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Abstract
In this paper we introduce a special (k; A, k2Az2,k3A3) - edge
colouring of a graph. We shall show that for special graphs and spe-
cial values of k;, i = 1, 2,3 the number of such colourings generalizes
the well-known Pell numbers. Using this graph interpretation we
give the direct formula for the generalized Pell numbers. Moreover
we show some identities for these numbers.
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1 Introduction and preliminary results

In general we use the standard terminology and notation of the combina-
torics and the graph theory, see [2], [3]. The nth Fibonacci number F;, is
defined by Fo = F; =1 and F,, = F,_1 + Fy_2, for n > 2. Actually the Fi-
bonacci numbers are studied intensively in a wide sense also in graphs and
different combinatorial problems. This interest in mathematical problems
is motivated by applications from other branches of science, for example in
modern theoretical physics and combinatorial chemistry, see [4], [5].

In general numbers defined recursively by the linear recurrence re-
lation are also named as numbers of Fibonacci type and these recursions
appear almost everywhere in mathematics and computer science. Apart
the Fibonacci numbers, the well-known are the Pell numbers P, defined by
P, =2P,_| + P,_s, for n > 2 with the initial conditions Py =0, P, = 1.

In the mathematical literature there are many generalizations of the
Pell numbers with respect to one or more parameters, see for example [6],
(7], [8], [9], [10]. In this paper we introduce a one-parameter generalization
of the Pell numbers in the distance sense, i.e generalization by the kth order
linear recurrence relation.
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. Let £ > 1, n > 0 be integers. By a (2, k)-distance Pell numbers
PO (k,n) of the i-th kind, i = 1,2, we mean generalized Pell numbers
defined recursively by the following relation:

PO (k,n) = 2P (k,n—k)+ PD(k,n—2) for n>k (1)

with the following initial conditions P(®(k,0) = 0, P()(k,1) = 1 and for
2<n<k~-1:

POk ={ ] [ nlom wma PO -1

It is worth to mention that this type of generalized Pell numbers is
motivated by (2, k)-distance Fibonacci numbers and (2, k)-distance Lucas
numbers which were introduced and studied in [1], [11].

The following tables include initial terms of the distance Pell se-
quences P()(k,n), i = 1,2, for special values of k and n.

Tab.1. The distance Pell numbers P()(k,n) of the first order

n OJ1[2]3] 4] 656 7 8 9 10 11 12
PYa,myJof1]2]s]12] 20|70 160 | 408 | 085 | 2378 | 5741 | 13860
Pl@enyoli1Jo]3]Jof[o] ol 27 0 81 0 273 0
PY@nylofl1Jof[1] 2 1 4 5 6 13 16 25 42
PY@4,nyJoJ1]of1] o] 3]o 5 0 11 0 21 0
PYsnyfol1]o|1] o 1 2 1 4 1 6 5 8
Phenylol1]o|[1] 0 1 0 3 0 5 0 7 0
PYUaylol1]ola1] o 1 0 1 2 1 4 1 6

Tab.2. The distance Pell numbers P{?(k,n) of the second order

n 0]1]2[3] 4] 516 7 8 9 10 11 12
PO90,n)y o] 1] 2]5]12]20] 70 ] 169 | 408 | 985 | 2378 | 5741 [ 13860
P02 [o]1[1]3] 3 9 9 27 27 81 81 273 273
PGBy lof1f1]1fj3] 3]s 9 11 | 19 29 41 67
P4 qa) fo]1 1|1} 1 [ 373 5 5 11 11 21 21
P96, n) Jol1 1111 ]37 3 5 5 7 11 13
Pe@6,ny o111 1 1 1 3 3 5 5 7 7
Pé,ny [o]J1]1]1]1 1 1 1 3 3 5 5 7

It is easy to observe that for i = 1,2 the number P(¥)(1, n) generalizes
the classical Pell numbers, i.e for all n > 0 we have

PY(1,n) = PA(1,n) = P,.
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Moreover, for k = 4, we get another numbers of the Fibonacci type, namely
the Jacobsthal numbers J,, defined by J,, = J,,_; + 2J,_2 for n > 2 with
Jo=J; =1. For all n > 2 we have

0 if niseven
) = ’
P (4,n) = { J"igs if nisodd,

and P (4,n) = PA(4,n+1) = Jugs  for n odd.

The following theorem shows the relation between numbers P(®)(k, n)
fori=1,2.

Theorem 1 Let k > 2, n > 1 be integers. Then
PA(k,n) = PO (k,n) + PD(k,n—1).

Proof. Letn=1,2,...,k—1. For k = 2 the result is obvious. If £ > 3 then
from initial conditions for P(!)(k,n) and P(® (k,n) we have that P(¥(k,t) =
PO (k,t) + PW(k,t — 1) = 1. Assume now that n > k — 1 and that the
equality

P®(k,t) = PY(k,t) + PO (k,t — 1)
holds for all integers k < ¢t < n. We shall prove that it is true for integer
t =n+ 1. Using (1) and induction’s assumption we obtain that

PO(k,n+1)=2PD(k,n+1—k)+POk,n-1)=
=2(PM(k,n+1—k)+PPDk,n—k)) +PO(k,n—-1)+

+PD(k,n - 2) = PO(k,n+1-k)+ PD(k,n—1)+ P (k,n — k)+
+PW(k,n - 2) = PO (k,n+1) + P (k,n),

which ends the proof. ]

In this paper we give the graph interpretation of this two types of
(2, k)-distance Pell numbers with respect to a special edge colouring of a
graph. Next using these interpretations we obtain the direct formula for
them. We also generalize some results given in [8].

2 (k1A koAs, k3A3) - edge colouring by mono-
chromatic paths in graph

Let G be an edge coloured graph with the set of colours {4,, A2, As}. Let
1 € {A1, A2, A3}. We say that a subgraph of G is 7-monochromatic if all
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its edges are coloured alike by colour . By I(n) we denote the length of
the n-monochromatic path and for zy € E(G) notation n(zy) means the
colour 7 of this edge.

Let k; 2 1, i = 1,2,3, be integers. We define a (k1 A), ko A2, k3Ajz)-
edge colouring by monochromatic paths in a graph G in such a way that
every maximal (with respect to set inclusion) A;-monochromatic subgraph
of G can be partitioned into edge-disjoint paths of the length k;, ¢ = 1,2, 3.
This type of edge-colouring of a graph generalizes edge-colouring introduced
and studied by K. Piejko and I. Wloch in (8].

In this paper we consider a special case of a (k1A,, koAa, k3 Az)-edge
colouring by monochromatic paths putting k; = ko =k, k > 2, and k3 = 2.
We will derive a formula for the number of all (kA;, kA2, 2A3)-edge colour-
ings by monochromatic paths of path P,. The number of (kA,, kA3, 243)-
edge colourings by monochromatic paths is closely related to (2, k)-distance
Pell numbers P (k,n), i = 1,2.

Theorem 2 Let k > 1, n > 2 be integers. The number of all (kA;,kA2,2A3)-
edge colourings by monochromatic paths of the graph P, is equal to P(*)(k, n).

Proof. Let V(Pyp) be the set of vertices of a graph P, with the numbering
in the natural fashion. Then the set of edges of this graph is E(P,) =
{z172,Zz2%3, ..., Tn—1Zn}. Let us denote the number of all (kA,, kA3, 2A3)-
edge colourings by monochromatic paths of the graph P, by o(k,n). By
inspection we can verify that o(k,n) = PO (k,n) for n = 2,...,k + 2.
Let now n > k + 3. We denote by 04,(k,n), 04,(k,n), 0a,(k,n), the
number of (kA;, kA, 2A3)-edge colourings by monochromatic paths of the
graph P, for which n(z,_1z,) = A1, N(Tn—1Zn) = Az, N(zn—12n) = A3,
respectively. It is obvious that o 4, (k, n), 04, (k, n) are equal to the number
of all (kA,, kAz, 2A3)-edge colourings by monochromatic paths of the graph
Prn-ir and oa,(k,n) is equal to the number of all (kA;, kA2, 2A43)-edge
colourings by monochromatic paths of the graph P,_» . This means that
o4, (k,n) =0(k,n—k),0a,(k,n) =0c(k,n—k) and 6 4,(k,n) = o(k,n—2).
Consequently

o(k,n) =04,(k,n) +0a,(k,n)+04,(k,n)
and therefore we get
o(k,n) =20(k,n —k) +o(k,n-2).
Having regard to the initial conditions we observe that
o(k,n) = PM(k,n)

for all n > 2. The proof is thus completed. m]

186



Corollary 1 For all integer n > 2 the number of all (A;, Aa,2A3)-edge
colourings of the graph P, is equal to P,.

In the same manner as Theorem 2 we can prove the following theorem.

Theorem 3 Let k > 2, n > 2 be integers. The number of all (kA;, kA2, 2A3)-
edge colourings by monochromatic paths of the graph P, in which the last
edge may be uncoloured is equal to P (k,n).

This graph interpretation gives a tools to obtain the direct formula
for (2, k)-distance Pell numbers. Since they are given by the kth order
linear recurrence relation, so for an arbitrary k& > 2 the classical methods
can not be used.

Firstly we need some preliminary results. Consider an arbitrary edge-
colouring by monochromatic paths of the graph P,, using colours A4,, Ay, A3
where exactly ¢t edges, ¢ > 0 are coloured by colours A; or Az and others
edges have the colour A;. Let 04,(n,t) denote the number of all such
edge-colourings. Then we have

Theorem 4 Let n > 2 and 0 <t < n—1 be integers. Then

oag(nt) = ("; 1)2*.

Proof. Let us note that the graph P,, has n — 1 edges. Therefore if ¢t = 0,
then there is only one possibility of such edge-colouring of the graph P,,,
namely all edges of P, have the colour A3. Then we have 04,(n,0) =1 =
("5 1) 20, If ¢ > 1, then there is (":1) possibilities of choosing of t edges that
will be coloured by colours A; or As. Let us consider such singular choice
of t edges. There is 2° manners of locations of colours A; or A, in these ¢
places. Thus the number o 4,(n,t) is equal to (":l) 2t, what completes the
proof. O

Letk>1,n>20<t< I_"T'lj be integers and let og4,(n, k,t)
denote the number of (kA;, kA2, 2A3) - edge colourings by monochromatic
paths of the graph P, such that there are exactly ¢ monochromatic paths
coloured by A;, i = 1,2. Then t;1k edges of P, have colour A;, t2k edges
have colour A, where t; + t = t and other n — 1 — tk edges are coloured
by colour Ag. Clearly g24,(n, k,t) > 0if n — 1 — tk is even.

Theorem 5 Letn > 2,0 <t <n—1 be integers and n — 1 — t be even.
Then
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t n—1+t
OA, (_n +21 + ,t) =024,(n, 1,t) = ( : )2"

Proof. Let us consider the graph P, with the (A4;, A2, 2A3)-edge colouring
by monochromatic paths. Then we can observe that 024,(n,1,t) is equal
to the number of (A;, Az, A3)-edge colourings of the graph P _nsi=t by
monochromatic paths, where exactly t edges, ¢ > 0 have the colour A, or
Az and other edges are coloured by colour As. Using Theorem 4 the proof
is completed. O

By Theorem 5 we obtain

Corollary 2 Letn > 2 and 0 <t <n—1 be integers. Then

n—1+4t t . .
£ — (T77)2 if n—1-t iseven
024,(n, 1, %) { 0 if n—1-t is odd.

Theorem 6 Let k > 1, n > 2, 0 < t < [2l] be integers. For all
$=0,1,2,...,k — 1 we have o04,(n,k,t) = 094,(n —ts, k ~ s,t).

Proof. Consider a (kA;, kA2, 2A3)-edge colouring by monochromatic paths
of a graph P,. Let a be a partition of the set F(P,) into edge-disjoint
A; monochromatic paths of length &k for ¢ = 1,2 or 2 for i = 3, respec-
tively. Assume that there are ¢ monochromatic paths of the length k in
this partition, then 0 <¢ < |2F1].

If every A;-monochromatic path of the length k, i = 1,2, is shorted
to a monochromatic path of the length ¥ — s then we obtain the graph
Pr—ts such that ¢(k — s) edges are coloured by A; or A; and the number of
edges coloured by Aj is the same as in the starting graph. Thus the desired
equality follows which ends the proof. O

For the number 024, (n, k, t) we can give the recurrence and the direct
formula using the previous results.

Corollary 3 Letk>1,n>2,0<t < |2L) be integers. Then

(i) 0245 (n, k, t) = 02A3([ - t(’;:k—zl).]) 1,¢),

. _ (§ n-1-t )2t if n—-1-—t(k—2) is even,
() oza0(n k1) { if n—-1-t(k—2) is odd.

The next theorem gives the direct formula for the numbers P!)(k, n).
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Theorem 7 Let k> 1, n>2, 0 <t < |222] be integers. Then

( 0 for even k and even n,
122)
(it =2yt for even k and odd n,
=0
(1) ={ L3z
PP(kin) = Y, (Hmmr- 2=y for odd k and odd n,
=0
L%
TZF (%["_l'gi_"il)(k'z)])22'+l for odd k and even n.
\ =0

Proof. Let us recall that Y o24,(n,k,t) is equal to the number of all
>0

(kA1,kAz,2A3)-edge colouri;lgs of the graph P,, by monochromatic paths.
In view of Theorem 2 we have Z 024, (n, k,t) = PM)(k,n) where 024, (n, k, t)

is given in the equality (ii) of Corollary 3.

Note first that ¢ as a number of paths of the length & in the partition
of Pn, can be at most |2z1]. The number f[n — 1 — ¢t(k — 2)] has to be
integer and consequently n — 1 — t(k — 2) has to be even.

Note that for every even n and even k the number n — 1 —¢(k —2) is
odd for all values of ¢ > 0. Therefore by Corollary 3 we have that

L=

PN(k,n) = Y 0244(n,k,2) =0
=0

for even k and even n. If k is even and n is odd then n — 1 — t(k — 2) is
even for all ¢ > 0. Thus we have

pOiny = l"fl <%[n -1k 2)]) "

=0

Now let us consider the case when k and n are both odd. Then the number
n —1—1t(k —2) is even only if t is even and consequently

n-1

PW(k,n) = l_zk:-J (%lﬂ—l—tt(k—2)])2t___

t=0, t even

L) o, _—
=3 (5('1 12?( )])221_

=0

-~

Finally, if k is odd and n is even, then the number n — 1 — t(k — 2) is even
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only if t is odd. Then we have that

n-—1

POk = ¥ (Heoipealy

t=0, t odd
L35
= =1-(2+1)(k-2)]y 92141
= z;; (%[" @ ])2 +1
The proof is thus completed. ]

Note that putting £ = 1 in Theorem 7 we obtain the following direct
formula for nth Pell number i.e

n—1
(- 1+0Yol i s odd,
P = {1=0, l even
n = n—1
(’}("_ll+l))2l if n is even.
=1, 1 0dd

Using Theorems 1 and 7 we can also give the direct formula for the numbers
PO (k,n).

Theorem 8 Let k> 1,n >3, 0<t < |2L| be integers. Then

> @ n-2-1(k-2)]) 9t for even k and even n,
=0
L2

E (%["-1 (k- 2)1) ol for even k and odd n,

n—l

lZJ ( l—2l(k—2)])221 +

P(2)(k,n) = { =l" 2

—z"_ (R=2-@D=2D92141 for odd k and odd n,

O

( !ﬂ—2—2l(k 2)])221 +

gtﬂﬁn~

n

l‘rrJ
+ > (2 ["_l-g_"_"il)(k"z)])22’+1 for odd k and even n.
\ {20
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