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Abstract

The Wiener index of a graph is a distance-based topological index
defined as the sum of distances between all pairs of vertices. In this
paper, two explicit expressions for the expected value of the Wiener
indices of two types of random polygonal chains are obtained.
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1 Introduction

All graphs considered in this paper are finite, undirected, connected, with-
out loops and multiple edges. The vertex and edge sets of G are denoted by
V(G) and E(G), respectively. If u and v are vertices of G, then the number
of edges in the shortest path connecting them is said to be their distance and
is denoted by d(u, v). The sum of distances from a vertex v to all vertices in
a graph G is called the distance of this vertex, d(v|G) = Luev(c) 4w, ).

The Wiener index is well-known distance-based topological index intro-
duced by Harold Wiener in 1947 as structural descriptor for acyclic organic
molecules. It is defined as the sum of distances between all un-ordered
pairs of vertices of a simple graph G, i.e.,

we)= ¥ d(u,v)=% Y dele)

{u,v}CV(G) veV(G)

Mathematical properties and chemical applications of the Wiener in-
dex have been intensively studied in the last thirty five years. Nowadays,
the Wiener index is one of the best understood and most frequently used
molecular shape descriptors. It has found many applications in the mod-
elling of physico-chemical, pharmacological and biological properties of or-
ganic molecules. For detailed information on the Wiener index and its
applications, we refer to [3—-6] and the references cited therein.
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Finding explicit expressions for Wiener indices of different classes of
polygonal graphs was a focus among the researches concerning the mathe-
matical properties of Wiener index. For example, Gutman (7] investigated
the Wiener index of a random benzenoid chains. Bian and Zhang [1} char-
acterize tree-like polyphenyl systems with extremal Wiener indices. Yang
and Zhang [8] obtained a formula for the expected value of the Wiener
index of a random polyphenyl chain. In addition, Wang et al. [9] also es-
tablished explicit expressions for the expected value of the Wiener index of
three types of random pentagonal chains. Deng [2] gave the recurrences or
explicit formulae for computing the Wiener indices of spiro and polyphenyl
hexagonal chains and established a relation between the Wiener indices of
a spiro hexagonal chain and its corresponding polyphenyl hexagonal chain.
Just as showed in [8], polyphenyls themselves and their derivatives have
extensive applications in organic synthesis, drug synthesis, heat exchanger,
etc. So, it is necessary to study the more general polygonal chains.

Motivated by the works of [7] and (8], the explicit expressions for the
expected value of the Wiener indices of two random polygonal chains (see
Figures 1-6, whether or not it is chemically realizable) are established in this
paper. Although our approach is similar to {7], there are two differences,
one is that we take the symmetric properties of the graph into account, this
makes the calculation and results more simpler. Another is that our results
not only recovered the previous works, but also generalized them. Based
on our result, one also can find that the polygonal chains which realize the
upper and lower bounds for the Wiener indices of polygonal chains with
n + 1 polygons, this topic usually attract many attentions in the field of
chemical graph theory.

The paper is organized as follows. In section 2, we will give two explicit
expressions for the expected value of the Wiener indices of two types of
random polygonal chains. In section 3, we will provide some applications
of our results.

2 The expected value of the Wiener indices
of random polygonal chains

In the following, we denote the length of a polygon in a polygonal chain by
A, the expected value of a random variant X by E(X).

A polygonal chain may be regarded as a graph of linearly concatenated
polygons(each of them has the same length A), in which the edges con-
necting polygons share no common vertex. The polygons chain for n =1
and n = 2 are depicted in Figures 1. More generally, a polygonal chain B,
with n polygons (see Figure 2) can be obtained by attaching a polygon to
B,,_1 which has n — 1 polygons by means of a new edge.
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Fig.1. The polygon chains with one and two polygons with A = 2k.

Fig.2. A polygon chain with n polygons and A = 2k.
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First, we consider the random polygonal chain with A = 2k. A ran-
dom polygonal chain is a polygonal chain obtained by stepwise addition
of terminal polygon, we denote it by RY if it has n polygons with length
A = 2k(k > 2). Furthermore, at each step m(3 < m < n) a random se-
lection is made from one of the k possible constructions(see Figure 3, and
the superscript i in Bj,,, indicates the distance of the two vertices in the
second last polygon with degree 3 is i: (1) B, — Bl +1 with probability p;;
(2) B — B2, with probability pa; - - - ; (3) Bm — BE} with probability
Pr~-1; (4) By — Bm+1 with probablhty 1—-py—p2— -~ pr_1. Here, we
suppose that the process described is a zeroth-order Markov process, which
means that the probability p;,ps,- - ,px—1 are constants and independent
on the step parameter m.

Theorem 1 The expected value of the Wiener index of the random polyg-
onal chain Rs.l) is
1) kal nd 3 5.2 3 2 3
E(W(R,},)) = +2(k3 + k¥)n? + = (9k + 6k? — kay))n + k
where
a1 =2k[2py +3p2 + -+ kpe—1+ (k+ 1)1 —pr —p2 — -+ — Pi—1))]

Proof. As described above, the polygonal chain B, is constructed by
adding a polygon to B,_; by means of a new edge. For this construction,
it can be proved that:

1. For any v € B,,_;, we have

d(z;,v) = d(un—1,v) +1, if 1<i<k
" d(Uun-1,v) +(2k+2—1), if k+1<i<2k
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Fig.3. The k types of local arrangements in polygon chains with A = 2k.

2. By has 2k(n — 1) vertices;
3. E?:l d(zi,z;) = k2,i € {1,2,--- ,2k}

From the above relations, one can derive that if 1 < i < k, then

d(tn—1|Bn-1) +1i x 2k x (n — 1) + k2, (1)
and if £k +1 <1 < 2k, then
d(tn—1|Ba-1) + (2k +2 — 1) x 2k x (n — 1) + k2. 2

It follows that

2k
W(Bn)=W(Bn-1)+Y. > dzyv)+ Y. dizi,z;)

t=1v€E€B, 1<i<ji<2k
2k 2k 2k

= W(Bn-1) + ) _ld(z:|Bn) Zd(x,,a:,)] + = Z Y d(zi,75)
i=1 i=1 t—l i=1

= W(Bp-1) + 2kd(tn_1]Bn_1) + 2k(k? + 2k)n — (k® + 4k2)
(3)

with the boundary condition W (Bg) = d(up|Bp) = 0. By substituting n
by n + 1, we have

W (Bnt1) = W(By) + 2kd(un|Byn) + 2k(k? + 2k)n + k3 (4)
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For a random chain RY’, the distance number d(un|R,(‘l)) is a random
variable and we denote its expected value by

Un = E(d(un|RYY))

There are k cases to consider for the random variable d(u,,|R$,l)):
Case 1. B, — B} . In this case, the vertex u, coincides with the vertex

labeled x5 or xzo, then, d(u,|By) is given by Eq.(1)with ¢ = 2.
Case 2. B, — B2, ,. In this case, the vertex u, coincides with the vertex

labeled z3 or zgk.—;, then, d(u,|By) is given by Eq.(1) with ¢ = 3.

Case k — 1. B, — BF} +1- In this case, the vertex u, coincides with the
vertex labeled zj or zx42, then, d(u,|By) is given by Eq.(1) with i = k.
Case k. B, — Bk n+1- In this case, the vertex u, coincides with the vertex
labeled x4 , then, d(u,|By) is given by Eq.(2) with ¢ =k + 1.

Since the above k cases occur with probabilities p,,ps, -, px—1 and
1—~py —pg — -+~ pr—1, respectively, we have

Un = p1[d(un—_1|RM ) + 22k - (n — 1) + k2] + pa[d(un_y |[RY ) + 3 2k
c(n=1)+ k% + -+ pr_1[d(@n1|RE,) + k- 2k - (n — 1) + &7

+ (1 =p1— - — pee1)[d(un-1|RL,) + (k +1) - 2k - (n — 1) + k?)
(5)

by taking the expectation operator to Eq.(5), the recursion formula for U,
can be written in the form of

Up=Uni+ain+b (6)
where
a1 = 2k[2p1+3p2+- - - +kpr—1+(k+1)(1=p1 —p2—- - - ~pr_1)], b1 = k2—a,3
with the boundary condition
Uo = E(d(uo| R”)) = 0 (7)
Eq.(6) and Eq.(7) imply that
U = 2+ (5 +b)n (8)

By applying the expectation operator to equation (4), and bearing Eq.(8)
in mind, we get

EW(R())) = E(W(RD)) + kain? + (kb + 3k® + 4k%)n + k°
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Fig.4. The polygon chains with one and two polygons with A = 2k + 1.
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Fig.5. A polygon chains with n polygons and A = 2k + 1.

yk+2

with the boundary condition E(W(R‘(,o))) = 0. The above recurrence rela-
tion and boundary condition establish that
EW(RY)) = %na +2(k3 + K%)n? + %(91&’ +6k2 — kay)n + k3

which completes the proof of Theorem 1. O
Next, we consider the random polygonal chain with A = 2k + 1 (see
Figures 4-6).
We use Rfﬁ,)_l to denote a random polygon chain whose construction
just like thl_i)_l, the only difference between them is that the length of each
polygon changes from 2k to 2k + 1(k > 1).

Theorem 2 The expected value of the Wiener index of the random polyg-
onal chain R,(,z) is

_ (2]6 + l)a,z
T 6

39k% 4+ 21k + 3 — (2k + 1)ag)n +

EW(RE))) n® + %(41:3 + 10k? + 6k + 1)n? + %[18k3+

(2k +1)(k% + k)
2

where ag = (2k+ 1)k +1— (k- 1)p1 — (k= 2)p2 — - - - — pi—1)-

Proof. The following relations follow from the construction of the polygon

chain C,,, which is similar to B,,, see Figures 4-6.

(9)

1. For any w € C,,_,, we have
d(ys,v) = d(sn—1,w) +1, if 1<i<k,
& d(sp-1,w)+ (2k+2—-1), if k+1<i<2k.
2. Cp—1 has (2k + 1)(n — 1) vertices;

3. Tostld(yi,y;) =k +k, i€ {1,2,-,2k2k+1}.
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Fig.6. The k types of local arrangements in polygon chains with
A=2k+1.

Hence we have if k + 1 < i < 2k, then
d(%:i|Cn) = d(sp~1|Cn-1) +ix (2k+1) x (n —1) + k2 + k
and if k +1 < i < 2k, then
d(8n-1]Cn-1) + 2k +2—8) x 2k +1) x (n —1)+ k2 + k

It follows that

W(Cr) = W(Cn_1)+(2k + 1)d(sp—1]|Cn-1) + (2k + 1) x
(2k + 1)(k2 + k) (10)
2

with the boundary condition W(Cp) = d(so|Cp) = 0. By replacing n by
n + 1, Eq.(10) becomes

W(Cny1) = W(Cr)+(2k + 1)d(8n|Cn) + (2k + 1) x
(2k + 1)(k% + k)
2

(k+2)(k+1)=1)(n—-1)+

[(k+2)(k+1)—-1n+

Eq.(9) can be obtained in a similar way as Theorem 1, so we omit the rest
of the proof. O

157



3 Applications

By using Theorems 1 and 2, one can find that the expected value of the
Wiener index of some familiar classes of random polygonal chains and the
corresponding extremal value.

1. For A = 6, the expected value of the Wiener index of random polyphenyl
chains can be found by Theorem 1

E(W(R())) = (24— 12p, — 6pa)n® + 720 + (75+ 12p; + 6pa)n +27 (11)
Eq.(11) has been reported by Yang and Zhang in (8]. If we express it as
E(W(RY)))) = 24n3 + 72n% 4 75n + 27 + (12p; + 6pz)n(—n? + 1)

then we can obtain the maximum value and the minimum value of the
Wiener index among all polyphenyl chains with n + 1 polygons at p;, =
0,p2 = 0 and p; = 1,p2 = 0, respectively, and the corresponding graphs
are polyphenyl ortho- and para-chains in [2], respectively.

2. For A = 5, the expected value of the Wiener index of random pentagonal
chains can be found by Theorem 2

25 85 , 1
EW(RZ ) = S B-p)n® + on® + 2270+ 25p)n +15 (12)

which was found recently in [9]. Similarly, Eq.(12) can be rearranged as

EW(RE ) = %n“ + 8?5 2430n+15+ gsémn(—nz +1)
the maximum value and the minimum value of the Wiener index among all

pentagonal chains with n + 1 polygons at p; = 0 and p; = 1, respectively.

3. For A = 7, the expected value of the Wiener index of random heptagonal
chains can be found by Theorem 2

49 253 1

E(W(RZ),)) = s @-2m - p2)n’ + —2—"2 + 5707+ 98p1 +49pg)n + 42
(13)

To the best of our knowledge, the result is new for heptagon chains. Eq.(13)
implies that
98 253 707 49
—nd + ——n?+ —n+ 424+ —(2p; + p2)n(—n% +1)
3 2 6 6
the maximum value and the minimum value of the Wiener index among all
heptagonal chains with n+ 1 polygons at p; = 0,p2 =0and py = 1,p, =0,
respectively.

EW(RE),)) =
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3. From Theorems 1 and 2, the asymptotic behaviors of E(W(Rf‘lll)) and
E(W(RZ)))) are given by

2k2
E(W(RS))) ~ 7[2111 +3pa+- +kpea+(k+1)1-—p1—p2—---

- pr—1)]n®

B EA) ~ ZEE 1 ks = (k= 22— = prca]n?

respectively, for n — oo, which are cubic in n.
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