2,
f(120) = £(200) = 4, £({000,020}) = f({110,210}) = {5,6} and
f({100,210}) = {1,3}.

(b) If £(001) = f(111) = 1, £(021) = F(211) = 2, f(121) = £(201) =
3, f(101) = 4, f(011) = 5, f(221) = 6, then f(000) € {2,3,6}.
Moreover, (1) if f(000) # 6, then f(220) =1, f(120) = f(200) =5
and f(020) = f(210) = 4, and {000,010, 100,110} form an induced
Cy4 with the color set {2,3,6};

(2) if f(000) = 6, then f(110) = 6, and either f(020) = f(210) or
both £(010) = £(220) and £(200) = £(120) hold.

Proof.

e
—
-~
w

000 /|010 /j020 001 on 021

100 110 120 101 111 121

4 R a -
200 210 220 201 21t 221

Fig. 14: 6-star-coloring of C300C30P,

(a) With the coloring of the second (C30C}3)-layer fixed as above, by a
rather tedious case by case analysis (confirmed by the computer), we obtain
that all five possible colorings of the first (C300Cj3)-layer. The results are
presented in Fig. 15.
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200 210 220 200 210 220 200 210 220 200 210 20 200 210 220

(a) (b) () (d) (e)

Fig. 15: 6-star-colorings of the first (C30C3)-layer

From above, it can be see that Lemma 10 (a) holds.
(b) The proof is similar to (a) and it is omitted here. O

, Now, by applying the possible colorings of C300C50P, to the second
and third (C30C3)-layers of C300C300F;, it is easy to have that C300C30Py
admits no 6-star-coloring. Therefore, we have

Corollary 2 x,(C30C30P) > 7.

Theorem 9
Let k > 4. Then x,(C30C30C,) =17.

Proof. The lower bounds follow from Corollary 2. The pattern depicted
in Fig. 16 part (a) is a 7-star-coloring of C300C30C,. This implies that
xs(C30C30C) < 7 for k = 4¢ with ¢ > 1. The pattern depicted in Fig.
16 part (b) is a 7-star-coloring of C300C3[]Cy. Moreover, the leftmost four
3 x 3 subpatterns induce a 7-star-coloring of C3[3C300C,. This implies that
Xs(C30C30C) < 7 for k = 49 + 1 with ¢ > 2. Similarly, the patterns
depicted in Fig. 16 part (c) and (d) confirm that x,;(C30C30C)) < 7 for
k = 4g+2 with ¢ > 1 or k = 4¢g+3 with ¢ > 1. The pattern depicted in Fig.
16 part (e) is a 7-star-coloring of C30C300C5. Then the 7-star-coloring of
C30C30C, for each k > 3 is established.
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Fig. 16: 7-star-colorings of C30C30C. for k € {4,5,6,7,9}

Proposition 1

(1) xs(C4DC4DC4) =6.
(2) x+(CelIC61Cs) = 6.
(8) xs(C4OC40Cs) = 6.
(4) xs(Cs0Ce0Cs) = 6.

Proof. By Lemma 4, we have x,(P;s0P,00P,;) > 6, and so all the lower
bounds follow. The obtained 6-star-colorings of C,00C4[1C,, Cs[1Cs0Cs5,
C40C40C¢ and C400Cs00Cs are depicted in Figs. 17-20. Therefore, the
assertion follows.

N = 0D
DN =
N = W o
WoNOO
N W oo,
= 0= W
D NDON
DD =
w N e
N O DD
a WO =
N = O W
AN W
W= OO ;M
D YN b
b =

Fig. 17: 6-star-coloring of C,00C,[0C,
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164154 325325 651651 263263 614614 432432
613613 246246 134134 542542 351351 526526
435435 521521 365365 216216 463463 142142
263263 614614 432432 1541564 325325 651651
542542 351351 526526 613613 246246 134134
216216 463463 142142 435435 521521 365365

Fig. 18: 6-star-coloring of Cs0Ce[1Cs

6243 5614 1432 6153 5324 1562
3451 4126 2365 3541 4216 2635
6624 2531 6143 4625 1632 3146
1365 3452 65216 2364 6451 4213

Fig. 19: 6-star-coloring of C4(0C40Cs

234265 416153 652342 534161 426523 615341
616354 325421 546163 213254 635461 542132
452413 261635 134524 352616 241345 163526
161532 543246 321615 465432 153216 324654

Fig. 20: 6-star-coloring of C4;[1C¢0Cs

Similar to the proof of Proposition 1, we have

Corollary 3
(1) Let i,5,k > 1. Then x,(Cyi0C4;0Cyx) = 6.
(2) Let i,j,k > 1. Then x5(Ce:00Cs;0C6k)
(3) Leti,j,k > 1. Then X,(C,“DC‘;J'DCG);)
(4) Let i,j,k > 1. Then xs(Cyi00Cs;0Ce1) =

6
6.
6

3.4 Cartesian product of four or more graphs

By Theorem 2, we have x,(C,0C,0C,0C;) < 37. We improve this upper
bound by the following result:

Theorem 10 Let i,5,k,¢ 2 1. xs(Cy;0C4;00C40C4e) < 9.
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Proof. Let M; be the i-th (C40C,0C)-layer of C,00C,0C,0C,. The pat-
tern depicted in Fig. 21 is a 9-star-coloring of C4y[00C,0C,0C,. Therefore,
Xs(Ca0C40C,0C;) < 9. By Lemma 3, we have x,(C4;0C4;0C40Cy¢) <
9.

8617 2131 1716 3121 4151 1819 5141 1918
M1 1898 8415 9181 8514 M2 8213 6171 1312 7161
8716 3121 1617 2131 5141 1918 4151 1819
9181 1514 8191 1415 1312 7161 1213 6171
1716 3121 1617 2131 5141 1918 4151 1819
M3 9181 1514 8191 1415 M4 8312 7161 1213 6171
1617 2131 1716 3121 4151 1819 5141 1918
8191 1415 9181 1514 1213 6171 1312 7161

Fig. 21: A 9-star-coloring of C,0C,0C40OC;,

The following result improves the upper bound of x:(Qs):

Theorem 11 x;(Q2) = 3, xs(Q3) = 4, x:(Q4) = 5, xs(Qs) = 6,
xs(Qs) = 6.

Proof. By Theorem 1, we have x;(@4) < d+ 1 for d > 2. Now for the
upper bound, we only need to consider Qg. Let the sequence 6, 2, 2, 3, 2,
4,5,6,3,5,41,1,3,3,2,4,5,1,4,3,1,4,2,2,6,5,3,5,4,6,5,5, 1,
4,5/3,51,2,2,4,6,3,4,6,5,4,2 3,3,6,6,4,5 3, 1,5, 4, 2, 3, 2,
2, 1 be a coloring f : V(Qs) — {1,2,3,4,5,6} of Q¢ by the lexicographic
order, i.e., £(000000) = 6, £(000001) = 2, £(000010) = 2, f(000011) = 3,
etc. Then it can be seen that f is a 6-star-coloring of Qg. Therefore, the
upper bounds are established.

Since Q2 = C4, we have x;(Q2) > 3. By Lemma 4, we have x,(Q4) > 5
and xs(Qs) = Xxs(@s) = 6. The lower bound for xs(Q3) follows from
Theorem 7. Therefore, the lower bounds are established. 0

It is likely that the star chromatic number of C;0C;0C}) for even ¢, j, k
is 6 and the star chromatic number of C;0C;0C%) is 7 if one of {4, j,k} is
even. We therefore propose the following:

Conjecture 1 Leti,j,k > 3. Then
(1) xs(C;0C;0Ck) = 6 if each of {3, 5, k} is even,
(2) xs(C;0C;0Ck) = 7 if at least one of {4,j,k} is odd.
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