SOME RESULTS ON THE EXTERIOR DEGREE OF
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ABSTRACT. The concept of exterior degree of a finite group G is
introduced by the author in a joint paper [13) which is the probability
of randomly two elements g and h in G such that g Ah = 1. In the
present paper, a necessary and sufficient condition for a non cyclic
group is given when its exterior degree achieves the upper bound
(p2 +p—1)/p® in which p is the smallest prime number dividing the
order of G. We also compute the exterior degree of all extra-special
p-groups. Finally, for an extra-special p-group H and a group G
when G/Z"(G) is p-group, we will show that d*(G) = d*(H) if and
only if G/Z*(G) = H/Z"(H) provided that d*(G) # 11/32.

1. INTRODUCTION AND SOME KNOWN RESULTS

Commutativity degree. For a finite group G the commutativity degree
d(G) of G is defined as the ratio

{(z,y) e Gx G | zyz~ly~! =1}
IGJ? '

Clearly, abelian groups are characterized by the property d(G) = 1. By
one of the known results d(G) is bounded by 5/8 for any finite non abelian
group G, and it achieves the bound if and only if G/Z(G) is isomorphic to
the elementary abelian 2-group of order 4.

The table I in {13] shows that groups with the same commutativity de-
gree do not need to be isomorphic. However, in [8, Lemma 2.4] is shown
that two groups have the same commutativity degree when they are iso-
clinic. Recall that the notion of isoclinic was introduced by P. Hall in
[11], which is a more general equivalence relation in the class of all groups.
There is a wide literature about the commutativity degree of a group. To
get some more details about this concept the references (7, 8, 9, 10] could
be useful.

dG) =
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Exterior degree. The exterior square G A G of G is a group generated
by the symbols g A h subject to the following relations

99' Nh=(%g' A Sh)(gAh), gARK =(gAR)("gA *H') and g A g,

for all g,g',h,h' € G where 9g' = gg'g~! (see [4] for more details). The
existence of an epimorphism & : GA G — G’ (sending g A h to ghg—'h~!)
follows from the defining relation of G A G. We know from [4] that the
kernel of x is isomorphic to the Schur multiplier M(G) of G.

The exterior degree has been modeled as the following ratio

dG) = [{(z,y) € G x G| gAh =1,}/IGI?

by the author in a joint paper [13]. Obviously, d*(G) < d(G) and when
the equality holds G is called unidegree. From the definition of «, a group
is unidegree if its Schur multiplier is trivial. Since every unidegree group
is unicentral by (13, Corollary 2.5], d*(G) < d(G) for all non unicentral
groups. Recall from (13, Corollary 2.4 (iii)] that the cyclic groups are
characterized by d*(G) = 1 as well as d(G) = 1 characterized abelian
groups.

At least we may conclude from [13, Theorems 2.3, 2.8 and Corollary 2.5
that knowing the mount of exterior degree not only gives a lower bound
for the commutativity degree but also helps us to illustrate when a group
G is capable or unicentral. Similar to the commutativity degree of groups,
Proposition 1.2 emphasizes that the groups with the same exterior degree
do not need to be isomorphic (see also Example 2). Moreover, Corollary
1.1 shows the exterior degree of non cyclic group is bounded above by
(p2+p —1)/p® where p is the smallest prime number dividing the order of
G.

In the present manuscript, we give a necessary and sufficient condition
when the exterior degree of a non abelian group achieves the upper bound.

As we mentioned about the commutativity degree, two isoclinic groups
G and H have the same commutativity degree but not vice versa. Analo-
gously, two groups have the same exterior degree if G/Z"(G) & H/Z"(H)
by Proposition 1.2. Of course, the converse is not true in general. It seems
Z"™(G) plays the same role relative to d"(G) as Z(G) plays relative to d(G)
(see [8]). Here, in the case H is an extra-special and G/Z"(G) is a p-group,
we will show that d*(G) = d"(H) implies that G/Z*(G) = H/Z"(H) pro-
vided that d*(G) # 11/32. To do this we need to compute the exterior
degree of all extra-special p-groups.

Recall that [13] describes the concept of exterior centralizer of an element
z of G which is equal to Cg(g) = {a € G | a Ah = 15}. The exterior
center, the intersection of exterior centralizer of all elements G, is denoted
by Z"(G). It follows from [5, Proposition 16 (i)] that the exterior centre
is a subgroup of Z(G) which allows us to decide whether G is a capable
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group. More precisely, G is capable if and only if Z " (G) = 1. Furthermore,
it is known that Z" (G) is the smallest subgroup of G such that G/Z"(G)
is capable.

Throughout this paper we assume that G is a finite group, D», and
E) = (a,byc | a® = b = ¢ = 1,[a,c] = [b,c] = 1,[a,b] = c) denote the
dihedral group of order 2n and the extra-special p-group of order p® and
exponent p. Finally, C,(,") denotes the direct product of n-copies of the
cyclic group of order p.

Known results. We summarize some known results without proof which
will be used throughout this paper without any further references.

Corollary 1.1. (See [13, Corollary 2.4(i)]) Let p be the smallest prime
number dividing the order of a non cyclic group G. Then

d"(G) < (B* +p - 1)/5°

Proposition 1.2. (See [13, Proposition 2.6]) Let N be a normal subgroup
of a finite group G. Then

A A, G
<d (=
L@ sd'(F),
and the equality holds if N is contained in Z"(G).
Lemma 1.3. (See [13, Examples 3.1 and 3.3]) For all n > 2, we have

. A n+3

O dOm=TE,
oy N e
@) d'(of) = s —.

2. MAIN RESULTS
Corollary 1.1 shows that a non cyclic group has
dNG) < (P +p-1)/7°,

where p is the smallest prime number dividing the order of G. The following
lemma gives a necessary and sufficient condition when d” (G) is attained the
upper bound. In particular, when p = 2 the analogues result was obtained
for the commutativity degree, see [6, Theorem 2.2].

Lemma 2.1. Let G be a group and p be the smallest prime divisor of the
order of G. Then

A 2+ -1, . G
d (G)=”—-—p§— if and only i o 2 Cp X Gy,
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Proof. First assume that = Cp X Cp. Proposition 1.2 follows that

G
z°(G)

A T2l A 2 —
d(G)=d (7"%-)') and hence d*(G) = ?%-l due to Lemma 1.3.
Conversely, since for all g ¢ Z" (G) we have G: Cg(g)] > p. We should

have

p2 +p— 1 _ A _ _1_ A
1z enlel
< ]G|2(IZ @GIGI+ (Gl - 1Z (G)) p)
_ IZ Gl 1

thus |G|/|Z" (G)| < p. In the case that G is non abelian, the results holds.
Otherwnse since G is not cyclic (d” (G) # 1), [5, Proposition 18 (ii)] implies
that 50— Z" = = Cp x Cp. 0

In the following lemma we compute the exterior degree of all extra-

special p-groups. We note that the exterior degree of non capable non
abelian group achieves the upper bound.

Theorem 2.2. Let G be an extra-special p-group. Then the exterior degree

of G is equal to one of the following cases.
7

N 4+p%—1 A

@G). d(Ey) = % and d"(Dg) = 1

pZn +p2n—l -1
p4n—l

(#5). d" (G) = 2041,

, when G is non capable of order p
Proof. (i). First assume that G & E,. By a consequence of [1, Theorem
4.3}, we should have

EiNE =2 (anb)yx{anc)x (bAc),

which is an elementary abelian of order p3. It can be easily seen that the
order of all centralizer of non central elements of E, is equal to p2. Let
z € {a,b,c}, then the exterior centralizer of z is equal to (z). Since for
instance let £ = a and g = a™b"¢! be an arbitrary element of E;, by using
(1, Proposition 3.5] we should have

gha=(anb) ™ arc)l(bAc)Y,

Hence g = a™, which means that C’e(a) = (a}. By a similar way, it can be
shown that CZ(b) = (b) and Cg(c) = (c).
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We claim that the order of all exterior centralizer of non identity elements
of E) is equal to p, and so

A 1
d (E1) = WI{(Q,h)€E1XE1:g/\h=1}|
P+ -1)p _p+7p -1
= Z| E,(g)l—
7 EF 2 »* 7

By contrary, suppose that |Cg(g)| # p for a given non trivial element
g = amb™c'. Since Z" (G) is trivial, we should have |C5(g)| = p? and hence
Z(Ey) € C4(g). Thus c € Cg(g) hence cAa™b™d = (aAc)™(bAc)* =1,
and so g = ¢! which is a contradiction.
The exterior degree of Dg is obtained directly by using Lemma 1.3.
(). Since G/Z/\(G) is elementa,ry abelian of order p?", by invoking

N 2n 2n—1 _
Lemma 1.3 we have d (G) = 2_-:,%—1—1 ]

For the group of order p®, the following lemma emphasizes that the
groups can be classified by the mentioned amount of d*(G) in Theorem
2.2,

Lemma 2.3. Let G be group of order p3. Then

3 2 _
Q) d(G) = ”—““7:25——1 if and only if G = C© or By;

(i) d*(G) = —7- if and only if G 2 Ds.
(iii) dA(G) IZLPP—— if and only if G is not capable.

3 2 _
Proof. (i) Assume that G = Ct¥), Lemma 1.3 follows that d" (G) = ”_“L;’;—l.

In the case G = E;, Theorem 2.2 (z) follows the result.
Conversely, suppose that there exists an element g of G such that ICG (9)] =
p?, hence we have

p+p—1 _ A
PiE— - 4@

- EEXICOl=gr( T Ic@l+ ¥ 1cs@)

z€G 9€Z"(G) 9¢Z" (G)
1 A A
2 F(IGHZ G+ (G| - 12" (G)| - V)p + P%),

and so (p + 1)]Z2"(G)| < p which is a contradiction. Hence for all non
identity element g € G, we should have ]Cg(g)| = p. By asimilar technique,
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one may see that |Z"(G)| = 1. Thus G is capable and G = C,(,s) orGXE,
by using [2], [3, Corollary 8.2] and the assumption.

(#4) It follows from Theorem 2.2 (i) that d (Dg) = % Conversely, if G

2 -
is non capable, then Lemma 2.1 implies that d” G)= p_+;:_1 which is

a contradiction. Hence (3, Corollary 8.2], [2] and the pervious part imply
that G & Ds.
(#i4) It is obtained by a similar argument in (¢) and (). O

The following results generalize Lemma 2.3.
Theorem 2.4. Let G be a non abelian group such that [G : Z" (GQ)} = p®

(p#2). Then
N i A . ., G _ H
(i) d(G) = e (n # 3) if and only if 7@ = )
where H is a non capable extra-special p-group of order p?"+1;

3 2 _
(i) d(G) = B—Jr:;——l if and only if ZAL(G) & H, where H is the

capable extra-special p-group of order p3.

Proof. (i) We shall prove the result by using induction on the order of G.

For |G| = p®, we have n = 2 and so G/Z" (G) & Cp x Cp. Thus Lemmas 2.1
2

. A _P +p— 1, . G ~

and 2.3 imply that d (G) = pe if and only if e @ = Cp x Cp.

Hence , where H is an non capable extra-special p-group

G o
ZG)  Z°(H)

of order p®.
3 A pPt4+phl—1

Now assume that |G| > p® and let d (G) = T — (n#3). IfG
is not capable, then |G/Z" (G)| < |G| and also [G/Z" (@) : Z"(G/Z" (G))) =
[G : Z"(G)] = p*. On the other hand, d"(G) = d (G/Z" (G)) due to

G/z'@) . H
, Z7G/2(G))  Z°(BY’
where H is non capable extra-special p-group. Thus the result follows since
Z"(G/Z"(G)) = 1. When G is capable, since G : Z"(G)) = p", G is p-
group and by using [3, Corollary 8.2], [2] and assumption G = E, and so

A p3 + p2 -1
d" (G) = ———=—— due to Lemma 2.3 (i) which is a contradiction. The

converse is obtained by using Lemma 1.3, Proposition 1.2 and Lemma 2.3.

Proposition 1.2. Hence by induction hypothesis

A pPP+p?-1
(¢1) Suppose that d (G) = — the result follows when G is

capable. In the case G is non capable G/Z" (G) satisfies the induction
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hypothesis and so the result follows. The converse is obtained directly by

using Lemma 2.3 (%), as required. O
Corollary 2.5. Let G be a non abelian group such that [G : Z" (G)] = p"
(p#£2). Ifd (G) = P';I;T (n #3). Then G is non capable.

Theorem 2.6. Let G be a non abelian group such that [G : Z"(G)] = 2"
(n=3). Then

4 (G) = % if and only if & Ds.

_G_
27(6)
Proof. Let |G| = p3, since d (G) = d"(G/Z" (G)) according to Proposition
1.2, the result is obtained by using Lemma 2.3 (iz). Otherwise, it is obtained
by invoking induction and Lemma 2.3 (). a

Some examples. The following examples show that there exists a group
which is not a p-group satisfying in Theorem 2.6 (see [13, Example 2.4]).

Ezample 2.7. Let G = C3 x Dg. Then d (G) = 7/16 and Z"(G) =

The next two examples emphasize that dA(G) = dA(H ) does not imply
that G/Z" (G) = H/Z" (H) in general (see Theorem 2.4 (ii)).

Ezample 2.8. 1t is known that d" (D) = d" (Cy x Q2) = 11/32 by [13,
Examples 2.4]. On the other hand, by using the same reference Z " (D1s) =
landZ (CgXQz)—Cz

Ezample 2.9. Table I in [13] shows that d" (C; x Dg) = 1/4 and Z"(C; x
Dg) = 1. On the other hand, if G = (a,b|at=b% = (ab)? = (a—1b)%2 = 1),
thend" (G) =1/4 and Z" (G)=1.
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