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Abstract: G is almost locally connected if B(G) is an independent
set and for any z € B(G), there is a vertex y in V(G)\ {z} such that
N(z)U{y} induces a connected subgraph of G, where B(G) denotes
the set of vertices of G that are not locally connected. In this paper,
we prove that an almost locally connected claw-free graph on at least
4 vertices is Hamilton-connected if and only if it is 3-connected.
This generalizes a result by Asratian that a locally connected
claw-free graph on at least 4 vertices is Hamilton-connected if and
only if it is 3-connected [Journal of Graph Theory 23 (1996) 191-201].
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1 Introduction

All graphs considered in this paper are simple and finite. We use [2] for
notation and terminology not defined here. A graph G is claw-free if it
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does not contain the claw K 3 as an induced subgraph. For two distinct
vertices z and y of a graph G, an (z,y)-path in G is a path of G with end
vertices z and y. If an (z, y)-path of G contains all the vertices of a graph
G, then this (z, y)-path is a Hamilton path (from z to y or between z and y)
of G, and the graph G is called traceable. A graph G is hamiltonian if there
exists a pair of adjacent vertices {z,y} in G and a Hamilton path between
z and y in G —{z, y}, i.e., if there exists a (Hamilton) cycle in G containing
all the vertices of G. A graph G is Hamilton-connected (this is sometimes
called hamiltonian-connected, but we adopt the terminology of [2)) if for
every pair of vertices {z,y} of G there exists a Hamilton path between z
and y. A graph G is panconnected if for each k and for each pair of distinct
vertices u and v with d(u,v) < k < |V(G)| — 1, there exists a (u,v)-path
of length k, where d(u,v) is the distance between v and v in G, i.e., the
length (number of edges) of a shortest (u,v)-path of G. For a vertex v of
G, the neighborhood N(v) is the set of all the vertices that are adjacent to
v in G; the closed neighborhood of v is the set N[v] = N(v) U {v}. For a
nonempty subset S of V(G), G[S] denotes the subgraph induced by S in
G. A vertex v is locally connected if G[N(v)] is connected. A graph G is
locally connected if every vertex v of G is locally connected.

Local connectivity conditions have been a popular subject because they
play certain roles for hamiltonian properties of claw-free graphs. While
arbitrarily high levels of connectivity cannot guarantee hamiltonian prop-
erties of general graphs, even mild local connectivity conditions can do so
for claw-free graphs, as we can see from the earliest result in this area.

Theorem 1 (Oberly and Sumner [7]). Every connected, locally connected
claw-free graph on at least three vertices is hamiltonian.

Similar results on hamiltonian properties of graphs were obtained in,
e.g., [4], [5] and [6], under this and stronger local connectivity conditions.

Notice that we can easily prove Theorem 1 if we use the well-known
Ryjacek closure in [9]. The key elements of Ryjaéek closure are as follows.
Let G be a claw-free graph and let v be a locally connected vertex of G.
If G[N(v)] is not a complete subgraph of G, add all the missing edges to
G[N (v)] to turn it into a complete subgraph, and denote the newly obtained
graph by G,. Then G, is again a claw-free graph, and G, is hamiltonian
if and only if G is hamiltonian. Moreover, a locally connected vertex in G
remains locally connected in G,, so repeatedly applying this procedure to a
connected, locally connected graph turns the graph into a complete graph.
Since a complete graph on at least three vertices is trivially hamiltonian,
this shows that a connected, locally connected claw-free graph on at least
three vertices is hamiltonian.

Asratian proved the following theorem in [1].
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Theorem 2 (Asratian [1]). Let G be a locally connected claw-free graph
on at least four vertices. Then G is Hamilton-connected if and only if G is
3-connected.

A natural question is if we can weaken the local connectivity condition in
Theorem 2 and still maintain the same result as the one in Theorem 1. This
motivates the following concept introduced by Teng and You in [11]. Let
B(G) denote the set of vertices of a graph G that are locally disconnected,
i.e., not locally connected. A subset S of the vertices of a graph G is called
independent if no pair of vertices of S is adjacent in G. A graph G is called
almost locally connected if B(G) is independent and for any z € B(G), there
is a vertex y in V(G) \ {z} such that G[N(z) U {y}] is connected. From
the definition it is straightforward to see that any locally connected graph
G is also almost locally connected, since for such a graph G, B(G) = 0.
On the other hand, it is easy to give examples of almost locally connected
claw-free graphs that are not locally connected (see Figure 1).

Figure 1: An almost locally connected but not locally connected claw-free
graph

Supposing that G is a connected, almost locally connected claw-free
graph with B(G) # 0, consider a vertex = of B(G). First of all, note that
the neighborhood of z induces two disjoint complete graphs in G (if G has
at least three vertices). By the definition, for some vertex y in V(G)\ {z},
the subgraph G[N (z)U{y}] is connected, hence y has at least two neighbors
z1 and 23 in two different (complete) components of G[N(z)], respectively.
Then clearly zy ¢ E(G); otherwise z would be locally connected. Since



B(G) is an independent set, both 2; and 2, are locally connected. Applying
the Ryjdcek closure with respect to zj, in the resulting graph G, the
vertices £ and y are adjacent. In fact, it is not difficult to check that both
z and y are locally connected in G,. Continuing in the same way for other
vertices of B(G), one can deduce that the closure of a connected, almost
locally connected, claw-free graph is complete. Hence a result which is
similar to the one in Theorem 1 for the almost locally connected graphs
can be easily obtained.

In this paper, we prove the following analogue of Theorem 2 for almost
locally connected claw-free graphs.

Theorem 3. Let G be an almost locally connected claw-free graph on at
least four vertices. Then G is Hamilton-connected if and only if G is 3-
connected.

Another natural question is whether the conclusion of Theorems 2 and
3 can be strengthened from Hamilton-connected to panconnected claw-free
graphs. This question was answered affirmatively in case of local connectiv-
ity by Sheng, Tian and Wei [10]. They proved the conjecture by Broersma
and Veldman (3] that every locally connected claw-free graph of order at
least 4 is panconnected if and only if it is 3-connected. We were not able to
prove a counterpart of this result for almost locally connected graphs and
leave it as an open problem.

2 Preliminaries

Before we prove Theorem 3, we introduce some additional terminology and
auxiliary results.

For two nonempty vertex sets A and B of a graph G, we define E(A, B) =
{zye E(G):z € A,y € B}

We let P denote a path by z,z;...zk, and we will use =} to denote
the successor z;43 of z; on P for 1 < i < k — 1, in the direction specified
by the ordering of the vertices of P. Similarly, we use z; to denote z;_;
for 2 < ¢ < k. We denote by P~ the path P with the reverse orientation,
s0 P™ = zpxk_1...21. With z;Pz; (i < j) we denote the consecutive
vertices on P from z; to z; (inclusive), and with =;P~z; (j > i) we denote
the consecutive vertices on P from z; to z; in the reverse order.

We now present some useful lemmas that are identical or follow im-
plicitly from the proofs in [1]. Most of these statements are exactly the
same statements as in [1], but here we deal with locally connected vertices
in an almost locally connected graph, while in (1] all vertices are assumed
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to be locally connected. The proof of Lemma 1 is implicit in the proof of
Proposition 2.2 in [1].

Lemma 1. Let G be a connected claw-free graph and let u be a locally
connected vertez of G. Furthermore, let w be a cut vertez of H = G[N(u)].
Then the following properties hold:

(1) the graph H — w has two components end each of them is a complete
graph;

(2) the graph H has at most two cut vertices. Moreover, if H has two
cut vertices v, and vg, then vivp € E(G).

The proof of Lemma 2 is implicit in the proof of Proposition 2.3 in [1].

Lemma 2. Let G be a connected claw-free graph and let v be a locally
connected vertex of G. If v € N(u) and v is not a cut vertez of G[N(u)),
then there is a Hamilton (u,v)-path in G[N[u]].

The proof of Lemma 3 is implicit in the proofs of Theorems 3.1-3.3
in [1].

Lemma 3. If G is a 3-connected claw-free graph, and u and v are both
locally connected vertices of G, then there exists a (u,v)-path P in G such
that N(u) U N(v) C V(P).

The following observation follows immediately from the definition of an
almost locally connected graph.

Observation 1. If G is a connected, almost locally connected graph and
u s a locally disconnected vertez of G, then any vertex v € N(u) is locally
connected.

Lemma 4. Let G be a connected, almost locally connected graph and u be
a locally disconnected vertex of G. Then for any vertez v € N(u), G[N(v)\
Nlu]] is a complete graph and there is an edge zy with x € N(u) N N(v)
andy € N(v) \ N[u].

Proof. Notice that u is locally disconnected and G is claw-free. Let N(u) =
AU B, where G[A] and G[B] are two disjoint complete graphs. Suppose
v € A. Then for any two distinct vertices y1,y2 € N(v)\ N[y}, y192 € E(G)
since G[v, %, y1,¥2] # K1,3. By Observation 1, v is locally connected. Thus
A\{v} # 0, and there is an edge zy with z € A\ {v} and y € N(v)\A. Since
G|A] is a complete graph and v € 4, x € N(v) " N(u). This completes the
proof of Lemma 4. 0

99



Let z be an internal vertex of a (u,v)-path P of a graph G with u # v.
We say that P has a local detour at z if there exists a path in G[N(2)\{u, v}
with origin outside P and terminal which is a neighbor of z on P. The
following result was obtained in [5].

Lemma 5. Let G be a claw-free graph with order |V(G)| > 3 and let P be
a (u,v)-path of length k withu # v and3 < k < |V(G)|—2. If P has a local
detour, then G contains a (u,v)-path Q of length k+1 with V(P) C V(Q).

Our final result of this section shows that in a connected, almost locally
connected claw-free graph, a Hamilton (u,v)-path is guaranteed by the
existence of a (u,v)-path (of length at least 3) containing all neighbors of
u and v.

Theorem 4. If G is a connected, almost locally connected claw-free graph,
and there is a (u,v)-path P of length at least 3 such that N(u) U N(v) C
V(P), then G contains a Hamilton (u,v)-path.

Proof. Suppose, to the contrary, that G does not contain a Hamilton (u, v)-
path. Let P be a longest (u,v)-path of length k of G such that N(u)uU
N(v) € V(P). Then k < |V(G)| — 1 and V(G) \ V(P) # 0. Suppose
z € V(P),ye V(G \V(P) and zy € E(G). Since N(u) U N(v) C
V(P), z ¢ {u,v}. Then we obtain z~z* € E(G) since G is claw-free. By
Lemma 5, z is not locally connected; otherwise we can get a (u, v)-path P’
of length & + 1 such that V/(P) C V(P'), a contradiction with the choice of
P. Thus assume that N(z) = AU B, where G[A] and G[B] are two disjoint
complete graphs. Without loss of generality, let y € B. Then z~,z% € A.

We first prove a number of claims, followed by short proofs, before we
reach our final contradiction.

Claim 1. A C V(P).
Proof. Suppose that there is a vertex z € A such that z ¢ V(P). Since
G[A] is a complete graph, zz*, 2z~ € E(G). It is easy to get a (u,v)-path
P’ of length k + 1 such that V(P) C V(P’), a contradiction. O

Claim 2. BNnV(P)=4.

Proof. If B = {y}, then the claim is obviously true. Suppose that |B| > 2
and there is a vertex y’ € BN V(P). Since G[B] is a complete graph,
yy' € E(G). Since N(u)UN(v) C V(P), v’ ¢ {u,v}. Then by Lemma 5, y’
is not locally connected; otherwise we can get a (u, v)-path P’ of length k+1
such that V(P)} C V(P’), a contradiction. Since z and y’ are not locally
connected and y'z € E(G), we obtain a contradiction with the definition
of almost local connectedness. This completes the proof of Claim 2. O



Since G is almost locally connected, there is a vertex w connecting A and
B. By Claim 2, BNV(P) = . Without loss of generality, we may assume
that wy, wz € E(G) for some z € A.

Claim 3. w € V(P), w ¢ {z~,z*} and w~wt € E(G).

Proof. Suppose that w € V(G) \ V(P). By Claim 1, z € V(P). Since
wz € E(G) and N(u)UN(v) C V(P), z ¢ {u,v}. Obviously, 2=zt € E(G).
If z = z~, then we can easily obtain a (u,v)-path P’ = uPz~wyzPv of
length & + 2 such that V(P) C V(P’), a contradiction. Similarly, z # z*.
Thus, without loss of generality, assume that z is on z*¥+Pv. Since G[A]
is a complete graph and {z,z%,z} C A, we get that 22—, zz+ € E(G).
Then we can obtain a (u,v)-path P’ = uPzywzzt Pz~ 2% Pv of length k+2
such that V(P) C V(P'), a contradiction. We conclude that w € V(P).

It is clear that w ¢ {z—,z*}. Since Glw,w™,w*,y] # K13 and
yw™,yw* ¢ E(G), w~wt € E(G). O

Claim 4. w is not locally connected.
Proof. Since wy € E(G) and N(u) U N(v) C V(P), w ¢ {u,v}. Thus by
Lemma 5, w is not locally connected. O

By Claim 3, without loss of generality, we may assume that w € z+* Puv.
By the definition of almost local connectedness, G{N(z) U {w}] is con-
nected. Then there is a path Q in G[N(z) U {w}] of length at most
3 connecting y and z%, since G[A] and G[B] are two disjoint complete
subgraphs of G[N(z)]. If Q@ = ywz™, then we can obtain a (u,v)-path
P’ = uPzywz* Pw~wtPv of length k£ + 1 such that V(P) Cc V(P'), a
contradiction. Let Q@ = ywzz*. Since G is claw-free and using Claim
4, we assume that N(w) = A; U B;, where G[A,], G|B,] are two disjoint
complete graphs. Then, without loss of generality, we may assume that
y € A1,z € By. Obviously, w™,w* € B; and w™z,wtz € E(G), since
w™y,wty ¢ E(G) and G[By] is a complete graph. If z = w™, then we can
easily obtain a (u,v)-path P’ = uPz~z* PzzywPv of length k + 1 such
that V(P) C V(P’), a contradiction. Similarly, z # wt. Without loss of
generality, we may assume that z is on w**Pv. Since {z~,z%,2} C A
and G[A] is a complete graph, z~z,z%z € E(G). If 272+ € E(G), then
we can get a (u,v)-path P' = uPzywP~z% 2wt Pz~ 2% Pv of length k + 1
such that V/(P) C V(P’), a contradiction. Since G[z,z7,2%,z%] # K3
and z~z* ¢ E(G), z-z* € E(G) or 2*tzt € E(G). If 2~z% € E(G),
then we can obtain a (u, v)-path P = uPzywP~z% 2~ P~w* zPv of length
k + 1 such that V(P) C V(P'), a contradiction. If z*z+ € E(G), then we
can get a (u,v)-path P/ = uPrywzP~wtw~P~ztz* Py of length k + 1
such that V(P) C V(P’), a contradiction. This completes the proof of
Theorem 4. O
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By Theorem 4, the existence of a (u,v)-path P with N(u) U N(v) C
V(P) guarantees the existence of a Hamilton (u,v)-path in a 3-connected,
almost locally connected claw-free graph. Using Lemma 3, this shows that
any two distinct locally connected vertices are connected by a Hamilton
path in a 3-connected, almost locally connected graph. Hence, in order to
prove Theorem 3, it suffices to prove the existence of a Hamilton (u,v)-
path in a 3-connected, almost locally connected claw-free graph on at least
4 vertices, in case at least one of u and v is a locally disconnected vertex.
By Theorem 4, it suffices to prove the existence of a (u,v)-path P with
N(u)UN(v) C V(P) in these cases. We give a separate proof for the three
remaining cases in the next section. In fact, we follow a slightly different
case distinction involving the distance d(u,v) between u and v,

3 The remaining cases

Throughout this section we assume that G is a 3-connected, almost locally
connected claw-free graph, and that u is a locally disconnected vertex of G.
We complete the proof of Theorem 4 by distinguishing the following cases
and proving the existence of a (u,v)-path P such that N(u)UN(v) C V(P)
in all these cases:

e v is a vertex of G such that d(u,v) =1, i.e.,, v € N(u);
e v is a vertex of G such that d(u,v) = 2 and N(u) U {v} is connected;
e v is a vertex of G such that d(u,v) = 2 and N(u)U{v} is disconnected;

e v is a vertex of G such that d(u,v) > 3.

We use the following notation. Suppose H is a graph with V(H) =
AU {u,v}, where H[A] is a complete graph. Then we let u[A]v denote a
Hamilton (u,v)-path of H.

Case 1. v is a vertez of G with d(u,v) = 1.

Proof. Notice that G is claw-free and that u is locally disconnected. Then
N(u) = AU B, where G[A] and G[B] are two disjoint complete graphs.
Since d(u,v) = 1, we may assume v € A. Then by Observation 1, v is
locally connected. Suppose first that » is a cut vertex of G[N(v)]. Then
there are two vertices y1, y2 € N(v)NN(u) such that y;, and y; belong to two
distinct components of G[N(v) \ {u}], respectively. Obviously y;,y2 € A
and y1y2 ¢ E(G), which contradicts that G[A] is a complete graph. Thus
u is not a cut vertex of G[N(v)], and G{N(v) \ {u}] is connected. Notice
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that G is almost locally connected, assume that w connects A and B such
that wa,bw € E(G) for some a € A and b € B. Using Lemma 1, suppose
first that there are two distinct cut vertices v; and vy of G[N(v) \ {u}]
in A. Then N(v) N A = {v1,v2}. Using Lemma 1, let G[H,] and G[H;]
be two distinct complete subgraphs of G[N(v) \ {u,v1,v2}]. By Lemma 4,
G[(H, U Hy) \ A] is a complete graph since (H; UH;)\ A C N(v)\ 4, a
contradiction with Hy N Hy = §. Therefore, A contains at most one cut
vertex of G[N(v) \ {u}].

Now first assume that w ¢ N(v). We first deal with the case that
|N(w) N A| > 2 and, without loss of generality, we may assume that a
is not a cut vertex of G[N(v) \ {v}]. Then by Lemma 2, we can get a
Hamilton (a,v)-path Qo of G[N[v] \ {u}]. Obviously, A C V(Qo) and
BNV(Qo) = 0. Thus we can obtain a (u,v)-path P = u[B \ {b}|bwaQov
such that N(u) U N(v) C V(P). Similarly, if N(w) N A = {a} and a is not
a cut vertex of G[N(v) \ {u}], then we can obtain a (u,v)-path P such that
N(u) U N(v) C V(P). We next deal with the case that N(w) N A = {a}
and a is a cut vertex of G[N(v) \ {u}]. Let H = N(v) \ N[u]. Then
H # 0 and by Lemma 4, G[H] is a complete graph. Obviously, there is
a vertex ¢ € H such that ca € E(G). By Lemma 4, cw € E(G), since
c,w € N(a) \ A. Suppose that ¢ is not a cut vertex of G[N(v) \ {u}].
Then by Lemma 2, there is a Hamilton (c, v)-path @y of G[N[v] \ {¢}]. It
follows that we can obtain a (u,v)-path P = u[B \ {b}}bwcQ1v such that
N(u) U N(v) € V(P). Suppose that c is a cut vertex of G[N(v) \ {u}].
Then ca € E(G) by Lemma 1. G — {v,c} contains at least one (z,y)-
path Q2 with an orientation from z to y connecting H \ {¢} and N(u)
such that z € H \ {¢},y € N(u) and (V(Q2) \ {z,y}) N (N(u)UH) =0
since G is 3-connected. Suppose y € A. If w ¢ V(Q2), then we can obtain
a (u,v)-path P = u[B\ {b}]bwc[H \ {z,c}]zQ2y[A \ {y,v}]v such that
N(u)UN(@v) € V(P). If w € V(Q2), then we can obtain a (u,v)-path P =
u[B\ {b})bwQ3 z[H \ {z, c}]ca[A \ {a, v}]v such that N(u)UN(v) C V(P).
Suppose y € B. Then we can obtain a (u,v)-path P = u[B\ {y}]yQz z[H \
{z,c}|calA \ {a,v}]v such that N(u) U N(v) C V(P). This completes all
the subcases when w ¢ N(v).

Suppose next that w € N(v). Then, using similar arguments as above,
we can obtain a (u,v)-path P such that N(u) U N(v) C V(P). This com-
pletes the proof of Case 1. 0O

Case 2. v is a vertez of G with d(u,v) = 2 and N(u) U {v} is connected.

Proof. As before, let N(u) = AU B, where G[A] and G[B] are two disjoint
complete graphs. Moreover, assume that w connects A and B such that
aw,bw € E(G) for some a € A and b € B. Since v connects A and B,
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without loss of generality, assume that v = w. We complete the proof by
distinguishing the following two subcases.

Case 2.1. v is locally connected.

For any vertex x € N(v) \ N[y, if there is a vertex y; € N(v) N A such
that zy; ¢ E(G), then for any vertex z; € N(v) N B, z2; € E(G) since
Glv,y1,21,2) # K13 and y12; ¢ E(G). Similarly, if there is a vertex
y2 € N(v) N B such that zy, ¢ E(G), then for any vertex z; € N(v) N A4,
zz3 € E(G). Thus G[{z}U(N(v)NA)] or G[{z}U(N(v)NB)] is a complete
graph. Let H; = {z € N(v) \ N[y} : G[{z} U (N(v) N A)] is a complete
graph}. Then for any two distinct vertices hy,h; € H; and any vertex
y € N(v) N A, hiy,hoy € E(G) and h1hs € E(G) by Lemma 4. Thus
G[H; U (N(v) N A)] is a complete graph. Let Hy = N(v) \ (N[u] U Hy).
Obviously, Hz =@ or Ho ={h € N(v)\N[u]: h ¢ Hy and G[{h}U(N(v)N
B)] is a complete graph}. Similarly as for G[Hy U (N(v) N A)], we get that
G[H, U (N(v) N B)] is also a complete graph. Since v is locally connected,
E(H,,N(v)NB) # 9, E(H3, N(v)NA) # 0 or E(H,, Hy) # 0. Without loss
of generality, assume that E(H,, N(v)NB) # @ and 'y’ € E(H,, N(v)NB)
(z' € Hy, ¥’ € N(v) n B). Without loss of generality, we only consider the
case that N(v) N B = {b} (i.e., ¥’ = b); the other cases are similarly dealt.
Then by Observation 1 and Lemma 4, b is locally connected and there
is an edge ziy; such that =} € B\ {b} and y; € N(b) \ B. Without
loss of generality, assume that y; € Hs. Then we can obtain a (u,v)-
path P = u[A\ {a}|a[H) \ {z'}]z'b[B \ {b, z{ }]z}¥}{[H2 \ {]{}]v such that
N(u)UN(v) C V(P).

Case 2.2. v is not locally connected.

As before, let N(v) = A; U By, where G[A,] and G|B,] are two disjoint
complete graphs. Since v connects A and B, without loss of generality,
assume that AysNA#B,BiNB#0. Then A ,NnB=B,NA=0.

We first prove the following claim.

Claim. For any vertex x € AU A; and y € B U By, there is a Hamilton
(u,z)-path Qo of G[AU A; U {u}] and a Hamilton (y, v)-path Q; of G[BU
By U {v}], respectively.

Proof. Without loss of generality, assume that z € A\ 4; and 4;NA = {a}.
Then by Observation 1 and Lemma 4, a is locally connected and there is
an edge 2322 such that z; € A\ {a} and 25 € N(a)\ A. Since {2;,v} C
N(a) \ A, by Lemma 4, zov € E(G) (i.e., 20 € A; \ A). Without loss of
generality, assume that z; # z. Then we can obtain a Hamilton (u,z)-
path Qo = u[A\ {z, 21, a}]a[A;1 \ {a, 22}| 2221z of G[AU A,]. Symmetrically,
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we can also obtain a Hamilton (y,v)-path Q; of G[B U B4] for any vertex
y € BU B;. This completes the proof of the claim. O

Since G is 3-connected, G — {u,v} contains at least one (z,y)-path Q-
connecting AU A; and B U B, with an orientation from z to y, such that
z € AUA,, y € BUB, and (V(Q2)\{z,y})N(AUA,) = (V(Q2)\{z,y})N
(BU B;) = 0. By the above Claim, there is a Hamilton (u, z)-path Qo
of G[AU A,] with an orientation from u to z, and a Hamilton (y,v)-path
Q, of G[B U B] with an orientation from y to v. Then we can obtain a
(u,v)-path P = QoQ2@Q1 such that N(u) U N(v) C V(P). This completes
the proof for Case 2. O

Case 3. v is a vertez of G with d(u,v) = 2 and N(u)U{v} is disconnected;

Proof. As before, let N(u) = AU B and let w connect the two disjoint
complete subgraphs G[A4] and G[B] of G[N(u)] such that aw,bw € E(G)
for some a € A and b € B. Since d(u,v) = 2 and v does not connect A and
B, suppose N(v)NA#0 and Nv)NnB=0.

We first prove the following claim.
Claim. w € N(v) if and only if N(w)NANN(v) # @ and N(w)NA C N(v).

Proof of Claim. If w € N(v), then for any vertex z € N(w)NA, zv € E(G),
since Glw,z,b,v] # Ki3 and zb,bv ¢ E(G). Suppose w ¢ N(v). If
z’ € N(w)n An N(v), then G[z',u,w,v] = K, 3, a contradiction. This
completes the proof of the claim.

We complete the proof by distinguishing two subcases.
Case 3.1. v is locally connected.

We first deal with the subcase that w ¢ N(v). Then by the above Claim,
a ¢ N(v). If there is a vertex y € N(v)NA such that y is not a cut vertex of
G[N(v)], then by Lemma 2 there is a Hamilton (y, v)-path Qo of G[N(v)].
Thus we can obtain a (u,v)-path P = u[B\ {b}]bwa[A \ N(v) U {a}]yQov
such that N(u)U N(v) C V(P). If every vertex in N(v) N A is a cut vertex
of G[N(v)], then by Lemma 1, |[N(v) N A] < 2. Suppose N(v) N A =
{2} and z is a cut vertex of G[N(v)]. Let H; and H, be two distinct
components of G[N(v) \ {z}]. Then by Lemma 1, N(v) \ {z} = H, U H,
and G[H,], G[H>] are two disjoint complete graphs. By Observation 1 and
Lemma 4, z is locally connected and G[H; U Hp} is a complete graph since
H, UH; C N(z)\ A, a contradiction. Thus let N(v) N A = {v;,v2}
and v;,v2 be cut vertices of G[N(v)]. Assume that Hj and H} are two
distinct components of G[N(v) \ {v1}] and v € Hj. By Observation 1

105



and Lemma 4, v, is locally connected and there is an edge y;y2 such that
y € A\ {v1},y2 € N(v1) \ A. Since {y2,v} C N(v1) \ 4, y2v € E(G)
by Lemma 4. Obviously, y» € H{. Then we can obtain a (u,v)-path
P = u[B\ {b}]bwa[A\ {a,y1,v1,v2}]y192[H] \ {y2}Jvav2[H} \ {v2}]v such
that N(u) U N(v) C V(P). This completes the proof for the subcase that
w ¢ N(v).

Suppose next that w € N(v). By the Claim of Case 3, a € N(v), and
then by Lemma 4, N(a) — A C N(v). Then for any two distinct vertices
71,22 € N(v) \ N(w), z122 € E(G) since G[v, z1,z2,w] # K1 3. It follows
that G[T1] is a complete graph, where T} = {y : y € N(v)\N(w)}. Let T» =
N(v)N N(w). Obviously, N(v) = T} UT5. For any vertex z € N(v) N N(w),
2a € E(G) or zb € E(G), since G[w, 2,a,b] # K, 3 and N(v) " N(u) = 0.
By Lemma 4, a and b are locally connected vertices, and N(a) — A and
N(b)— B are complete graphs. It follows that G[T3] and G[T}] are complete
graphs, where T3 = {y:y e ToeN(N(@) - A)}, Tu={y:y ¢T3,y Ton
(N(b)—B)}. Obviously, Th = T3UTy and then N(u) = TYUT; = TyUT3UTy.
Since N(u) is connected, E(T1,T3) # @ or E(T},Ty) # 0. Without loss of
generality, E(T1,T3) # ® and "NYs € E(Tl,Ta)(y1 € T1,y3 € T3). Since
N(a) - A C N(v), N[a] = AUT3. By Lemma 4, there is an edge y'y} such
that ' € A — {a}, y3 € T3. If y5 # ys, then we can obtain a (u,v)-path
P = u[B\ {b}|b[T4]wa[A\ {a,y'}]y'v4(Ts\ {ys, y3}]ysva[T1 \ {1 }]v such that
N(u) U N(v) € V(P). Similarly, if y3 = y3 and |E(A — {a},T3)| > 2, then
we can obtain a (u,v)-path P such that N(u) U N(v) C V(P). Suppose
E(A — {a},T3) = {y'ys}. Since Glys,w,y’,y1] # K13 and N(w) N T #
0, wy' € E(G) or y'y; € E(G). If wy’ € E(G), then we can obtain a
(u,v)-path P = u[B \ {b}b[Ta]wy’[A\ {v',a}]a[Ts \ {ys}Hysnn[T1 \ {1}
such that N(u) U N(v) C V(P). If y'yy € E(G), then we can obtain a
(u,v)-path P = u[B\ {b}}b[Tyjw(Ts)a[A\ {a,y'}y'v1[T1 \ {y1}]v such that
N(u)UN(v) CV(P).

Case 3.2. v is not locally connected.

As before, let N(v) = A; U By, where G[A,;] and G[B,] are two disjoint
complete graphs. Since v does not connect A and B and d(u,v) = 2,
without loss of generality, let A; N A # 0. Then we obtain BN A =
B;NB = . Since G is 3-connected, G — {w, v} contains an (z,y)-path Qo,
with an orientation from z to y, connecting N(u) U A; and B such that
z € N(u)U Ay, y € By and (V(Qo) \ {z,¥}) N (N(u) UN(v)) = 0. We get
that z ¢ AN Ay; otherwise G[z,u,z*,v] = K} 3, where =7 is the successor
of = in the orientation of Qy.

Suppose first that w ¢ N(v). Without loss of generality, we only consid-
er the case that N(w)NA = {a}, ANA; = {z} and = = q; the other cases are
similarly dealt. Then by Observation 1 and Lemma 4, a is locally connected



and there is an edge z,z; such that z; € A\ {a} and 22 € N(a)\ A. More-
over, z is locally connected and there is an edge y;y2 such that y; € A\ {z}
and y, € N(z)\ A. Without loss of generality, assume that z; = y;, 71 # 2
and zo = at, where at is the successor of a in the orientation of Qo.
Since {z2,w} C N(a) \ A, we get that xow € E(G) by Lemma 4. Simi-
larly, yov € E(G). Obviously, yo € A;. We also have z3 # y2; otherwise
Glyz,w,v,71] = K3, a contradiction. Now we can obtain a (u,v)-path
P = u[B\ {b}lwa[A\ {a, 2z, 71 }|2[A1 \ {2, v2}]y221Qoy([B1 \ {y}]v such that
N(u) U N(v) € V(P), where y~ is the successor of y in the orientation of
Q-

Suppose next that w € N(v). Then w € A; and by the above Claim,
a € An A;. Without loss of generality, assume that z € A\ A;. Then we
can obtain a (u, v)-path P = u[B\ {b}]bw[A;\ A]e[A\{a, z}]zQoy(B:1\{¥}}v
such that N(u) U N(v) C V(P). This completes the proof for Case 3.

Case 4. v is a vertez of G with d(u,v) > 3.

Proof. As before, let N(u) = AU B and let w connect the two disjoint
complete graphs G[A] and G[B] such that aw and bw € E(G) for some
a € A and b € B. We complete the proof by distinguishing two subcases.

Case 4.1. v is locally connected.

Using Lemma 1, without loss of generality, assume that G[N(v)] contains
two distinct cut vertices vy and ve. Since G is 3-connected, G\ {v1, v2} con-
tains at least one (z, y)-path Qo, with an orientation from z to y, connecting
N(u) and N(v) such that z € N(u), y € N(v) and (V(Qo)\{z, y})N(N[u]U
N[v]) = 0. Suppose w € V(Qo) and w™ is the successor of w in the orien-
tation of Qo. Since (V(Qo)\{z,y})N(N[uJUN[v]) =0, w ¢ {a,b}. Then
wta € E(G) or wtb € E(G) since Glw,wt,a,b] # Ky,3 and ab ¢ E(G).
It follows that we can replace Qo by the path aw™Qoy or bw*Qoy. Thus
without loss of generality, we assume that w ¢ V(Qo) and we only con-
sider the case that N(w) N A = {a} and x = a. Then by Observation 1
and Lemma 4, a is locally connected and there is an edge z;z5 such that
z, € A\ {a} and z; € N(a) \ A. Since {z2,w} C N(a)\ 4, zow € E(G)
by Lemma 4. Without loss of generality, assume that o ¢ V(Qp). By
Lemma 2, we can get a Hamilton (y,v)-path Q; of G[N(v)]. Then we can
obtain a (u,v)-path P = u[B \ {b}Jbwzaz1[A\ {a,21}]aQoyQ1v such that
N(u) U N(v) C V(P).

Case 4.2. v is not locally connected.

As before, let N(v) = A; UB,; and let w; connect the two disjoint complete
graphs G[A;] and G[B] such that ayw; and bjw, € E(G) for some a; € A;
and b, € B;.
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We first suppose that w; # w. Since G is connected, there is an (z’, y')-
path @2 with an orientation from z’ to 3’ connecting N(u) and N(v) such
that =’ € N(u), ¥ € N(v) and (V(Q2) \ {z’,¥'}) N (N[u]J U N[]) = 0. As
in Case 4.1, without loss of generality, assume that wy, w ¢ V(Q2) and we
only consider the case that N(w) N A = {a}, N(w1)NA; = {1}, 2’ = a
and y' = a;; the other cases are similarly dealt. Then by Observation 1
and Lemma 4, a is locally connected and there is an edge z{z5 such that
zj € A\ {a} and =5 € N(a)\ A. Similarly, a, is locally connected and there
is an edge v}y such that y; € A; \ {1} and y5 € N(a;) \ A;. Moreover,
by Lemma 4, G[N(a) \ A] and G[N(a;) \ A1) are complete graphs. Thus
without loss of generality, assume that zj = a* and y5 = a7, where a*
is the successor of a in the orientation of Q2, and aj is the successor
of a; in the orientation of Q5. Then we can obtain a (u,v)-path P =
u[B\ {b}}bwa[A\ {a, 21 }|z125Q2u2y1 (A1 \ {v1, a1} arwi by [B1 \ {b1}]v such
that N(u) U N(v) C V(P).

Next we suppose that w = w,;. Since G[w,a,d,a1] # K, 3 and ab ¢
E(G), aa; € E(G) or ba; € E(G). Similarly, ab; € E(G) or b1b € E(G).
If aa; and b;a € E(G), then Gla,u,a1,b1] = K3 3, a contradiction. Thus
aay,bby € E(G) or aby,ba; € E(G). Without loss of generality, assume
that aa,, bb; € E(G), and we only consider the case that N(w) N B, =
{b1} and N(w) N A = {a}; the other cases are similar. By Observation 1
and Lemma 4, a is locally connected and there is an edge y;y2 such that
y1 € A\ {a} and y2 € N(a)\ A. Similarly, b; is locally connected and there
is an edge z;z; such that z; € B, \ {b1} and z, € N(b;) \ B;. Without
loss of generality, assume that b # 2; and a1 # y2. Then by Lemma 4,
G([N(a)\ A] and G[N(b,) \ By} are two complete graphs. Thus bz;, wzg,
wys and a1y € E(G). Without loss of generality, assume that yo,2; ¢
N[u] U N[v]. First suppose y2 = 2. Then we can obtain a (u,v)-path
P= u[B \ {b}]bbllBl \ {bl, 21}]Zl’y2y1 [A \ {yl, a}]aa1 [Al \ {al }]’U such that
N(u)U N(v) C V(P). Next suppose ys # z3. Then we can get a Hamilton
(u,w)-path Q3 = u[B\ {b}}b2221[B1\ {21, b1}|byw of G{BUB, U {u, 22, w}].
Similarly, we can get a Hamilton (a,v)-path Q4 of GJAU A; U {y2}]. Thus
we can obtain a (u,v)-path P = Q3Q4 such that N(u) U N(v) C V(P).
This completes the proof for Case 4.
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