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Abstract. A family G of connected graphs is a family with con-
stant metric dimension if dim(G) is finite and does not depend upon
the choice of G in G. The metric dimension of some classes of plane
graphs has been determined in [2], (3], [4], [9], [10), [14] and [22].
In this paper, we extend this study by considering some classes of
plane graphs which are rotationally-symmetric. It is natural to ask
for the characterization of classes of rotationally-symmetric plane
graphs with constant metric dimension.
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1 Notation and preliminary results

If G is a connected graph, the distance d(u,v) between two vertices
u,v € V(G) is the length of a shortest path between them. Let W =
{w1,wz,....,wk} be an ordered set of vertices of G and let v be a vertex
of G. The representation 7(v|W) of v with respect to W is the k-tuple
(d(v,w1),d(v,ws), .....,d{v, wg)). If distinct vertices of G have distinct rep-
resentations with respect to W, then W is called a resolving set or locating
set for G [2]. A resolving set of minimum cardinality is called a basis for G
and this cardinality is the metric dimension of G, denoted by dim(G). The
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concepts of resolving set and metric basis have previously appeared in the
literature (see [2-6, 8-11, 14, 16-22]).

For a given ordered set of vertices W = {w;,ws, ....,wi} of a graph G, the
ith component of r(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
distinct vertices z,y € V(G)\W.

A useful property in finding dim(G) is the following lemma [21):

Lemma 1. Let W be a resolving set for a connected graph G and u,v €
V(G). If d(u,w) = d(v,w) for all vertices w € V(G)\ {x,v}, then {u,v}N
W #0.

Motivated by the problem of uniquely determining the location of an in-
truder in a network, the concept of metric dimension was introduced by
Slater in {19,20] and studied independently by Harary and Melter in [8].
Applications of this invariant to the navigation of robots in networks are
discussed in [16] and applications to chemistry in [5] while applications to
problem of pattern recognition and image processing, some of which involve
the use of hierarchical data structures are given in [17].

A representation of a graph G is said to be plane if it is drawn on the
Euclidean plane such that edges do not cross each other except at vertices
of the graph.

By denoting G + H the join of G and H a wheel W,, is defined as W,, =
Ki+C,,forn>3,a fanis f, = K; + P, for n > 1 and Jahangir graph
Jon, (n = 2) (also known as gear graph) is obtained from the wheel Wy,
by alternately deleting n spokes. Buczkowski et al. [2] determined the di-
mension of the wheel W,, Caceres et al. [4] the dimension of the fan f,
and Tomescu and Javaid [22] the dimension of the Jahangir graph Jo,.

Theorem 1. ([2], [4], [22]) Let W, be a wheel of order n > 3, f, be a fan
of ordern > 1 and Ja,, be a Jahangir graph. Then

(i) For n > 7, dim(W,,) = | 2842

(i) For n > 7, dim(fp) = [lj,

(iit) For n > 4, dzm(Jzn) = [a"J

The metric dimension of all these plane graphs depends upon the number
of vertices in the graph.

On the other hand, we say that a family G of connected graphs is a family
with constant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G. In [5] it was shown that a graph has metric
dimension 1 if and only if it is a path, hence paths on n vertices constitute
a family of graphs with constant metric dimension. Similarly, cycles with
n(> 3) vertices also constitute such a family of graphs as their metric di-
mension is 2 and does not depend upon on the number of vertices n. In (3]
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it was proved that

. 2, if n is odd;
dim(Prm X C")—{ 3, if n is even.
Since prisms D, (also called circular ladders) are the trivalent plane graphs
obtained by the cross product of path P, with a cycle C,,, this implies that

. 2, if n is odd;
dzm(Dn)={ 3, if n is even.
So, prisms (circular ladders) constitute a family of 3-regular graphs with
constant metric dimension. Also Javaid et al. proved in [10] that the plane
graph antiprism A, constitute a family of regular graphs with constant
metric dimension as dim(A,) = 3 for every n > 5. The prism and the
antiprism are Archimedean convex polytopes defined e.g. in [13].
A Cartesian product of two graphs G and H, denoted by G x H, is the
graph with vertex set V(G) x V(H), where two vertices (z,z’) and (y,y’)
are adjacent if and only if £ = y and 2y’ € E(H) or 2’ = y' and zy € E(G).
A grid G is obtained by the cartesian product of two paths P, by Pp,. In
[14], it was shown that dim(P, x Py,) = 2, so grids constitute a family of
plane graphs with constant metric dimension as their metric dimension is 2
and does not depend upon the number of vertices in the graph. The metric
dimension of Cartesian product of graphs has been studied in (3] and [18].
It is shown in [9] that some families of plane graphs generated by convex
polytopes constitute the families of plane graphs with constant metric di-
mension. Note that the problem of determining whether dim(G) < k is
an N P-complete problem [7]. Some bounds for this invariant, in terms of
the diameter of the graph, are given in [16] and it was shown in [5,16-18]
that the metric dimension of trees can be determined efficiently. It appears
unlikely that significant progress can be made in determining the dimen-
sion of a graph unless it belongs to a class for which the distances between
vertices can be described in some systematic manner.
In this paper, we study the metric dimension of some classes of plane graphs
which are rotationally-symmetric. In the second section, we study the met-
ric dimension of subdivision graph of a prism (circular ladder). The metric
dimension of web graphs defined by Koh et al. [15] and plane graphs A,
has been studied in third and fourth section. In the fifth section, metric
dimension of sun graphs S,, has been determined. It is natural to ask for
the characterization of classes of rotationally-symmetric plane graphs with
constant metric dimension.
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2 Subdivision of prism (circular ladder)

The prism Dy, (circular ladder), n > 3 is a cubic graph which can be defined
as the cartesian product P, x C, of a path on two vertices with a cycle
on n vertices. Prism D,, n > 3 consists of an outer n-cycle y;¥2...4n, an
inner n-cycle z1zs...z,, and a set of n spokes z;y;,7 = 1,2, ...,n. We have
|V(Dn)| = 2n, |[E(D,)| = 3n and |F(D,)| = n+2, where |V(D,)|, |E(D.)|
and |F(D,)| denote the number of vertices, edges and faces of the prism
D, respectively.

The subdivision graph S(D,) can be obtained by adding a new vertex u;
between z; and z;+1, adding a new vertex v; between z; and y; and adding
a new vertex w; between y; and y;4,. Clearly, S(D,,) has 5n vertices and
6n edges.

The metric dimension of the generalized prism P,, x C, has been deter-

n

Wn -2

Fig. 1. Subdivision of prism

mined in [3] and prism D, (circular ladder) is actually the cross product
of P, x Cy,. In the next theorem, we prove that the metric dimension of the
subdivision graph S(D,) of the prism is constant and only three vertices
appropriately chosen suffice to resolve all the vertices of the subdivision
graph S(D,,) of prism.

For our purpose, we call the cycle induced by {z; : 1 <i < n}u{u;:1<i <
n}, the inner cycle, the cycle induced by {y; : 1 <i < n}uU{w;:1<i<n},
the outer cycle and set of vertices {v; : 1 < i < n}, the set of interior ver-
tices. Note that the choice of appropriate basis vertices (also refereed to as
landmarks in [14]) is the core of the problem.
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Theorem 2. Let S(D,) be the subdivision graph of the circular ladder;
then dim(S(D,)) = 3 for every n 2> 6.

Proof. We will prove the above equality by double inequalities.

Case 1. When n is even.

In this case, we can write n = 2k, k > 3, k € Z*. Let W = {21, 22, 2¢41} C
V(S(D,)), we show that W is a resolving set for S(D,,) in this case. For
this we give representations of any vertex of V(S(D,))\W with respect to
w.

Representations for the vertices on the inner cycle are

)= { (22,2 4,2k 2 +2), 3<i<k
r@W) = (ak -2 + 2,4k — 2 + 4,2 — 2k —2), k+2 <i < 2k.
and
1,1,2k - 1), i=1;
) (26—1,20 = 3,2k — 2 +1), 2<i<k;
r(wlW) =9 (ak - 1,2k - 1,1), i=k+1;

(4k — 2 + 1,4k — 20 +3,2i — 2k — 1), k+2 < i < 2k.

Representations for the set of interior vertices are

(1,3,2k+ 1), i=1;
r(wW) = { (20 —1,2i — 3,2k — 2i +3), 2<i<k+1;
(4k — 21+ 3,4k —21+5,2i -2k - 1), k+2 < i< 2k
Representations for the vertices on the outer cycle are
(2,4,2k + 2), i=1;
r(y|W) =< (26,26 — 2,2k — 2i + 4), 2<i<k+1;
(4k — 21+ 4,4k — 214 6,2i — 2k), k+2 <i < 2k.
and
(3,3,2k + 1), i=1;
] _ ) (2041,26-1,2k - 2 + 3), 2<i<k;
rlW) =\ (ak +1,2k +1,3), i=k+1;

(4k — 2+ 3,4k —2i +5,2i — 2k + 1), k+2 < i < 2k.

We note that there are no two vertices having the same representations
implying that dim(S(Dy,)) < 3.

On the other hand, we show that dim(S(D,)) > 3. Suppose on contrary
that dim(S(Dr)) = 2, then there are the following possibilities to be dis-
cussed.

(1) Both vertices are in the inner cycle. Here are the following subcases.
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e Both vertices belong to the set {z; : 1 < i < n}. Without loss of gen-
erality, we can suppose that one resolving vertex is z;. Suppose that the
second resolving vertex is ; (2 <t < k+1). Then for 2 <t < k, we have
r(un|{z1,2:}) = r(n1|{z1,2:}) = (1,2t — 1), and for t = k + 1, we have
r(u|{z1, Ze+1}) = 7(un|{z1, Zk+1}) = (1,2k — 1), a contradiction.

o Both vertices belong to the set {u; : 1 < i < n}. Without loss of gen-
erality, we can suppose that one resolving vertex is u;. Suppose that the
second resolving vertex is u; (2 <t < k+1). Then for 2 < t < k, we
have 7(un|{{u1,us}) = r(v1|[{v1,u:}) = (2,2t), and for t = k + 1, we have
r(z1|{u1, ukt1}) = r(z2|{u1, uk+1}) = (1,2k — 1), a contradiction.

e One vertex is in the set {z; : 1 < i < n} and the other one is in the set
{ui : 1 <7 < n}. Without loss of generality, we can suppose that one re-
solving vertex is ;. Suppose that the second resolving vertexisu, (1 <t <
k+1). Then for 1 < ¢ < k, we have r(un|{z1, u:}) = r(vi|{z1,w:}) = (1,2¢),
and for t = k + 1, we have r(u;|{z1, ur+1}) = r(n1|{z1,ux+1}) = (1,2k), 2
contradiction.

(2) Both vertices are in the set of interior vertices. Without loss of gen-
erality, we can suppose that one resolving vertex is v,. Suppose that the
second resolving vertex isv; (2 <t <k+1). Thenfor2 <t<k+1, we
have 7(zy|{v1,v:}) = r(s1]{v1,v:}) = (1,2t — 1), a contradiction.

(3) Both vertices are in the outer cycle. Due to the symmetry of the graph,
this case is analogous to case (1).

(4) One vertex is in the inner cycle and the other one is in the set of interior
vertices. Here are the two subcases.

¢ One vertex is in the set {z; : 1 £ 7 < n} and the other one is in the
set of interior vertices. Without loss of generality, we can suppose that one
resolving vertex is ;. Suppose that the second resolving vertex is v; (1 <
t < k+1). Then for t = 1, we have r(u1|{z1,v1}) = r(un|{z1,n1}) = (1,2).
For 2 <t <k, r(unl{z1,v}) = r(v1|{z1,v:}) = (1,2t) and for t = k + 1,
we have 7(u1|{z1,vk+1}) = 7(un|{Z1,vk+1}) = (1,2k), a contradiction.

e One vertex is in the set {u; : 1 < i < n} and the other one is in the
set of interior vertices. Without loss of generality, we can suppose that one
resolving vertex is u;. Suppose that the second resolving vertex is v, (1 <
t < k+1). Then for t = 1, we have r(w|{u1,v1}) = r(wn|{u1,n1}) = (2,4).
For 2 <t £ k, r(un|{u1,v}) = r(v1|{u1,v:}) = (2,2t) and for t = k + 1,
we have r(un|{u1,vk+1}) = r(v2|{w1, vk+1}) = (2,2k), a contradiction.

(5) One vertex is in the outer cycle and the other one is in the set of interior
vertices. Due to the symmetry of the graph, this case is analogous to case
(4).

(8) One vertex is in the inner cycle and the other one is in the outer cycle.
We have the following subcases.

e One vertex is in the set {z; : 1 < i < n} and the other one is in the set
{yi : 1 < i < n}. Without loss of generality, we can suppose that one re-
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solving vertex is z;. Suppose that the second resolving vertexisy: (1 <t <
k+1). Then for t = 1, we have r(u1|{z1,%1}) = r(ua|{z1,11}) = (1, +2).
For 2 <t < k+1, we have r(u1|{z1,¥:}) = r(v1l{z1,2:}) = (1,2t — 1), a
contradiction.

e One vertex is in the set {z; : 1 < i < n} and the other one is in the set
{wi : 1 <1 < n}. Without loss of generality, we can suppose that one re-
solving vertex is z;. Suppose that the second resolving vertexisw; (1 <t <
k+1). Then for ¢t = 1, we have r(u1|{z1,w1}) = r(un|{z1,w1}) = (1,t+3).
For 2 < t < k + 1, we have r(u|{z1,w:}) = 7(v1|{z1,w:}) = (1,2t), a
contradiction.

e One vertex is in the set {u; : 1 < i < n} and the other is in the set
{vi : 1 £ i < n}. Due to the symmetry of the graph, this subcase is analo-
gous to above subcase.

e One vertex is in the set {u; : 1 < i < n} and the other one is in the
set {w; : 1 < i < n}. Without loss of generality, we can suppose that one
resolving vertex is u). Suppose that the second resolving vertex is wy (1 <
t < k+1). Then for t = 1, we have r(z;|{u1, w1}) = r(z2|{u1, w1}) = (1,3).
For t = 2, r(v3|{u1, w2}) = r(w1|{u1,w2}) = (4,2) and when 3 <t < k+1,
we have r(vs|{u1,ws}) = r(wa|{u1, w:}) = (4,2t — 4), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices
for V(S(D,)) implying that dim(S(D,)) = 3 in this case.

Case 2. When n is odd.

In this case, we can writen = 2k+1,k > 3,k € Z*. Let W = {1, 22, uk+1} C
V(5(D»)), we show that W is a resolving set for S(D,,) in this case. For
this we give representations of any vertex of V(S(D,))\W with respect to
w.

Representations for the vertices on the inner cycle are

(21 —2,2i — 4,2k — 2 + 3), 3<i<k+1;
r(z;|W) = < (2k,2k,1), i=k+2;

(4k -2 +4,4k—2i+ 6,21 —2k—3), k+3<i<2k+1.
and

(1,1,2k), i=1;
r(u|W) =< (20 —1,2i - 3,2k — 2{ + 2), 2<i<k;

(4k — 20+ 3,4k - 21+ 5,21 — 2k - 2), k+2<i<2k+1.

Representations for the set of interior vertices are

(1,3,2k +2), i=1
) (26—1,2i — 3,2k — 2i +4), 2<i<k+;
rW) =19 (2% +1,2k +1,2), i=k+2;

(4k — 2% + 5,4k — 20+ 7,21 — 2k — 2), k+3<i <2k +1.

117



Representations for the vertices on the outer cycle are

(2,4, 2k + 3), i=1
) (22— 2,2k —2i +5), 2<i<k+1;
r@IW) =19 (2k + 2,2k +2,3), is ket
(4 — 26+ 6,4k — 2 + 8,2 — 2k — 1), k+3 <i < 2k+1.
and
(3,3,2k +2), i=1;
) (@4 1,20 1,2k — 2 + 4), 2<i<k
rwilW) =\ ok 43,2k +1,4), iskt1;

(4k — 2 +5,4k — 21+ 7,20 — 2k), k+2<i <2k +1.

Again we see that there are no two vertices having the same representations
which implies that dim(S(D,,)) < 3.
On the other hand, suppose that dim(S(D,)) = 2, then there are the same
possibilities as in case (i) and contradictions can be deduced analogously.
This implies that dim(S(D,)) = 3 in this case, which completes the proof.
(m]
A fundamental question in graph theory concerns how the value of a pa-
rameter is affected by making a small change in the graph. If G’ is a graph
obtained by adding a pendant edge to a nontrivial connected graph G, then
it is easy to verify that

dim(G) < dim(G') < dim(G) + 1

A helm H,, n > 3 is a graph obtained from a wheel by attaching a pendant
vertex to each rim vertex. Javaid [10] proved that dim(H,,) = dim(W,,). In
the next two sections, we extend this study by considering the web graph
W, defined by Koh et al. [15] and the plane graph A,,. We prove that by
adding a pendant edge at each vertex of the outer cycle of the prism D,, and
antiprism A, (The prsim and antiprism are Archimedian convex polytopes
defined in [13]) does not affect their metric dimension.

3 The web graph W,,

Koh et al. {15] define a web graph as a prism graph P3 x C,, with the edges
of the outer cycle removed. The web graph W, can be obtained from prism
D,, by adding a pendant edge at each vertex of the outer cycle of the prism
D,,. We have

VW,)=V(Dp)U{z;:1<i<n}
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and
EW,)=E(D,)U{yizi:1<i<n}

In the next theorem, we prove that the metric dimension of the web graph

21

20 ? 2n

Fig. 2. The web graph W,,

W, is the same as the metric dimension of the prism (circular ladder) D,,.
For our purpose, we call the cycle induced by {z; : 1 < i < n}, the inner
cycle, the cycle induced by {y; : 1 < ¢ < n}, the outer cycle, and set of
vertices {z; : 1 < 7 < n}, the pendent vertices. Again, the choice of an
appropriate basis of vertices (also refereed to as landmarks in [14]) is very
important.

Theorem 3. Let W,, be the web graph ; then for every n > 5

. 2, when n is odd;
dim(Wy) = { 3, otherwise.
Proof. We will prove the above equality by double inequalities.
Case 1. When n is odd.
In this case, we can writen = 2k+1,k > 2,k € Z*. Let W = {z1,zx41} C
V(W,,), we show that W is a resolving set for W, in this case. For this we
give the representations of any vertex for V(W,)\W with respect to W.
The representations for the vertices on inner cycle are
T(x'lw)={(z‘—1,k—i+1), 2<i<k;

: (k—i+2,i-k—1), k+2<i<2%+1.
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The representations for vertices on the outer cycle are
wn - J G k—i4+2), 1<i<k+1;
(W) = { (2k—i+3,i—k), k+2<i<2k+1.

The representations for pendent vertices are

i+1,k—:4+3), 1<:<k+1;
r(&[W) = { §2k—i+4,i—3c+1), k+2<i<2%+1.
We note that there are no two vertices having the same representation im-
plying that dim(W,) < 2. On the other hand, since the plane graph W,, is
not a path, it follows from [5] that dim(W,) = 2.
Case 2. When n is even.
In this case, we can write n = 2k, k > 3, k € Z*. We show that W =
{z1,z2, zk41} C V(W,,) is a resolving set for W, in this case. For this we
give representations for any vertex of V(W, )\W with respect to W.
The representations for the vertices on inner cycle are
r(a:-|W)={(i_l’i—z’k_ﬂ-l)’ 3<i<k;
' (2k—i+1,2k—i+2,i—k—1), k+2<i<2k

The representations for vertices on the outer cycle are

1,2,k +1), i=1;
r(yulW) =< (G,i—1,k—i+2), 2<i<k+1;

(2k—i4+2,2k—-i+3,i-k), k+2<1i<2k.
The representations for pendent vertices are

(2,3,k+2), i=1;
r(zu|lW)=<¢ (i+1,5,k—-i+3), 2<i<k+1;

(k—i+3,2% —i+di—k+1), k+2<i<2k.
We note that there are no two vertices having the same representations
implying that dim(W,) < 3.
On the other hand, we show that dim(W,) > 3. Suppose on contrary that
dim(W,) = 2, then there are the following possibilities to be discussed.
(1) Both vertices are in the inner cycle. Without loss of generality, we can
suppose that one resolving vertex is z;. Suppose that the second resolving
vertex is z; (2 <t < k+1). Then for 2 <t < k, we have r(z,|{z1,z:}) =
r(nl{z1,2:}) = (1,¢) and for t = k + 1, we have r(z2|{z1,Zk41}) =
r(zn|{z1,Zk+1}) = (1, k — 1), a contradiction.
(2) Both vertices are in the outer cycle. Without loss of generality, we can
suppose that one resolving vertex is y;. Suppose that the second resolving
vertex is y; (2 <t < k+1). Then for 2 <t < k, we have r(yn|{y1,v:}) =
r(z1|{y1,v}) = (1,t) and for t = k + 1, we have r(y2|{y1,¥x+1}) =
(Yn|{y1, Yx+1}) = (1, k — 1), a contradiction.
(3) Both vertices are in set of pendent vertices. Without loss of gener-
ality, we can suppose that one resolving vertex is z;. Suppose that the
second resolving vertex is 2, (2 <t < k+1). Then for 2 < t < k, we
have 7(z1|{z1,2¢}) = r(ynl{z1,2:}) = (1,t) and for ¢ = k + 1, we have
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r(z2|/{z1, zk+1}) = 7(zn|{z1, 2k+1}) = (1,k — 1), a contradiction.

(4) One vertex is in the inner cycle and the other one is in the outer cy-
cle. Without loss of generality, we can suppose that one resolving vertex is
z1. Suppose that the second resolving vertex is y; (1 £t £ £+ 1). Then
for 1 <t < k, we have »(yn|{z1,¥:}) = r(za|{z1,%:}) = (1,t + 1) and if
t=k+1, r(z2|{z1,%}) = r(za|{z1,4:}) = (1, k), a contradiction.

(5) One vertex is in the inner cycle and the other one is in the set of pen-
dent vertices. Without loss of generality, we can suppose that one resolving
vertex is z;. Suppose that the second resolving vertex is z; (1 <t < k+1).
Then for i = 1, we have r(ya|{z1, 2:}) = r(yn|{z1, 2¢}) = (2,2), for 2 <t <
k+ 1, r(z2|{z1, 2:}) = r(n1|{z1, 2.}) = (1,t + 1), a contradiction.

(8) One vertex is in the outer cycle and the other one is in the set of pen-
dent vertices. Without loss of generality, we can suppose that one resolving
vertex is y;. Suppose that the second resolving vertexis z: (1 <t < k+1).
Then for 1 <t < k, we have 7(z1|{y1, 2t}) = r(yn|{y1, 2}) = (1,£ +1) and
ift =k +1, r(z2|{y1, 2e}) = r(znl{y1, 2}) = (2,t + 1), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices
for V(W,,) implying that dim(W,) = 3 in this case.

4 The plane graph A,

The antiprism A, (1], n 2> 3, is a 4-regular graph and, for n = 3, it is the
octahedron. Antiprism A,,, n > 3, consists of an outer n-cycle y;¥s....9, an
inner n-cycle x1xs....Ty, and a set of 2n spokes z;y; and z; 1¥:,1 = 1,2,...,n
with indices taken modulo n. [V(4,)| = 2n, |E(A,)| = 4n and |F(A,)| =
2n+ 2. The plane graph A,, is obtained from the antiprism A,, by adding a
pendant edge at each vertex of the outer cycle of the antiprism A,,. We have

V(An) = V(4,)U{z::1<i<n}

and
E(Aq) = E(An) U{yizi : 1< i <}

The metric dimension of the antiprism A, has been determined in [10}.
In the next theorem, we prove that the metric dimension of the plane
graph A, is the same as the metric dimension of the antiprism A,. For
our purpose, we call the cycle induced by {z; : 1 £ ¢ < n}, the inner
cycle, the cycle induced by {y; : 1 < i < n}, the outer cycle and the set
of vertices {2; : 1 < i < n}, the pendent vertices. Once again the choice
of an appropriate basis of vertices (also refereed to as landmarks in [14]) is
crucial.
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Fig. 8. The plane graph A,

Theorem 4. Let A, be the plane graph defined above; then dim(A,) =3
for everyn > 6.

Proof. We will prove the above equality by double inequalities.

Case 1. When n is even.

In this case, we can write n = 2k, k > 3, k € Z*. Let W = {z;, 23,2141} C
V(A,), we show that W is a resolving set for A, in this case. For this we
give representations for any vertex of V(A,)\W with respect to W.

The representations for the vertices on inner cycle are

1,1,k — 1), i=2;

(i-1,i-3,k—i+1), 4<i<k;
r(z;|W)=¢ (k-1,k-1,1), i=k+2;

(k —2,k,2), i=k+3;

(@k—i+1,2k—i+3,i—k—1), k+4<i<2k.

The representations for vertices on the outer cycle are

(1,2,k), i=1;

2,1,k -1), i=2;
] _ ) (3i—-2,k—-i+1), 3<i<kk;
r(y.IW) =Y (k,k—1,1), i=k+1;
(k—1,k%,2), i=k+2;

(2k —i+1,2k—i+3,i—k), k+3 <i< 2k
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The representations for pendant vertices are

2,3,k +1), i=1;

(3.2, k), i=2;
) G+ Li—1,k—i+2), 3<i<k
r&W) =1 (k+1,k2), iZ k¥

(k,k+1,3), i=k+2;

2k—i+2,2k—i+4,i—k+1), k+3<i< 2k
We note that there are no two vertices having the same representations
implying that dim(A,) < 3.
On the other hand, we show that dim(A,) > 3. Suppose on contrary that
dim(A,) = 2, then there are the following possibilities to be discussed.
(1) Both vertices are in the inner cycle. Without loss of generality, we can
suppose that one resolving vertex is z;. Suppose that the second resolving
vertex is z; (2 <t < k+1). Then for 2 <t < k, we have 7(zn|{r1,%¢}) =
r(ynl{z1,2:}) = (1,t) and for t = k + 1, we have r(zo|{z1,Tr41}) =
r(zn|{z1,Zr+1}) = (1,k — 1), a contradiction.
(2) Both vertices are in the outer cycle. Without loss of generality, we can
suppose that one resolving vertex is y;. Suppose that the second resolving
vertex is y¢ (2 <t < k+1). Then for 2 <t < k, we have 7(z1|{y1,v:}) =
(yn|{yv1,%t}) = (1,t) and for t = k + 1, we have r(ya2|{y1,¥x+1}) =
7(Ynl{y1, ¥5+1}) = (1,k — 1), a contradiction.
{3) Both vertices are in set of pendant vertices. Without loss of gener-
ality, we can suppose that one resolving vertex is z;. Suppose that the
second resolving vertex is z; (2 < ¢t £ k+1). Then for 2 < ¢t < k, we
have r(zy|{21,2:}) = r(yn|{21,2:}) = (2,t + 1) and for t = k + 1, we have
r(2z2|{21, zk4+1}) = 7(2n|{z1, 2k+1}) = (2,k + 1), a contradiction.
(4) One vertex is in the inner cycle and the other one is in the outer cycle.
Without loss of generality, we can suppose that one resolving vertex is z;.
Suppose that the second resolving vertex is y; (1 <t < k + 1). Then for
1 <t < k, we have 7(yn—1|{z1,%:}) = 7(za|{z1,%}) = (2,t + 1) and if
t=k+1, r(z2|{z1,%:}) = r(yn|{z1,¥:}) = (1,k), a contradiction.
(5) One vertex is in the inner cycle and the other one is in the set of pen-
dant vertices. Without loss of generality, we can suppose that one resolving
vertex is z;. Suppose that the second resolving vertex is 2z, (1 <t < k+1).
Thenfor1 <t < k—1, we have r(yn—1]{21, 2}) = r(2a|{z1, ze}) = (1, t+1),
for t = k, r(zn-1|{z1, 2t}) = r(yn-1l{z1,2¢}) = 2,k + 1) and if t = k +1,
r(z2|{z1, 2ze41}) = r(n1l{z1, 2k+1}) = (1, k + 1), a contradiction.
(6) One vertex is in the outer cycle and the other one is in the set of pen-
dant vertices. Without loss of generality, we can suppose that one resolving
vertex is y;. Suppose that the second resolving vertex is z, (1 <t < k+1).
Then for 1 <t < k —1, we have 7(z1|{y1, 2t}) = r(¥nl{¥1, 2¢}) = (1,2 + 1),
for t = k, *(ynl{v1,2¢}) = r(z1l{y1,2¢}) = (L,k+1) and if t = K+ 1,
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r(22/{v1, 2k+1}) = r(z21l{y1, 2k+1}) = (2, k + 1), a contradiction.

Hence, from above it follows that there is no resolving set with two vertices
for V(An) implying that dim(A,) = 3 in this case.

Case 2. When n is odd.

In this case, wecan writen = 2k+1,k > 3,k € Z*. Let W = {z), %3, Tk4+1} C
V(A,), again we show that W is a resolving set for A, in this case also.
For this we give representations for any vertex of V(A,)\W with respect
to W.

The representations of vertices on the inner cycle are

1,1,k-1), i=2

(i—1,i—3,k—i+1), 4<i<k
r(@lW) = { (kk-1,1), i=k+

(k—1,k,2), i=k+3;

(k—i+2,2k—i+di—k—1), k+4<i<2k+1.

The representations for vertices on the outer cycle are

(1,2,k), i=1;

(2,1,k—1), i=2
) Gi—2,k—i41), 3<i<k;
r(wlW) = (k+1,k-1,1), i=k+1;

(k, k,2), i=k+2;

(2k—i+42,2k—i+4,i—k), k+3<i<2+1.

The representations for pendant vertices are

2,3,k +1), i=1

(3.2, k), i=2
) i+ Li—1k—i+2), 3<i<k
r(@W) =1 (k+2,k2), i=kt1;

(k+1,k+1,3), i=k+2;

(k—i+3,2%k—i+5i—k+1), k+3<i<2k+1.

Again we see that there are no two vertices having the same representations
which implies that dim(A,) < 3.
On the other hand, suppose that dim(A,) = 2, then there are the same
possibilities as in case (i) and contradictions can be deduced analogously.
This implies that dim(A,) = 3 in this case, which completes the proof.

o
In the next section, we prove that the metric dimension of a cycle can be
affected if we attach an edge terminating in a vertex of degree 1 to each
vertex of the cycle.
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5 The sun graph S,

A sun S, is a graph with a cycle C,, having an edge terminating in a vertex
of degree 1 attached to each vertex of the cycle. The sun S, consists of
the vertex set V(S,) = {x;: 1 <i < n}U{y; : 1 < i < n} and edge set
E(S,) = {ziziz1 : 1 i <n}U{zyi : 1 £ ¢ < n}, where ¢ + 1 is taken
modulo n.

For our purpose, we call the cycle induced by {z; : 1 < i < n}, the cycle

Fig. 4. The sun 51,

and set of vertices {y; : 1 < ¢ < n}, the outer vertices. Once again the
choice of an appropriate basis of vertices (also refereed to as landmarks in
[14]) is important.

Theorem 5. Let S,, denote the sun graph; then

. 2, when n is odd;
dim(Sn) = { 3, otherwise.

Proof. We will prove the above equality by double inequalities.

Case 1. When n is odd.

In this case, we can write n =2k + 1,k > 2, k € Z*. Let W = {y1,yx} C
V(S,), we show that W is a resolving set for S, in this case. For this we
give representations for any vertex of V(S,)\W with respect to W.
Representations for the vertices on inner cycle are
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([ (i,k—i+1), 1<i<k;

un ) (k+1,2), i=k+1;
(W) = S 2k —i+3,i—k+1), k+2 <4< 2%:
L (2,k+1), i=2k+1.
Representations for vertices of the outer vertices are
((i+1,k—i4+2), 2<i<k-1;
. _ ) (k+2,3), i=k+1;
TWIW) =\ (k—it+di—k+2), k+2<i<2k;
[ 3,k+2), =2k + 1.

We note that there are no two vertices having the same representations
implying that dim(S,) < 2. On the other hand, since the sun graph S, is
not a path, it follows from [5] that dim(S,) = 2 in this case.

Case 2. When n is even.

In this case, we can writen = 2k, k > 3,k € Z*. Let W = {z,,72,Zk41} C
V(Sn), we show that W is a resolving set for S, in this case. For this we
give representations for any vertex of V(S,)\W with respect to W.
Representations for the vertices on inner cycle are

r(zi| W) = (i-1,i-2,k—i+1), 3<i<k
@IW) = ok —i+1,2k—i+2i—k—1), k+2<i< 2%
Representations for vertices of the outer vertices are
(1,2.k + 1), i=1:
rwW) =14 (i,i—1,k—i+2), 2<i<k+1;

(2k—i+2,2k—i+3,i—k), k+2<i<2k.
We note that there are no two vertices having the same representations
implying that dim(S,) < 3.
On the other hand, we show that dim(S,) > 3 by proving that there is no
resolving set W such that |W| = 2. Suppose on contrary that dim(S,) = 2,
then there are the following possibilities to be discussed.
(1) Both vertices are in the cycle. Without loss of generality, we can sup-
pose that one resolving vertex is x;. Suppose that the second resolving
vertex is x; (2 <t < k- 1). Then for 2 < t < k, we have r(z,|{z1,2:}) =
7(y1{z1,2.}), and for t = k+1, we have r(z3|{z1, Tx+1}) = r(Zn|[{Z1, Zx41}),
a contradiction.
(2) Both vertices belong to the set of outer vertices. Without loss of gen-
erality, we can suppose that one resolving vertex is y;. Suppose that the
second resolving vertex is y: (2 <t < k+1). Thenfor 1 <t < k-1,
we have r(zn-1|{y1,%}) = r(ynl{y1,%:}), for i = k, r(za1{v1,%}) =
r(y2{{y1,yx}) and if t = k + 1 then r(z2|{y1,yx+1}) = 7(zal{¥1, ¥k 41}), &
contradiction.
(8) One vertex is in the cycle and the other one is in the set of outer ver-
tices. Without loss of generality, we can suppose that one resolving vertex
is ;. Suppose that the second resolving vertex is y; (1 <t < k+1). Then
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for 2 < t < k, we have r(z.|{z1,%:}) = r(n1l{z1,%:}) and if t = k + 1,
r(y2|{z1,¥:}) = r(yn|{z1,¥:}), 2 contradiction.

Hence, from above it follows that there is no resolving set with two vertices
for V(S,) implying that dim(S,) = 3 in this case.

6 Concluding remarks

In this paper, we have studied the metric dimension of some classes of
rotationally-symmetric plane graphs. We prove that the metric dimension
of these classes of rotationally-symmetric plane graphs is finite and does
not depend upon the number of vertices in these graphs. It is natural to ask
for the characterization of rotationally-symmetric plane graphs with con-
stant metric dimension. We have also seen that for prism and antiprism,
the metric dimension is not affected if we attach a pendent edge at each
vertex of the outer cycle of these graphs. It can be proved in fact that for
these graphs if we attach a path P,(t > 1) at each vertex of the outer cycle
of these graphs, the metric dimension will not be affected. We also proved
that the metric dimension of a cycle is affected if we attach a pendent edge
at each vertex of cycle, when the order of the graph is even.

Note that in [17] Melter and Tomescu gave an example of infinite regular
graphs (namely the digital plane endowed with city-block and chessboard
distances, respectively) having no finite metric basis. We close this section
by raising some questions that naturally arise from the text.

Open Problem 1: Characterize the families of rotationally-symmetric
graphs G' obtained from rotationally-symmetric graphs G by adding a pen-
dant edge at each vertex of the outer cycle of G such that dim(G') =
dim(G).

Open Problem 2: Characterize the families of rotationally-symmetric
graphs G’ obtained from rotationally-symmetric graphs G by adding a pen-
dant edge at each vertez of outer cycle of G such that dim(G') = 1+dim(G).
Open Problem 3: Is it the case that the subdivision graph of every con-
vez polytope (having constant metric dimension) will have constant metric
dimension?
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