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Abstract

The entire chromatic number x.(G) of a plane graph G(V, E, F)
is the minimum number of colors such that any two distinct adjacent
or incident elements receive different colors in V(G) U E(G) U F(G).
A plane graph G is called a 1-tree if there is a vertex u € V(G) such
that G — u is a forest. In the paper, it is proved that if G is a 2-
connected 1-tree with A(G) > 6, then the entire chromatic number
of G is A(G) + 1, where A(G) is the maximum degree of G.
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1 Introduction

In this paper, In this paper,all graphs are all simple plane graphs. Let
G(V,E, F) be a plane graph, where V(G), E(G), F(G), |G|, A(G) and
0(G) are the vertex set,the edge set, the face set, the size, the maximum
degree and the minimum degree of G, respectively. We use Ng(u) to denote
the neighbor set of a vertex u in G and d(v) = |Ng(u)| to denote the degree
of v. A k-vertex in a graph G is a vertex of degree k. Let Vi(G) denote
the set of all k-vertices in G, where £ = 0,1,--- , A(G). Two vertices in
V(G) are adjacent if they are joined by an edge, two edges in E(G) are
adjacent if they have a common vertex and two faces in F(G) are adjacent
if their boundaries have at least one common edge. We say that a vertex(
an edge) is incident with a face if it forms a part of the boundary of the
face. Also the vertices u and v are incident with the edge uv. A k-face is
a face incident with k vertices. The other definitions and notations can be
found in [1].
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Definition 1.1. A plane graph G is called a 1-tree if there is a vertex
u € V(G) such that G — u is a forest, where u is called a croun of G.
Clearly a tree must be a l-tree. If a l-tree G is not a tree, we call G a
proper 1-tree.

Definition 1.2. A plane graph G(V, E, F) is k-total (entire) colorable if the
elements of V(G)UE(G)(V(G)UE(G)UF(G)) can be colored with k colors
such that any two distinct adjacent or incident elements receive different
colors. The total (entire) chromatic number x7(G)(x(G)) is defined as the
minimum number k for which G is k-total (entire) colorable.

In 1973, Kronk and Mitchem (6] posed the following conjecture(ECC):
Conjecture 1. For every plane graph G, A(G) +1 < x.(G) < A(G) + 4.

The conjecture was proved for A < 3[6], A =4 or 5 [11], A = 6[8] and
A > 7[3]. So the conjecture has been proved completely. In fact when the
maximum degree is very large this upper bound can be reduced. Borodin |2]
proved x.(G) £ A(G) +2 for any plane graph G having A(G) > 12. Zhang
et al. [18] proved that a 2-connected outerplane graph G with A(G) > 7
has the entire chromatic number A(G) + 1. Wang [13| improved the result
to A(G) > 6. Borodin and Woodall [4] proved that an outerplane graph
G with A(G) > 6 satisfies x.(G) = A(G) + 1 or A(G) + 2 according as G
does or does not possess a special matching. Other related papers can be
found in [7, 14, 9, 12, 13, 15, 16, 17, 18]. This paper will prove that if G is
a 2-connected 1-tree with A(G) > 6, then the entire chromatic number of
Gis A(G) + 1.

2 A property of 2-connected 1-trees

First, we introduce some useful lemmas. »
Lemma 2.1. [10] If F is a forest, then |V1(F)| 2 A(F).
Lemma 2.2. [10] If G is a 1-tree, then 6(G) < 2.

Let T be a tree with A(T") > 2. A vertex v of T with dr(v) > 2 is called
a sub-pendent vertex if v is adjacent to at most one vertex of degree at
least 2. Let S(T') denote the set of all sub-pendent vertices of T. We have

S(T) = |J V(T -Vi(D)).
0<i<1

Let Qp denote a plane graph of order p with vertices u, v, 71, z2, ---,
Tp—2 and the edges uzi, uzz, -+, UTp-z, VI, VT2, -* -, VIp_2, and let
Qp = Qp+uv. Then A(Qp) =p—2and A(Q,)=p-1.
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Lemma 2.3. [10] If G is a tree with A(T) 2 2, then |S(T)| = 1. Moreover,
|S(T)| =1 iff T is a star, that is, T = K pc)-1-

Lemma 2.4. If G is a 2-connected 1-tree with A(G) > 3, then at least one
of the following results holds.

(1) Ge{Qp, Qpp=3,4,..}.

(2) There are two adjacent 2-vertices T and u;

(3) There is a 4-face uzvy such that xy € E(G), dg(u) = dg(v) = 2,
de(y) = A(G) and 3 < dg(z) < [2GH;

(4) There is a 3-face uzy such that dg(u) =2, de(z) =3 and de(y) =
A(G);

((5)) There are two adjacent 3-faces uzy and vry such that dg(u) =

de(v) = 2, do(y) = A(G) and 4 < dg(z) < [AGEL);

(6) There is a a 4-face uzvy adjacent to 3-face uzy such that dg(u) =
dg(v) = 2, de(y) = A(G) and 4 < dg(z) < [2LQEL).

Proof. Let y be acrown of G and T = G —y. Then T is a tree. Since G
is a 2-connected, §(G) < 2, A(T) > 2 and Vi(T") C Ng(y). By lemma 2.1,
we have dg(y) = A(G).

Suppose that T" has only one vertex of degree at least 2, that is, |S(T)| =
1, then T = K ,g)—1 by Lemma 2.3. Let S(T) = {w}. If yw ¢ E(G),
then G & Qp; otherwise G = Q,,. This implies that (1) holds for G. So in
the following, we assume that |S(T")| > 2.

Let = be a vertex in S(T') such that dr(z) = min{dr(z)|z € S(T)}. It
follow from |S(T)| > 2 and the minimality of z that dg(z) < [2€Q*!] <

[£€+1] We consider the following cases.

Case 1. zy € E(G).

If dr(z) = 2, then there exists a vertex u € Vi(T)(Ne(z)(\ Ne(y)
such that de(u) = 2, which implies that (2) holds. Otherwise, there exists
two vertices v, v € Vi(T) () N(z) such that dg(u) = dg(v) = 2 and u, z,v,y
form a 4-face, which implies that (3) holds.

Case 2. zy € E(G).

Then dg(z) > 3, and there exists a vertex u € Vi(T) (| Ne(z) N Na(y)
such that dg(u) = 2 and u,z,y form a 3-face. If dg(z) = 3, then (4)
holds. Otherwise, dg(z) > 4. If zy is incident with two 3-faces, then (5)
holds. Otherwise, there exists a vertex v € Vi(T) [ Ng(z) [ Ne(y) such
that dg(v) = 2 and u, z, v,y form a 4-face, which implies (6). (]
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3 The main results

Given an entire coloring o of a plane graph G, we use z, denote the set of
colors which are colored on the vertex = and its incident edges.

Lemma 3.1. [18] For fan Fy, with p > 6, we have x.(Fp) = p.
Lemma 3.2. [5] Let C,, be a cycle of length n. We have

_ {3, if n = 0(mod3);
xr(Cn) = { 4, ifn>3 and n # 0(mod3).

Lemma 3.3. If G € {Q,,Q, : p > 4}, then
6, ifG S {941?4’ QE,QG},
x(G)=4¢ 7

, if G € {Qs,Q6},
AG) +1,  ifp>T.

Proof. The proof of the case p £ 6 can be seen in Figure 1, we omit the
detail here. So we assume that p > 7. Let ¢ = p—2. we will give a (A(G)+
1)-entire coloring o of G: V(G)UE(G)UF(G) —» C ={1,2,--- ,A(G) + 1}
as follows.

Suppose that G & Q, for some p(p > 7). Then A(G) =gq. Let o(u) =
o(v) = g+ 1, and for any i(1 £ i < q), o(ux;) =4, olvz;) = i + 1,
o(zi) =1+ 2, 0(fuzivziy,) =i + 4, 0(four) = 4,where all the subscripts in
the paper are taken modulo g.
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Suppose that G 2 @, for some p(p > 7). Then A(G) = g+ 1. Without
loss of generality, assume that u,v,z; form a triangle. Let o(uv) = ¢ + 2,
o) =q+1,0(v) =1, o(uz)) = i1 S i < g), ovz) = i + 11 < i < q),
0'(27,') = q+2(1 <i< Q)) U(fuva:,) =3, o-(fuz;ua:.-.,.;) =i+3,i=1,..,4—-3,
o'(fu:q_zu::q_g) =2, a(fuzq_lvxq) =3 and U(fout) =4.

Hence, we get an entire coloring of G, and we complete the proof of the
lemma. O

Lemma 3.4. Let G be a 2-connected 1-tree and A(G) = 2. Then x(G) <
6.

Proof. Since G is 2-connected, G is a cycle and it is very easy to check that
the result holds. 0

Theorem 3.5. Let t be an integer at least 7 and G be a 2-connected 1-tree
with A(G) < t. x.(G) < t.

Proof. The proof is carried out by induction on |V (G)|+|E(G)|. If |[V(G)|+
|E(G)| < 8, then G = K3 or C4, and the result is obvious. Let G be a
2-connected 1-tree with |V(G)| + |E(G)| 2 9. In the following, we shall
construct a new 2-connected l-tree G’ from G with |V(G')| + |E(G')| <
IV(G)| + |E(G)| and A(G’) < t. By the induction hypothesis, we extend a
t-entire coloring ¢ of G’ to an entire coloring ¢ of G with ¢ colors, and we
complete the proof of the theorem.

Let S = {1,2,...,t}. Note that [2{*+] < [t41] < ¢ — 3. By Lemma
3.4, we assume that A(G) > 3. By Lemma 3.3 and Lemma 2.4, we just
consider the following cases.

Case 1. There are two adjacent 2-vertices u and v.

Let N(u) = {u3,v}, N(v) = {v1,u} and fi, f> be the two faces incident
with uv. Now we construct G’ by setting G' = G — u + uyv. Then G' is
a 2-connected 1-tree. Giving a t-entire coloring ¢ of G’, we color the rest ele-
ments of G by letting p(uu1) = $(u1v), 9(u) € S\{p(u1), $(u10), 6(v), (f1),
#(f2)}, p(uv) € S\{@(vv1), p(u), ¢(u1v), $(v), #(f1), ¢(f2)}-

Case 2. There is a 4-face f = uzvy such that zy € E(G), dg(u) = de(v) =
2, do(y) = A(G) and 3 < do(z) < [HPH.

Let fi, fo be the two faces adjacent to f such that f; is incident with
u. We construct G’ by setting G’ = G — u + zy. Then G’ has a t-entire
coloring ¢. Since [ﬂ%ﬂ] <t-3, x4 <t-2 (note ¢(zy) € T5). We
color the rest elements of G according to the following steps: First, let
p(uy) = ¢(zy). Then, if ¢(zy) # ¢(f2), then p(zv) = (zy) and p(zu) =
¢(zv); otherwise, if ¢(fi) € zy4, then let p(zv) = ¢(zv) and @(zu) €
S\(z¢ U {¢(f)}; otherwise, if ¢(vy) # &(f1), then p(zv) = ¢(f1) and
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p(ru) = ¢(xv); otherwise, let p(zv) € S\(z4U {#(f1)} and p(zu) = ¢(zv).
Finally, we recolor v and color u.

Case 3. There is a 3-face f = uvw such that dg(u) = 2, dg(v) = 3 and
de(w) = A(G).

We use f1, f2 to denote the two faces adjacent to f such that f; is inci-
dent with u. Let G' = G—u, {v'} = Ng(v)\{u,w} and S’ = S\{¢(f1), ws}.
We color the rest elements of G according to the following steps: If S’ #
@, then p(wu) € S’ and p(vw) = ¢(vw); otherwise, p(wr) = ¢(wv)
and p(vw) = ¢(f1). ©(f) € S\{d(v), d(w), d(f1), #(f2), p(vw), p(uw)},
p(uw) € S\{p(f), d(f1), d(v), p(uw), p(vw), d(vv)}, ¢(u) € S\{p(f),
¢(f1), (v), p(w), p(uw), v(uv)}.

Case 4. There are two adjacent 3-faces f; = uzy and f, = vzy such that
do(u) = dg(v) =2, dg(y) = A(G) and 4 < dg(z) < [HFH],

Let f3 be the face incident with u and f; and f4 the face incident with v
and f2. Let G’ = G — {u,v}. Thus f, and f, are deleted, too. Then G’ has
an t-entire coloring ¢. Let {a1,a2} C S\ys. Since dg(x) <t -3, dor(z) <
t—5. Let {b1,b2} C S\(zoU{P(f3), #(f4)}). Without loss of generality, as-
sume that ay & {¢(f3),b1} and a2 & {#(fs),b2}. We color the rest elements
of G according to the following steps: Firstly, let p(uy) = a1, ¢(vy) = as,
p(uz) = by and p(vz) = bo. Secondly, if a2 # ¢(f3), then ¢(f2) = ¢(f3)
and ¢(f1) € S\{¢(z), #(y), #(zy), (f3),a1,b1}; otherwise, if a1 # ¢(f4),
then o(f1) = ¢(f1) and o(f2) € S\{(z), #(¥), d(zy), ¢(fa), a2, ba}; other-
wise, if ¢(y) & {b1, b2}, then ¢(f1) = bs and ¢(f2) = b;; otherwise, without
loss of generality, assume that b = ¢(y), and then let ¢(fi) = bs and
©(f2) € S\{#(z), 8(y), #(zy), ¢(f4),a2,b2}. Finally, we color v and v.

Case 5. There is a a 4-face fi = uzvy adjacent to 3-face f2 = uzy such
that dg(u) = dg(v) = 2, dg(y) = A(G) and 4 < dg(z) < [2(H],

Let f3 be the face incident with v and f; and f4 the face incident with zy
and f,. By the induced hypothesis, G’ = G — {u, v} has an t-entire coloring
®. Let {al,ag} - S\y¢ and {bl,bz} - S\(x¢U{¢(f3),¢(f4)}) Without loss
of generality, assume that 'a; & {¢(f3),b1} and a; & {&(f4),b2}. We color
the rest elements of G as follows. Let ¢(vy) = a1, p(uy) = az, p(vz) = by,
(P(U(L’) = b2) (P(fl) = d)(xy) and ‘P(fz) € S\{¢(I),¢(y), ¢(xy)a ¢(f4)aa2ab2}1
o(u) € S\{9(2), 8(v), 9 (f1), @(f2), az,b2} and w(v) € S\{6(z), &(¥), & 3),
w(f1),a1,b1 }

Hence, we have x.(G) <t. O

Corollary 3.6. Let G be a 2-connected 1-tree with A(G) > 6, then x.(G) =
A(G) + 1.
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