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Abstract A strongly connected digraph D is said to be maximally arc
connected if its arc-connectivity A(D) attains its minimum degree §(D).
For any vertex z of D, the set {z9)g € Aut(D)} is called an orbit of
Aut(D). Liu and Meng [ Fengxia Liu, Jixiang Meng, Edge-Connectivity
of regular graphs with two orbits, Discrete Math. 308 (2008) 3711-3717 |
proved that the edge-connectivity of a k-regular connected graph with two
orbits and girth > 5 attains its regular degree k. In the present paper, we
prove the existence of k-regular m-arc-connected digraphs with two orbits
for some given integer k and m. Furthermore, we prove that the k-regular
connected digraphs with two orbits, satisfying girth > k are maximally arc
connected. Finally, we give an example to show that the girth bound & is
best possible.
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1 Terminology and introduction

We consider finite digraphs without loops and parallel arcs. Let D = (V, E)
be a strongly connected digraph, S,T C V(D). Define (S,T) = {(z,y) €
E(D)|z € S,y € T}. An arc cut of D is an arc set of the form (S, V\S),
where § # S C V(D). The arc-connectivity A(D) is the minimum size of
all arc cuts in D.

Let D = (V, E) be a strongly connected digraph. If (u,v) is an arc of
D, then we say u dominates v. The vertices which dominate a vertex v are

*This research is supported by Natural Science Foundation of Xinjiang
{No.2010211A06).

tCorresponding author. E-mail: xieqian126.com@126.com (Q.Xie), mjx@xju.edu.cn
(J.Meng).

ARS COMBINATORIA 125(2016), pp. 3-10



its in-neighbors, those which are dominated by the vertex v are its out-
neighbors. Let F C V be a nonempty set. We set w*(F) = (F,V\F), and
w™(F) = (V\F, F). Usually, abbreviate w*({z}) and w=({z}) to w*(z)
and w~(z), respectively. d*(z) = |w*(z)] and d~(z) = |w~(z)| are out-
degree and in-degree of z, respectively. A subset F' of vertices is called an
arc fragment, if |w*(F)| = A(D). An arc fragment of D with minimum
cardinality is called a A-atom of D. The digraph D is said to be a balanced
digraph, if d*(u) = d~(u) for every vertex u of D. It is not hard to see that
in such a digraph, |w* (F)| = |w™(F)| for every F, where @ # F G V(D).
Clearly, every regular digraph is balanced. For terminologies not given
here, we refer [2] for reference.

Let H be a strongly connected balanced digraph with vertex set
{v1,v2,--- ,u}, d*(v1) =dt(v2) =+ =d¥(vm) =k — 1 and d¥ (V1) =
d*(m42) = -+ = d*(w) = k. The digraph Dy(H) is constructed by
taking two copies of H, Hi, Hy, and adding arcs {(v;j,vi3—j)|vi; €
V(Hj),vi,s_,— € V(Ha_j),l £t€<gmj = 1,2} between H; and Ha.
Clearly, Do(H) is a k-regular m-arc-connected digraph.

It is well known that when the underlying topology of an interconnection
network is modeled by a (strongly) connected (di)graph D, the connectiv-
ity or edge(arc)-connectivity of D is an important measurement for fault
tolerance of the network. In the design of network topology, (di)graphs
of high symmetry are often used because they usually have many desir-
able properties. For instance, vertex transitive (di)graphs are maximally
edge(arc) connected and edge transitive graphs are maximally (vertex) con-
nected {4, 6, 12, 14]. Let A(D) be the edge(arc)-connectivity of D, and 6(D)
be the minimum degree of D. So, a (di)graph D is said to be mazimally
edge(arc) connected if A(D) = §(D). Let U be a subgroup of the sym-
metric group over a set S. We say that U acts transitively on a subset T
of S if for any h,l € T, there exists a permutation ¢ € U with p(h) = L.
Denote by Aut(D) the automorphism group of D. A (di)graph is said to
be vertex transitive, if for any two vertices u and v of D, there is an au-
tomorphism ¢ € Aut(D), such that ¢(u) = v. An undirected graph G is
said to be edge transitive, if for any two edges e and f, there is an auto-
morphism ¢ € Aut(G), such that ¢(e) = f. Similarly, a digraph D is said
to be arc transitive, if for any two arcs e’ and f’, there is an automor-
phism ¢ € Aut(D), such that ¢(e’) = f’. Investigations on connectivity
and edge(arc)-connectivity of transitive (di)graphs were made by several
authors, for example, by [5, 8, 9, 10, 11, 13, 15].

For any vertex z of D, the set {29)g € Aut(D)} is called an orbit of
Aut(D). Vertex transitive (di)graphs are (di)graphs with one orbit, and
maximally edge(arc) connected [4]. It is natural to consider the relation
between the edge(arc)-connectivity and the number of orbits. In paper
[7] Liu and Meng proved that the edge-connectivity of a k-regular con-



nected graph with two orbits and girth > 5 attains its regular degree k.
In the present paper, we prove the existence of k-regular m-arc-connected
digraphs with two orbits for some given integer k and m, and give an anal-
ogously sufficient condition for digraphs with two orbits to be maximally
arc connected. Finally, we give an example to show that our result is best
possible.

2 Main results

Hamidoune [4] proved the following:
Proposition 2.1. Any two distinct A-atoms are vertex disjoint.

Let D = (V, E) be a k-regular connected digraph with two orbits. In
this paper, we use X; and X, to denote the two orbits of Aut(D). Let A
be a A-atom of D. Set Ay = ANX; and Ay = ANX,. Then A = A; U As.

Liu and Meng (7] proved the following in the case of undirected graphs.
Actually, it is also true for directed graphs.

Proposition 2.2. Let D = (V, E) be a connected digraph with two orbits.
Let A = A, U Ay be a A-atom of D. Y = D[A] and Y; = D[A;] for
i =1,2. Then Aut(Y) acts transitively on both Ay and Az, and Aut(Y;)
acts transitively on A;, fori=1,2.

. Lemma 2.3. Let D be a k-regular connected digraph with two orbits (k >
2) and A(D) < k. Use notation as the above. If A= A; U A; be a M-atom
of D, then |A;| 22 (i=1,2).

Lemma 2.4. Let D be a k-regular connected digraph with two orbits (k >
2) and A\(D) < k. Then A(D) # 1.

By Lemma 2.4, we have every 2-regular connected digraph with two
orbits is maximally arc connected. By Lemma 2.3, we have if D is a k(> 3)-
regular connected digraph with two orbits, A(D) < k and A = A; U Ay is
a A-atom of D, then A, A; # §. Combining this with Proposition 2.1, we
have if D is not maximally arc connected, then all the A-atoms of D are
isomorphic, and both D[A;] and D[A;] are vertex transitive.

Let D be a k-regular connected digraph with two orbits, and 4 =
A1 U Az be a A-atom of D. By Proposition 2.2, we know that Aut(Y)
acts transitively on A;, then the vertices in A; have the same outdegree
and the same indegree in Y, and Aut(Y;) acts transitively on A;, then
DA} is a regular digraph. Thus, we have non-negative integers ki, kz, i,
k3, T1, T2 such that for any = € A;, the digraph D[A4;] is r; regular, and
ki = |(z,As—i)|, ki = |(As_i,z)|, ri = |(z, Ai)|, ki, k] < |As—i], 7 < A,



(z,VNA)| =k~k;—r; 20, |(V\A,z)| = k—k{—r; 2 0,i=1,2. Clearly,
k1|A1| = k3| Az|, k1| A1] = ka| Az

For two vertex-disjoint digraphs D; and D, the join D = D; V Dy is
obtained from D; U D; by joining every vertex of D; to every vertex of D,
as well as joining every vertex of D, to every vertex of D,. In other words,
any two vertices v; € V(D;) and vy € V(D) are linked by an undirected
edge.

In paper [7], Liu and Meng proved the following:

Proposition 2.5. (i)If k, m are even, 1 < m < k, then there erists a
k-regular m-edge-connected graph G with two orbits.

(i))If k is odd, 1 < m < k, then there ezists a k-regular m-edge-
connected graph G with two orbits.

This proposition is clearly true in the case of digraphs. In fact, for any
regular degree k, we have the following result:

Theorem 2.6. For any given positive integer m and k, satisfyingl < m <
k, then there exits a k-regular m-arc-connected digraph D with two orbits.

Proof. By Proposition 2.5, it suffices to consider the existence of k-regular
m-arc-connected digraph D with two orbits, when m is odd and k is even.
We construct D as follows:

Since k is even and m is odd, we have m > 3, k — 2 is even and
k —m is odd. Define Xi_2 k_m to be the undirected graph with vertex
set V = {0,1,2,--- ,k — 3} and edge set E = {({,j) e VxV]|j-i=
p(mod(k — 2))andl < p < &2=lorp = 1‘;—2} Clearly, Xx—2k—m is a
(k — m)-regular vertex transitive graph. Let C,, be the directed cycle of
length m, and H' = Xx_3 g-m V Cp. Clearly, H' is a balanced digraph,
and in H’, the degree of vertex in V(Xx—2k—m) is k, the degree of vertex
in Cp, is k — 1. Let D = Dy(H’). Then, it is clear that D is a k-regular
me-arc-connected digraph with two orbits. a

Before proceeding, we give the following Lemma:

Lemma 2.7. Let D be a k-regular (k > 3) connected digraph with two
orbits and A(D) < k. Use notation as the above. If A = A;j U A3 be a
A-atom of D, then only the vertices in one orbit of A have out-neighbors
(in-neighbors) in V\A.

Proof. By contradiction. Since 0 < A = [w¥(A)| = |Ail|(k — ky — 1) +
|Az|(k — kg — 2) < k. Suppose both the vertices in A; and Az dominate
the vertices in V\A. Then we have |4;| + |A2| < A < k. We consider two
cases:



Casel. If !A1|+|A2| =)< ’C, then k—kl -r = k—kQ—TQ = 1,
this implies that k1 + 71 = ks +70 = k—1. Thus, k—1 = ks + 713 <
|A1] 4+ |A2] —1 =X —-1 < k —1, a contradiction.

Case2.If | A |[+|A2| < A < k, then ki+r; < |A]|+]|A2|-1 < A-2 < k-3
(:=1,2), that is k—k; —r; > 3. Hence, k > A = |A;|(k— kl—r1)+|A2|(k—
ko —r2) > 3(|A1| + |Az]), this implies that |A;| + |A2] < %5+, and thus
ki+r; < |Ai1]+]|A2]-1 < u—1 " 4 Then k—k;—r; > k—" =4 1’%’-'5,
and so (k — k2 — 72)|42| > (-—*—‘—)|A2| Without loss of generaht;y, assume
that |A;| € |As|. Then &} < |41] € 3(J41] + |A2]) < 432 and so kj|Az| <
21| Ay|. Since 2:t4 > k=1, we have (k — ky — r2)|Ag| > kj|Aa| = k1] As).
Then |uw*(A)] = A1](k — k1 — 1) + | Aal(k — ks =72) > [A|(k— k1 — 1) +
|A1]k1 = Jwt(A,;)| contradicts the fact that A is a A-atom. Thus only the
vertices in one orbit of A have out-neighbors in V\ A. Analogously, we can
prove that only the vertices in one orbit of A have in-neighbors in V\ A.
The proof is complete. O

A k-regular digraph D with girth g is called a (k, g)-digraph, and n(k, g)
is the minimum number of vertices a (k, g)-digraph can possess. Let D be
the digraph with vertex set V = {0,1,2, - ,k(g — 1)} and arc set E =
{(3,7) e V=V |j—i=m(mod(k(g—- 1)+1)) andl m £ k}. Clearly, D is
a vertex transitive (k, g)-digraph and, therefore, n(k g)<k(g—1)+1[1).
Hamidoune (3] proved that the girth of vertex transitive digraph of order n
and regular degree k is less or equal to [n/k], which implies n > k(g—1)+1.
Thus, we have the following;:

Lemma 2.8. If D is verter transitive (k, g)-digraph, then |V (D)| > n(k, g)
=k(g—1)+1.

Clearly, if the degree of every vertex of vertex transitive digraph D is
at least k, and the girth of D is at least g, then |V(D)| > n(k,g). If D
is a k-regular connected digraph with a directed cycle of length go and
V(D)| < n(k, go), then g(D) < go.

Now we give our main result:

Theorem 2.9. If D is a k-regular connected digraph with two orbits and
girth g(D) > k, then \(D) =

Proof. By contradiction, suppose A(D) < k. Use notation as the above.
By Lemma 2.7, without loss of generality, we assume that only the vertices
in A; have out-neighbors in V\A, then k = ky + 79, k—k; — 7, > 1 and
= |A)|(k — k3 — r1) < k. Thus |4;| < A < k. Since g(D) > k, we have
g(D[Ai]) 2 k, this implies that |4;| > k if r; > 1. Thus if |A;] < k, we
have r; = 0 (i = 1,2). By Lemma 2.7, we consider two cases:
Casel. Only the vertices in A; have in-neighbors in V\A. Combining
this with only the vertices in A; have out-neighbors in V\ A4, we have the



vertices in A are not adjacent to the vertices in V\A. Thus, we have
=k} (i =1,2) and k1| A; | = kg|Az|. Since A = |4 |(k—ky —7) < k, we
have |A1| <k, thusr;=0.S00< A= |Aj|(k—ki)<kand k—k > 1.

Subcasel.1. |A;| < A Since A = |A;|(k — k1) and |A;| < A, we have
k—k 22, so kl < k—2. Then k > A = |A)|(k — k1) = 2|A;|- This gives
that |A;| < %51, thus ky < 532,

Subcasel. 1 1 ko = 1. Since ky + 13 = k, we have 7y = k — 1, that
is D[Ag] is (k — 1)-regular and vertex transitive. By Lemma 2.8, we have
lAzl = 'U(D[Az]) = kllAll < (k - l)k L« (k 1)2 +1= 'n(k 1 k) This
implies that g(D[A2]) < k, so g(D) < k contradlctmg g(D) =

Subcase1.1.2. kg > 2. Since ks < £ k31, we have ry = k — kg —‘-‘21 By
Lemma 2.8, we have |Az| = v(D[43]) > n(&, k) = L(k 1)+1= -i‘*—'l.
On the other hand, since kzlAzI = k| A4, |A1| 2 , ko 2 2 and kl <
k-1, we have | Ag| = |4 < £ (k-1) < =1 ¢ Bl (k—1)+1 = 54
that is |A2] < "—zéﬂ, a contradiction.

Subcasel.2. [A;| = A. Since A = |A|(k — k1) and 4] = A < k, we
have k; =k —1 and |4;| <k —

Subcase1.2.1. ko = 1. Since ks =1 and ka+7r2 =k, we havera = k—1,
this implies that D[Aj] is (k — 1)-regular and vertex transitive. Thus,
|Az| = v(D[A2]) = k1|A1} € (k—1)? < (k—1)2+1 = n(k—1,k). By Lemma
2.8, we have g(D[As]) < k, this implies that g(D) < k, contradicting
9(D) 2 k.

Subcasel1.2.2. ko > 2. Since k; = k — 1 and |A;| € k — 1, we have
ko| Az | = k1}As| < (k— 1)2 and thus 43| < r(k 1)2 Smce ko < |ALl €
k —1 and kg +79 = k, we have 5 > 1, thls 1mp11es that |A2] > k. Since

<€ |42 < k” “(k—1),thatis k < 5= -(k—1), we have k =1 > k2
and so kg < k 2, combining this w1th k2 + 712 = k, we have 72 > 2. By
Lemma 2.8, we have |A2| > n(2 k) = 2(k—1)+1. Since |Az| < - (k—1)%,
we have 2(k — 1) +1 < &L . (k- 1). Thusk1>2 thatlsk2<'°‘
Since k3 + 12 = k, we have ro > &l By Lemma 2.8, we have |Az| >
n([&21,k) > 52 (k- 1)+ 1 > S"—-‘L + 1. But since |42| < 22 and

kg > 2, we have |A2| < -(k—zy— + 1, a contradiction.

Case?2. Only the vertices in Az have in-neighbors in V\ A. Combining
this with only the vertices in A; have out-neighbors in V\ A, we have kj +
ro =k, k’l"""l =k,andthus0 < )\ = |A1|(k-—-k1—7‘1) = IAgl(k—ké—'l'g) <
k. Clearly, both D[A;] and D[A;] contain less than k vertices. Since
g(D) > k, we have ry =13 =0, so k2 = k. But k3 < |A4;] < k, that is
ks < k, a contradiction.

In all cases we obtain contradictions, thus A(D) = k. O

Now we give an example to show that the girth bound k is best possible.



Figure 1

] s an independent set with k-1 vertices
=) from A to B is an arc set with arcs from each vertex
of A to each vertex of B

Example 2.10. Let H be a strongly connected digraph with verter set
{vi,v2,-++ 061} and {vig,vi2,-- ,vik—1} (G =1,2,--- ,k—1), arc
set
{3305 v5413.) | V30, V541, € VIH)} (jad2 = 1,2, k= L5 =
11 2v Tty 2 )
{(ve-1,31) ¥1,32) | Vk-1,51, V1,5, € V(H)} (1,52 = 1,2,k —1);
{(vi,v35) 105,055, € V(H)} (Gjn = 1,2, k= 1);
) {2054 |5, V51 €VH)} (1 =1,2,-- k=15 =1,2,-- ,k—
2);
{(Ve—1,51,v1) |vk-1,5,, 11 EV(H)} (h =1,2,--- ,k —1).
The digraph Dy_,(H) (see Figure. 1) is constructed by taking k — 1
copies of H, Hy, Hp, - -- y Hk—1, and adding arcs
{(v;,v;+1)|v;- € V(Ht)s 'U;+1 € V(Hi-l-l)} (7' = 1321"' 1k - 2;.7 =
1’21'“ yk—l))
{Wf~Y0}) | vE~! € V(Hyor),v) € v(H1)} (G =1,2,--- ,k —1).

Clearly, Di_1(H) is the digraph with two orbits and girth g = k — 1,
but not maximally arc connected.
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