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Abstract

The multiplicatively weighted Harary index (Ha-indez) is a new
distance-based graph invariant, which was introduced and studied by
Deng et al. in [Deng et al., J. Comb. Optim., DOI 10.1007/s10878-
013-9698-5]. For a connected graph G, the multiplicatively weighted

. . . da(u)dg(v
Harary index of G is defined as Hy(G) = ) J;T();%—l,

{u, v}SV(G)
where dg(z) denotes the degree of vertex z and dc(s, t) denotes the

distance between vertices s and ¢ in G. In this paper, we first study
a new vertex degree-based graph invariant My — %Ml, where M; and
M2 are ordinary Zagreb indices. We characterize the trees attaining
maximum value of Ay — %Ml among all trees of given order. As
applications, we obt:in a new proof of Deng et al.’s results on trees
with extremal Has-index among all trees of given order.
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1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G).
As usual, we use n to denote the order of a graph G, namely, the number
of vertices in V(G). For a graph G, we let dg(v) be the degree of a vertex
v in G. A vertex is said to be a pendent vertex if it is of degree one, and
is said to be a non-pendent vertex if it is of degree greater than or equal
to two. For each v € V((7), the set of neighbors of the vertex v is denoted
by Ng(v). The distance between two vertices u and v in G, namely, the
length of the shortest path between u and v is denoted by d¢(u, v). The
diameter of a graph G is the maximum distance hetween any two vertices
of G.

One of the oldest and well-studied distance-based graph invariants is
the Wiener number W(G), also termed as Wiener indez in chemical or
mathematical chemistry literature. Wiener index is defined [14] as the sum

of distances over all unordered vertex pairs in G, namely,
wW(G) = Y de(w,v).
{u,v}CV(G)

Dobrynin and Kochetova (6] and Gutman (7] independently introduced
a new graph invariant under the name degree distance or Schultz molecular
topological indez, which is defined for a nontrivial connected graph G as

follows:

DD(G) = > (do(u) +dg(v))da(u, v).
{w, v}CV(G)

In [8], Gutman and Klavzar defined modified Schultz molecular topolog-

ical inder as follows:

DD*(G) = Y. do(u)dg(v)de(u, v).
{v, v}SV(C)
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ular topological index arc degree-weight versions of the Wiener index. An-
other distance-based graph invariant, defined [12] in a fully analogous way
to Wiener index, is the Harary indez, which is equal to the sum of reciprocal
distances over all unordered vertex pairs in G, that is,

1

H(©) = T, v)’

{1, 9}CV(G)
Hua and Zhang [9] introduced a new graph invariant named reciprocal
degree distance, which can be seen as a degree-weight version of Harary
index, that is,
de(u) + de(v)

RDD(G) = do(u, v)

{u,v}CV(G)
Recently, Alizadeh et al. [1] defined additively weighted Harary index
(the same as the reciprocal degree distance) and was further studied by
Deng et al. More precisely, Deng et al. [5] introduced another degree-weight
version of Harary index, called multiplicatively weighted Harary index, of
G, which is defined as
de(u)de(v)

o - 2

{w,v}CV(G)

In [5], Deng et al. determined the extremal values of the multiplicatively
weighted Harary index for trees and unicyclic graphs and characterized the
corresponding extremal graphs among all trees and unicyclic graphs of given
order, respectively.

In this paper, we aim to give a new proof of Deng et al.’s results on
multiplicatively weighted Harary index of trees. We first study a new vertex
degree-based graph invariant My — 3 M), where M, and M, are ordinary
Zagreb indices. We characterize the trees attaining maximum values of
M,y — %M; among all trces of given order. As applications, we obtain a
new proof of Deng et al.’s results on trees with extremal Hys-index among

all trees of given order. Qur method relys on structure analysis and avoids
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Before proceeding, we introduce some further notation and terminology.
A connected graph is said to be a tree if the number of edges in it is equal
to its number of vertices minus one. As usual, we denote by P, the path
of order n. Denote by S, 5 (a, b > 1), a double star which is constructed
by joining the central vertices of two stars S,+; and Spy;. Other notation

and terminology not defined here will conform to those in [3].

2 Extremal value of H)s-index for trees

Till now, hundreds of different graph invariants have been employed in
QSAR/QSPR studies, some of which have been proved to be successful (see
(13]). Among those successful invariants, there are two invariants called the
first Zagreb index and the second Zagreb indez (see (4, 10, 11]), defined as

Mi(G)= Y (do(w)? and Ma(G)= Y dg(u)da(v),

ueV(G) uv€E(G)

respectively.
Recall that the second Zagreb coindez of a nontrival graph G, which is
defined by Ashrafi et al. [2] as

My(G)= ) de(u)dg(v).
wgE(G)

The following result reveals the relationship between the second Zagreb

coindex and Zagreb indices.
Lemma 1 ([2]). If G is « nontrivial graph of size m, then
My(C) = 2m? — My(G) — %MI(G).

Now, we present a sharp upper bound for multiplicatively weighted

Harary index in terms of Zagreb indices.

Proposition 1. If G is « nontrivial connected graph of size m, then

Hy(6) < m? + 3 (Ma(G) - 5M1(G)) (1)
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Proof. By the definition of the multiplicatively weighted Harary index and

Lemma 1,
Hu(@) = Y —-——dfi(:()zcv(;’ )

{v, v}CV(G)

Y dolwde®+5 Y do(uda(v)

we EB(Q) ww@E(G)

1—
= My(G)+ “2'M2(G)

IA

= M(G)+ %(27712 ~ My(G) — -;-M,(G))
= m?+ %(Mg(G) - -;-MI(G)).
It is easy to check the equality case in (1). This completes the proof. O
By Proposition 1, we first investigate upper bounds for Mz(G)— —;-M 1(G)
among trees of given order.
2.1 Extremal value of M(G) — $M1(G)
We first prove a result nceded in our following proof.

Lemma 2. IfT is a tree of order n > 3 and z is a pendent vertez adjacent

to a non-pendent vertez y in T such that
Yo dr(e)=min{ Y dr(z):dr(z) =1,dr(y) 2 2,
z€NT(Y\{z} 2 eNp (' N\ {z'}
z'y € B(T)},

then

>, dr(z)<n-2

zeNT(y)\{z}
with equality if and only if T = S, or Sgp(a+b=n—-2,4a,b>1).
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Proof. If T = S, or S, 4, then

min{ Z dT(z') cdp(z) =1,dr(y) > 2,7y € E(T)} =n-2,
2’ €NT(y' )\{z'}
and the result holds readily.
Suppose now that T 2 S,, S, ». In particular, we have T % P, P,.
We will show that

min{ Y. dr(z):dr(z)=1,dr(y) 22,2y € E(T)} <n-2.
2'eNr (¥’ )\ {z'}

If T = P,(n > 5), then

min{ Y. dr(z):dr(z) =1Ldr(y) 222y € E(T)} =2<n-2
2 eNr(y' )\='}
as desired.

So we may assume that T 2 P,(n > 5). Obviously, T has at least two
non-pendent vertices, say u and v, each of which is adjacent to at least a
pendent vertex. Assume that the statement of lemma is not true. At the
same time, we let = and y be pendent vertices in T which are adjacent to
non-pendent vertices u and v, respectively. By our assumption, we have

dr(s) >n -2 and > dp(t)=n-2.
seNT(u)\{z} teNr (v)\{y}
Since T is a tree, u and v have at most one common neighbor. When

and v have no common neighbors, since T % S, p(a+b=n—-2,a, b > 1),
then T has at least £(2(n —2)+2+dp(u)+d7(v)] > n edges, a contradiction
to the fact that T is a tree. So, we may assume that u and v have exactly
one common neighbor, suy w. Then T has at least §[2(n—2)+2 —d7(w) +

dp(u) + dr(v) + > dr(2)] 2 3[2(n - 2) + 2 — dr(w) + dr(u) +
2€ Ny (w)\ {2, v}

dr(v) + dr(w) — 2] > %[2(71 - 2)+2 —dp(w) + 4 + dp(w) — 2] = n edges,
a contradiction once again.

This completes the proof. O

Using Lemma 2, we are able to characterize trees with the maximum
value of Mz(G) - %Ml(G)
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Theorem 1. Let T be o nontrivial tree of order n. Then
1 1
My(T) - '2'M1(T) < '2‘(" -1)(n-2) (2)
with equality if and only if T = S, or S;p(a+b=n—-2,a,b2>1).

Proof. When n = 2 or 3, the theorem is obviously true. So, we assume
that n > 4 in the following discussion. We shall complete the proof by
induction on n. Assume that the theorem is true for smaller values of n.

Choose z to be a pendent vertex adjacent to a non-pendent vertex y in T

such that

Yo dr(z=min{ > dr(z):dr(z) =1,dr(¥) 22,

2€NT(¥)\{z} 2 €Np(y')\(='}
Ty € E(T)}.
By Lemma 2, > dr(z) <n -2
z€NT{y)\{=}

Now, we have
1 1 1
My(T) - §M1 (T) = dr(y)+ My(T —z) - §M1(T -z)— E(dT(y))2 +

1 1
5(dr-2(v))* - 3t > dr(y)dr(z) -
- yz€E(T), z#z

> (dr(y) - 1)dr(2)

yz€E(T), z#z
1 1
= dp(y) — 3 + Mo(T —z) - EMI(T —z)+

S dr(e) - (@) + ldr-ew))?

sENT(Y\(=}
1 1
< dr(y) - 5t 5(” —2)(n-3)+ Z dr(z) -
zENT(Y)\{=}
= (dr( ))2+-1-(d (1)—1)2 3
5(dr(y 5 \9r(y (3)
(using induction hypothesis)
1
= g=2(n=3)+ Y dr(2)
z€N7(¥)\{z}
1
< 5(n—2)(n—3)+(n—2)=-;—(n—1)(n—-2). (4)
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So, we have proved (2). Now, we check the equality case. Suppose
that the equality in (2) is attained. Then both equalities in (3) and
(4) are attained together. Thus, My(T — z) — IM(T — z) = %(n -

2)(n — 3) and > dr(z) = n — 2. By induction assumption, T —
zeNT(y)\{=}
z =2 SpyorSea(c+d =n—-3,¢,d > 1). Moreover, by Lemma 2,

> dr(z) =n—2impliesthat T = §,, or Sp q(p+g=n-2,p, ¢ >
z€Nr(y)\{z}
1). Summarizing above, we have T = S, or Sy s (e +b=n—2,a, b > 1).

Conversely, if T2 S, or S, (a+b=n—2, a, b > 1), then the equality in
(2) is obviously attained.
This completes the proof. O

2.2 Applications to trees with extremal Hj-index

Now, we using Theorem 1 to deduce result on Hjs-index of trees by Deng
et al. in [5].

Corollary 1 ([5], Theorem 8). IfT is a nontrivial tree of order n, then
Hy(T) < %(5n2 —11n+6) (5)
with equality if and only if G =2 S,.
Proof. By Proposition 1 and Theorem 1, we have
s 1 1
Hu(D) < (n=1)2+(Ma(T) - 5Mu(T)) (6)

< (=14 (=1 -2) ©

:11-(5712 —11n + 6).

Now, we check the equality case in (5). Suppose that the equality in
(5) is attained. Then both equalities in (6) and (7) are attained together.
Since any double star has diameter three, by Proposition 1 and Theorem 1,
T = S,. Conversely, if T = S, the equality in (5) is attained. This
completes the proof. O
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