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Abstract. In (8], the author introduced the notion of burst errors for
2-dimensional array coding systems. Also, in [10], the author intro-
duced a series of metrics called Lee-RT-Jain-Metric(LRTJ-metric) [3]
for array codes which is a generalization of both classical Lee metric
[12] and array RT metric [14]. In this paper, we obtain sufficient con-
ditions on the parameters of array codes equipped with LRTJ-metric
for the identification and correction of burst array errors.
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1. Introduction

In a classical coding setting, codes are subsets/subspaces of ambient
space F7, the space of all n-tuples with entries from a finite field F;, and
are investigated with respect to the Hamming metric [13] and Lee metric
(12]. In [14], array codes which are subsets/subspaces of the linear space of
all m by s matrices Mat,, xs(Fy) with entries from a finite field F; endowed
with a generalized Hamming metric known as RT-metric (or m-metric)
were introduced. Motivated by the idea to have a generalized Lee metric
for array code, the author introduced a new series of metrics on the space
Mat,x5(Z4) which is a generalization of both Lee metric for classical coding
and RT-metric for array coding and named this metric as Lee-RT-Jain-
metric (LRTJ-metric).

Here is a model of an information transmission for which array coding
is useful. Suppose that a sender transmits messages, each being an s-tuple
of m-tuples of g-ary symbols, transmitted over m parallel channels. There
is an interfering noise in the channels which create errors in the transmit-
ted message. An important and practical situation is when errors are not
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scattered randomly in the code matrix (or code array) but are in cluster
form and are confined to a submatrix (or subarray) part of the code array.
Motivated by this idea, the author introduced the notion of burst errors in
array coding [8] and obtained some lower and construction upper bounds
[8, 9] on the parameters of m-metric array codes for the identification and
correction of burst errors. However, the choice of a metric for a given par-
allel communication system plays an important role as the channel model
should match the metric d to be employed for developing a suitable array
code, and hence for a communication system to operate reliably. Thus,
given a modulation scheme, one metric may be better than another. The
LRTJ-metric is useful over non-binary communication channels than RT-
metric as this metric takes into account magnitude of change rather than
only position of change. The author has already obtained lower bounds for
burst error correction in LRTJ-metric array codes [11]. In this paper, we
obtain construction upper bounds or equivalently sufficient conditions for
the burst error identification and correction in LRTJ-metric array codes.

2. Definitions and Notations

Let Z, be the ring of integers modulo q. Let Mat,,xs(Z,) be the
set of all m x s matrices with entries from Z;. Then Matnxs(Zg) is a
module over Z,. Let V be a Z,-submodule of the module Mat.xs(Zg).
Then V is called an array code (In fact, linear array code). For g prime,
Z, becomes a field and correspondingly Mat.xs(Z4) and V become the
vector space and a sub space respectively over the field Z,. We note that
the space Matyxs(Z,) is identifiable with the space Z7**. Every matrix in
Maty,xs(Zg) can be represented as an 1x ms vector by writing the first row
of matrix followed by second row and so on. Similarly, every vector in Z7**
can be represented as an m X s matrix in Mat,x,(Z4) by separating the
co-ordinates of the vector into m groups of s-coordinates. Also, we define
the modular value |a| of an element a € Z; by

o={@ if 0< a<g/2
"1 g—a if g/2<a<gq-1

We note that the non-zero modular value |a] can be obtained by two dif-
ferent elements a and g — a of Z, provided {g is odd} or {q is even and

a#(g/2), Le.

g isodd
lal=|g—a| if or
gisevenand a #q/2.

If q is even and a = [g/2] or if a = 0, then |a} is obtained in only one
way viz., |a| = a.
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Thus, there may be one or two equivalent values of |a| which we shall refer
to as repetitive equivalent values of a. The number of repetitive equivalent
values of a will be denoted by e,, where

_ [ 1 if {g isevenand a=gq/2} or {a=0}
®a=1 2 if {q isodd and a # 0} or {gis even, a # 0 and a # q/2}.
We now define the LRTJ-metric in the space Mat,xs(Z,) as follows [10] :
Let Y € Matyxs(Zq) with Y = (1,92, -+, ¥s)-

Define the row-weight of Y as
max|y;| +max{j — 1 |y; #0} if Y #0
i=1 j=1

wty(Y) =

0 ifY=0.

Then 0 < wt,(Y) < [g/2]+s—1. Extending the definition of the row-weight
to the class of all m x s matrices as

wtp(A) = Y_wip(R;)

i=1
Ry
Ry

where A = € Matmxs(Zy) and R; denotes the i** row of A.

R,
Then wt, satisfies 0 < wt,(A) < m([g/2] +s—~1) V A € Mat,xs(Zg)
and determines a metric on Mat,xs(Zg) if we set d(A4,A") = wty(A —
ANVY A A € Matymxs(Zy). We name this metric as Lee-RT-Jain-metric
(or LRTJ-metric) because of the following observations:

1. For s =1, it is just the classical Lee metric [12].

2. For ¢ = 2,3, this metric reduces to the RT-metric [14].
Remarks.

1. For ¢ > 3,

LRTJ-wt (A) > RT-wt (A) V A € Matmxs(Z,)

2. For s =1 and g = 2,3, LRTJ-metric reduces to the Hamming metric
(13].
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Notations. We shall use the following notations:
1. [z] = The largest integer less than or equal to z.
2. Q; will denote the sum of repetitive equivalent values up to i i.e.,
Qi=egt+er+ - +e;
where e; denotes the repetitive equivalent value of i.
3. < z,y >=min {z,y}.
Also, the definition of bursts for array coding [8] runs as follows:

Definition 2.1. A burst of order pr{or pxr)(1 < p<m,1 <r < s) in the
space Maty,xs(Zg) is an m x s matrix in which all the nonzero entries are
confined to some p x r submatrix which has non-zero first and last rows as
well as non-zero first and last columns.

Note. For p = 1, Definition 2.1 reduces to the definition of burst for clas-
sical codes [6].

Definition 2.2. A burst of order pr or less (1 < p < m,1 <r < s) in the
space Matmxs(Zg) is a burst of order cd(or ¢ x d) where 1 <c¢ <p <m
and1 <d<r<s.

3. Sufficient Condition for Burst Error Identification
in LRTJ-Metric Array Codes

To derive the results in this and subsequent section, we shall identify
the space Matmxs(Zq) with the space Z7*° i.e an m x s matrix over Z, is
considered as an ms-tuple over Z; arranged into m groups of s elements
each. Each group of s elements in an ms-tuple is called a block. Also,
s is called the block length or block size and m is called the block value.
Each block of an ms-tuple has a LRTJ-weight and sum of LRTJ-weights
of all the m blocks of an ms-tuple is the LRTJ-weight of that ms-tuple.
Also, columns of generator matrix G and parity check matrix H of a linear
array code V are grouped into m blocks of s columns each. Therefore,
generator matrix G and parity check matrix H of a linear array code V
are represented as G = [G1,Ga,--+,Gn], H = [H1,Ha,- -+, Hn] where G;
and H; are the it* block (1 < i < m) of generator and parity check matrix
respectively of the code V and are given by

G; =[G, Gi, -+, Gis),

and

H; = [Hiy, Hi, -+, His),
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where each Gi;(1 < i <m,1<j<s)isakx1 column vector and each
Hij(1<i<m,1<j<s)isan (ms—k)x1column vector.

Also, we give the following definition:

Definition 3.1. A linear combination of m x s vectors uy;, - -, U1s, U421, -,
Ugs, "', Uml, " * Ums Eiven by

Q11U+ s s 21U - QosU2s e AmiUml 0 CmsUims,

where a;; € Zg,u;; € Z;"s"k(l <i<m1<j< s)is called a linear
combination of LRTJ-weight w if

LRTJ-wt{e,, - -, als) + GLRTP-wt(as;, -, a2s + -+ +
+ - LRT.]-wt(aml, e ,ams) =w

where V i(1 < i < m),

max|ayj| + max{j - Loy # 0} if (i -+~ us) #0
LRTJ-wt(as, -+, 0u5) =4 °
0 zf (ai1a°"7ais) =0.

Now we obtain the sufficient condition for burst error identification with
LRTJ-weight constraint in linear array codes.

Theorem 3.1. Let q be prime and m, 8,p, , k, w be positive integers satis-
fyingl<p<m1<7r<s 1<w<p(g/2]l+s—-1) and 1 < k < ms,
then there ezists an [m X s, k] linear LRTJ-metric array code over Zg, i.e.
a linear array code with m as block value and s as the block size, that has
no burst of order pr or less with LRTJ-weight w or less as a code array
provided

ms— <j-1,r=1> p— g
>1 + Zq Virw=(i-1)-lg/2

J<w
8
+ Z((m—l)s+(j—l)) (1)
i
where
1,9 (P - 1)'
VJ,rw G-1)-1q/2) Z l9/2] <j,r> lg/2)<5,r> %
“1I 11 = ((P—l)—z II ’”lf)!
=1 f=1 =1 f=1
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it C (Qz) (Qz +(-1@e1-)) "

=1 f=1
(2)

and rp(1 <1 < [g/2],1 £ f £ < j,r >) being nonnegative integers
satisfying

l9/2] <jr>

> > nr<p-1,

=1 f=1

le/2] <jr>

S U+ -y <w—(G—1)-[g/2). (3)
=1 f=1

Proof. The existence of such a code will be proved by constructing a suit-
able (ms — k) x ms parity check matrix H for the desired code. To detect
any burst of order pr or less with LRTJ-weight w or less, it is necessary
and sufficient that no linear combination of LRTJ-weight w or less involving
r(or fewer) consecutive columns in p (or fewer) consecutive blocks should
be zero. Suppose that ¢ — 1(1 < ¢ < m) blocks Hy, Hs, -+, H;—1 have been
chosen suitably. To add the j** column (1 < j < s) in the " block, we
can have either of two mutually exclusive cases:

Case (i): When j < w.

In this case, j** column in the :** block can be added, provided it is not
a linear combination of l;-", (l;+1)th, -, 5" columns from the immediately
preceding < ¢ — 1,p — 1 > blocks having LRTJ-weight w — (§ — 1) — {g/2]
or less (where l; =< 1,j — r 4+ 1 >) together with any linear combmatlon
of i, (I; + 1)*,---, (5 — 1)** columns in the i** block. Therefore, column
Hij(1 £ j < s) can be added to H provided
i1
Hi; # > (agtHyy +agl e Hgyr + - + g 5Hy ;)

g=i—<i,p>+1

‘o Higy + o1 Hig41 + -0 + g j—1 Hijoy 4)
where

i—1

Y. LRTJwt(agy, gy r0g) Sw=(=1) = [2/2. ()

g=i—<i,p>+1
The number of linear combinations occuring in the R.H.S. of (4) subject to
constraint (5) is given by

11‘—1 < —1y —1>,
D e P (6)
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<i-1,p-1>,q :
where V; r’w_f__, 1)~(qs2) is given by

<i—-1,p—1>
imw~(i-1)-(q/2]
Z (<i-L,p-1>)! »
la/2] <j,r> la/2]<j,r>
i H H if! (<i-—1,p—1>)—z Z rzf)!
=1 f=1 =1 f=1
la/2)<j,r> f-2 Ty
<I1 1T («(@) (@+ (- 1@ - D))"
=1 f=1

and rp(1 <1< (g/2],1 £ f £< j,r >) being nonnegative integers satisfy-
ing
la/2)<j,r>
> mp<<i-lp—1>
=1 f=1
la/21<j,r>

DX U+ (f - Sw—(G-1)-[g/2. ®)
=1 f=1
Case (ii). When j > w.

In this case, the j** column in the i** block can be selected from the
set of all (ms— k)-tuples provided it is not selected previously. The number
of (ms — k)-tuples selected in the construction of H so far is given by

E-1)s+(-1). (9)

Thus, i** block can be added to H provided the summation of the
number enumerated in (6) (j < w) and in (9) (j > w) for j = 1 to s
including the array of all zeros is less than the total number of (ms — k)-
tuples. Therefore, i** block H; can be added to H provided that

ms—k <j-1,r=1> <1-1,p—l>,q
g > 1+Zq er (G-1)-lqe/2]

]<w

+2_(G=Ds+(G-1) (10)

i>w

where VJifwl_’fJ'_lf) ’q[ o/2) IS given by (7) staisfying (8).

For the existence of an [m x s, k| linear array code over Zg, inequality
(10) should hold for i = m so that it is possible to add upto m** block to
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form an (ms — k) x ms parity check matrix H and we get (1) by noting
that < m,p >=p.

Hence the theorem. O

Example 8.1. Take m =s=p=r=2,w =3,k =2 and ¢ = 5. Then we
have

2
RHS. of (1) =1+ 559 1>V18, . = [(say),
i=1

where V;-fé‘;_j is given by (2) on takingp=r =2,w =3 and ¢ =5.

Therefore,
L=1+5V]y, +5'V, 5. (11)
Now,
1,2,1 r11,1'2lrn!r2l!(1 - (7‘11 + 1‘21))!
x(e1(Q1)~H(Q1))™ x (e2(Q2) ™1 (Q2))™
!
= Z U x e} x eg?!,

| (1 — |
e 7‘11.7'21.(1 (7‘11 +1‘21)).

where 711,721 are nonnegative integers satisfying the following constraints:
m+ra <1,
i1+ 2r; < 1. (12)

The feasible solutions for (r11,72;) satisfying the constraint (12) are given
by
(rll7r2l) = (070): (11 0)

Therefore,
1!
Vi, = 1+ me} =1+e;=1+2=3. (Note that e; =2 over Zs).
Again,
1!
V1,5 — x
220 2 rulrailrialrae(1 = (rin + a1 + 112 + r22))!

x(e1(Q1) 71 (@1))™ x (e2(Q2)H(Q2))™ x
x(e1(Q1)°(@1 + (Qo — 1)))™2 x (e2(Q2)°(Q2 + (@1 — 1)))™

1!
Z 11 lroIralreg!(1 — (v T r T22))!
I7911r121r20! + 791 +T12 + !
r1Tar | WT21T12:T22 11 + 721 + 712 + 722

el x ez x (e1(Q1 + (Qo — 1)))™* x (e2(Q2 + (@1 — 1)))™
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subject to

711,721,712, 722 = 0,
ri1+ro+ri2+7r2 <1 (13)
711 + 2721 + 2112 + 3729 <0

The only feasible solutions for (711,721,712, 722) satisfying (13) is the null
solution.
Therefore 1,21,,22'0 =1.

Thus from (11)
L = 143+5=9

Also, ¢™*~% = 542 = 52 = 25,

Therefore, L.H.S. of (1) = 25 > 9 = R.H.S. of (1) and hence there exists a
[2 x 2,2] linear array code V over Zs that detects all bursts of order 2 x 2
or less having LRTJ-weight 3 or less. Consider the following (2 x 2 — 2) x
(2 x 2) = 2 x 4 parity check matrix of a [2 x 2,2] linear array code over Zs
constructed by the algorithm discussed in Theorem 3.1.

H=[10542}
01 23],

The generator matrix G corresponding to the parity check matrix H is

given by
G=[1 3 1 Ojl
3 2 : 01 -~

The 25 code arrays of the code V' C Matax2(Zs) with G as generator matrix
and H as parity check matrix are given by

00 3 2
v = ( 0 0 ) , LRTJ-wt(vo) = 0; v = ( 0 1 ) , LRTJ-wt(v,) = 5;

4 1
Vg = ( (1) ‘21 ) LRTJ-wt(m = 5; vz = ( 0 3 ) LRTJ-wt v3) = 5;
2 3 1 3
Uy = ( 0 4 ) , LRTJ-wt(vq) = 5; vs = ( 10 ) , LRTJ-wt(vs) =
v = ( ‘; ‘; ) LRTJ-wt(ve) = 3;  vr = ( “1’ g ) LRTJ-wt(vr) =
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vg = ( (1) g ) , LRTJ-wt(vg) = 5; vg = ( ? ‘11 ) , LRTJ-wt(vg) = 5;
vio = ( g : ),LRTJ-wt(vm) =5  wun= ( 53 ),LRTJ-wt(vu) =6
vig = ( g (2) ) , LRTJ-wt(v12) = 5; vi3 = ( ; g ) , LRTJ-wt(v13) = 6;
e = ( > 4 ),LRTJ-wt(v14) =5  ugs= ( - ),LRTJ-wt(vls) =5,
vig = ( - ),LRTJ-wt(vw) =5  wugr= ( s s ) ,LRTJ-wt(v17) = 6;
vig = ( : g ),LRTJ-wt(vlg) =5  ug= ( : i )  LRTJ-wt(vio) = 6;
Va0 = ( . ) LRTJ-wi(vag) = 4;  va1 = ( 2 ),LRTJ-wt(vgl) =5
vgp = ( . ),LRTJ-wt(vgg) =5  um= ( 2 ) ,LRTJ-wt(y3) = 6;
Va4 = ( ; 2 ) ,LRTJ-wt(vas) = 3.

We observe that none of the code array is a burst of order 2 x 2 or less
over Zs having LRTJ-weight 3 or less. Therefore, sufficient condition (1) is
justified and hence the code V detects these type of burst errors.

Note that in Example 3.1, Case (ii) of Theorem 3.1 does not occur as
j < w always. The following example illustrates both the cases of Theorem
3.1.

Example 3.2. Takem=s =3,p=r=2,w=2,g=2 and k = 5. Then

I

3 3
1+ 259 VI2, 4+ 6+ (G- 1)
=y

R.H.S. of(1)

= 14 2<0,1> le,’22,1 + 2<1,1>V21',22’0 +8
1+ (20 x 2) + (21 x 1)+ 7 (since Vll,’22’1 = 2’1/21’:22’0 =1)
= 14+424+24+8=13.

Also qma—k =99-5 =94 — 16.

Therefore, L.H.S. of (1) = 16 > 13 = R.H.S. of (1) and hence there exists
a [3 x 3, 5] linear array code V over Z; that detects/identifies all bursts of
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order 2 x 2 or less having LRTJ-weight 2 or less. Consider the following
(3 x3—5) x (3 x 3) =4 x 9 parity check matrix of a [3 x 3, 3] linear array

code over Zs.

1 00
010
0 0 1
000

0
0
0
1

1
0
1
0

=

1
0
1
1

QO = = O

1
1
0
1 1

4%9

The generator matrix G corresponding to the parity check matrix H is

given by

0
0
0
1
1

—_— O = e
e = O

—_— O = = O

1
0
0
0
0

O O O = O

= O O O

0
0
0
0
1

O O = O ©

5x9

The 32 code arrays of the code V C Matax3Z», with G as generator matrix
and H as parity check matrix are given by

0
Vo = 0
0
1
vz = 1
1
1
Vg = 1
0
0
Vg = 0
1
0
V12 = 0
0

0
0
0

P9 oo oo

[y

1
10
00

O =

o
[e=T ==l =’ OO = o

OO =
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1 0
0 |, =10
1 0
0 1
1 ,Us = 0
0 0
0 1
0 ,Ug = 1
1 1
1 1
1 y U1 = 1
1 0
1 1
1 ,V14 = 1
0 1



0 00 1 11 010
vis=| 0 0 1 J,u6={1 0 1 J,oz=]11 01,
110 111 0 01
110 0 01 0 0O
V18 = 0 1 0 ),ve= 1 1 0 ],v= 110},
010 011 1 00
1 11 011 1 00
U1 = 010 y V2o = 1 10 ,Ugg = 010 N
1 01 1 10 1 11
011 1 00 0 00
Vo4 = 1 11 , U258 = 01 1 yU2e = 1 11 y
0 00 0 01 010
111 110 0 01
Va7 = 011 , V28 = 011 y U209 = 111 y
011 1 00 1 01
1 01 010
V30 = 011 yU31 = 1 11 .
110 1 11

We observe that none of the code array is a burst of order 2 x 2 or less
having LRTJ-weight 2 or less and hence the code V detects these type of
burst errors.

4. Sufficient Condition for Burst Error Correction in
LRTJ-Metric Array Codes

In this section, we obtain sufficient condition for burst error correction
with LRTJ-weight constraint in linear array codes. To prove the desired
bound, we need the following lemma [11]:

Lemma 4.1. The number of bursts of order pr(1 < p<m,1 <r < s) in
Mat;xs(Zg) having LRTJ-weight w or less (1 < w < m([q/2] + s — 1)) is
given by
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( min(w,s)

m (Qu-@g-1n—1) ifp=r=1,
i=1

min(w—r+1,s—r+1)

m Z (Qw—(j+r—2))r_2x

BI, (Zgy ) = 4 = (14
X(Qu—(j+r—2) — 1) ifp=1,r2>2,
min(w—r+1,s—r+1)
m-p+l) 3 (T -2 4L
j=1

ifp>2,r2>1,

where
P!
L?), = Z[Q/Z]j+r—] la/2] j+r-1 X
T H H rzf!<p—z Z th)!
=1 f=j I=1 f=j
(9/2) j+r—1 rif
I T (@~ @+ (=)@ -1)) 1 a9)
=1 f=j

and riy (1 <1< [q/2,j < f < j+7—1 in the ezpression for L%, are
non-negative integers satisfying the following constraints:

at least one of r; > 0 (1 <1< [g/2), § fized occuring in
the expression for L% ),
at least one of 11j4r—1 >0 (1 <1< [q/2], j+ 7 —1 fized),

l9/2) j+r—1

S U+ -y <w, (16)
=1 f=j

lg/2] j+r—1

Z Z Tif S P-

=1 f=j

Theorem 4.1. Let g be prime and m, s,p, r, k, w be positive integers satis-
fyingl <p<[m/2],1<7<s51<k<ms andl <w<p(q/2]+s—-1),
then a sufficient condition for the ezistence of an [m x s, k| linear array
code over Zy that corrects all bursts of order pr or less having LRTJ-weight
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w or less is given by:

p T
g > 14 (Zl ;Bf,;;ip)xs(zq,w)) X (17)
c= =
1,r-1 -1,9
(Zq Y en- [q/zl) +
J<w
+Z — s+ (- 1)) (18)

J>w

where BEX¢ (Zg,w) is given by (14) in Lemma 4.1 and V",,;;'E(j—l)—[q/zj

(m-p)xs

is given by (2).

Proof. We construct the parity check matrix of the desired code by using
the fact that to correct all bursts of order pr or less with LRTJ-weight w
or less, it is necessary and sufficient that no code array consists of the sum
of two bursts of order pr or less having LRTJ-weight w or less. Thus no
linear combination involving two sets of r (or fewer) consecutive columns
in p (or fewer) consecutive blocks having LRTJ-weight w or less should be
zero. Suppose that (m — 1) blocks Hy, Ha, -+, Hp—1 of the parity check
matrix H have been chosen suitably. To add the 7** cloumn (1 < j < 5) in
the m** block, we can have either of the two mutually exclusive cases:

Case (i): When j < w.

In this case, j** column in the m®* block can be added, provided

it is not a linear combination of I8, (I; + 1), ..., jt columns from the
immediately preceding (p—1) blocks having LRTJ-weight w— -{9/2]
or less (where l; =< 1,j — 7 + 1 >) together with any linear combmatlon
of I, (I + 1)*,---,(j — 1)** columns in the m*" block and any linear
combination of r (or fewer) consecutive columns in p (or fewer) consecutive
blocks among the first (m — p) blocks having LRTJ-weight w or less. In
other words, j** column (j < w) in the m* block can be added to H
provided that

m-1
Hmj # Z (ag,leg»lj + a9y1j+lH NS e ag»ij.j)
g=m—p—1
+omi; Hmt; + am 41 Hm 41+ + amj-1Hm j-1 (19)

+linear combination which form a burst of order pr or less having
LRTJ-weight w or less in the first (m — p) blocks.
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subject to

m-1

Y. LRTJ-wt(agy,,agp41, 1 0) Sw—(G—1) - [g/2). (20)
g=m-—p+1

Now, the number of linear combinations occuring in the R.H.S. of (18)
satisfying constraint (19) is given by

' 4 T
r— —1,9 d
(‘1<’ Y e lq/2]) (2 ;Bﬁﬁ.—pm(zq,w)) (21)
c= =

Case ii. When j > w.

In this case, the j** column in the m** block can be selected from the
set of all (ms — k)-tuples provided it is not selected previously. The number
of (ms — k)-tuples selected in the construction of H so far is given by

(m-1s+(G-1). (22)

Now, mt* block can be added to H provided we can add all the s
columns of the m** block. Therefore, m** block can be added to H provided
the sum of the numbers for each j = 1 to s enumerated in (20) (for j < w)
and in (21) (for j > w) including the pattern of all zeros is less than the
total number of available (ms — k)-tuples. Thus, H,, can be added to H
provided that

gt > 1+ (Z ZB(C,’;‘ip)xs Zq,w))) X

c=1 d=1
Z <j=1,r=1>yP-1q
q J,r w—(J 1)-[q/2]

ize

8

+Y (m=-1)s+ (G- 1)).
5w
Hence the theroem. ]

Example 4.1. Take m = 4,s =3,p=2,7r =1, w =2,k =9 and ¢ = 5.
Then

2 1 3
RHS.of17) = 1+ (Z 23513(25,2)) (Z2<""’°>V,-fii_,-) +

= = j=1:
c=1 d=1 «}52

143



3

> O+(G-1)
5
= 1o (B + B (Vi @9
+V21-1) +(9+2) (24)
Now
Vito=1 and V7, =0. (25)
Also,
min(2,3)
Bjx3(Z5,2) = 2 Y (Qsj-1)= 2Z(Q3—]
J=1
= 2((Q2-1)+(Q:1 - 1)) = 2(4+2) =12. (26)
(Note that over Zj,Q; = 3,Q2 = 5).
Again,
min(2,3)
B3i(Zs,2) = > (LI +L§;-2L},)
=1
= (L3, + L3 -2L1,))+ (L3, + L3, — 2L} )
(12+0—8)+(12+0-12) = 4. (27)

(Note that from (15) and (16) in Lemma 4.1, we have L2, = 12,L}, =
4 Lll—o L21—12 L21—6andL21—0)

Using (23), (24) and (25) in (22), we get
RHS. of (17) =1+ (12+4)(1 +0)+ 11 = 28.
Also, L.HS. of (17) = 5™~k = 54x3-9 — 53 — 195,

Therefore, L.H.S. of (17) = 125 > 28 = R.H.S. of (17) and hence by Theorem
4.1, there exists a [4 x 3, 9] linear array code over Zs that corrects all bursts
of order 2 x 1 or less having LRTJ-weight 2 or less. Consider the following
(4 x3—9) x (4 x 3) = 3 x 12 parity check matrix of a {4 x 3,9] linear array
code over Zs constructed by the procedure discussed in Theorem 4.1.

100 :011:100°:012
H=1010 124 :214°:'13 4

001:210°:343:338¢2][, .,
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The code V' C Matyx3(Z5) which is the null subspace of H corrects all
bursts of order 2 x 1 or less having LRTJ-weight 2 or less since syndromes
of these error patterns are all distinct as seen from Table 4.1.

Table 4.1.
Burst Errors of order 2 x 1 or less having Syndromes

LRTJ-weight 2 or less
/10 0)

1 00

o o o |= 100100000 000) (112)
\ 0 0 0
/T 0 0)

4 00

0 o0 o |= (100400000 000) (143)
\0 0 0
(4 0 0\

100 = (400 100 000 000) (412)
0 00
\0 0 0 )
(40 0)

4 00

o o o |= 400400000 000) (443)
\ 0 0 0

0 0 0 )

1 o o | = (000 100 100 000) (130)
000 }
( 0 0 0\

}1 g g = (000 100 400 000) (444)
\0 0 0
(0 0 0 )

1o o | =0 400 100 000) (111)
\0 0 0/
/0 0 0

j g 8 = (000 400 400 000) (420)
\0 0 0 }

Table contd.
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