Entire Chromatic Number of 1-Tree *

Gui-Xiang Dong¹, Jian-Liang Wu²

1. School of Science, Shandong Jianzhu University, Jinan 250101, China; 2. School of Mathematics, Shandong University, Jinan 250100, China

Abstract

The entire chromatic number $\chi_c(G)$ of a plane graph G(V, E, F)is the minimum number of colors such that any two distinct adjacent or incident elements receive different colors in $V(G) \cup E(G) \cup F(G)$. A plane graph G is called a 1-tree if there is a vertex $u \in V(G)$ such that G - u is a forest. In the paper, it is proved that if G is a 2connected 1-tree with $\Delta(G) \geq 6$, then the entire chromatic number of G is $\Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G.

Key words: plane graph; 1-tree; entire chromatic number

1 Introduction

In this paper, In this paper, all graphs are all simple plane graphs. Let G(V, E, F) be a plane graph, where V(G), E(G), F(G), |G|, $\Delta(G)$ and $\delta(G)$ are the vertex set, the edge set, the face set, the size, the maximum degree and the minimum degree of G, respectively. We use $N_G(u)$ to denote the neighbor set of a vertex u in G and $d(v) = |N_G(u)|$ to denote the degree of v. A k-vertex in a graph G is a vertex of degree k. Let $V_k(G)$ denote the set of all k-vertices in G, where $k = 0, 1, \dots, \Delta(G)$. Two vertices in V(G) are adjacent if they are joined by an edge, two edges in E(G) are adjacent if they have a common vertex and two faces in F(G) are adjacent if their boundaries have at least one common edge. We say that a vertex(an edge) is incident with a face if it forms a part of the boundary of the face. Also the vertices u and v are incident with the edge uv. A k-face is a face incident with k vertices. The other definitions and notations can be found in [1].

^{*}This work is Supported by the National Natural Science Foundation of China (11261006,11471195) and Science and Technology Project for the Universities of Shandong Province of China(J14LI53).

Definition 1.1. A plane graph G is called a 1-tree if there is a vertex $u \in V(G)$ such that G - u is a forest, where u is called a crown of G. Clearly a tree must be a 1-tree. If a 1-tree G is not a tree, we call G a proper 1-tree.

Definition 1.2. A plane graph G(V, E, F) is k-total (entire) colorable if the elements of $V(G) \cup E(G)(V(G) \cup E(G) \cup F(G))$ can be colored with k colors such that any two distinct adjacent or incident elements receive different colors. The total (entire) chromatic number $\chi_T(G)(\chi_c(G))$ is defined as the minimum number k for which G is k-total (entire) colorable.

In 1973, Kronk and Mitchem [6] posed the following conjecture(ECC):

Conjecture 1. For every plane graph G, $\Delta(G) + 1 \leq \chi_c(G) \leq \Delta(G) + 4$.

The conjecture was proved for $\Delta \leq 3[6]$, $\Delta = 4$ or 5 [11], $\Delta = 6[8]$ and $\Delta \geq 7[3]$. So the conjecture has been proved completely. In fact when the maximum degree is very large this upper bound can be reduced. Borodin [2] proved $\chi_c(G) \leq \Delta(G) + 2$ for any plane graph G having $\Delta(G) \geq 12$. Zhang et al. [18] proved that a 2-connected outerplane graph G with $\Delta(G) \geq 7$ has the entire chromatic number $\Delta(G) + 1$. Wang [13] improved the result to $\Delta(G) \geq 6$. Borodin and Woodall [4] proved that an outerplane graph G with $\Delta(G) \geq 6$ satisfies $\chi_c(G) = \Delta(G) + 1$ or $\Delta(G) + 2$ according as G does or does not possess a special matching. Other related papers can be found in [7, 14, 9, 12, 13, 15, 16, 17, 18]. This paper will prove that if G is a 2-connected 1-tree with $\Delta(G) \geq 6$, then the entire chromatic number of G is $\Delta(G) + 1$.

2 A property of 2-connected 1-trees

First, we introduce some useful lemmas.

Lemma 2.1. [10] If F is a forest, then $|V_1(F)| \ge \Delta(F)$.

Lemma 2.2. [10] If G is a 1-tree, then $\delta(G) \leq 2$.

Let T be a tree with $\Delta(T) \geq 2$. A vertex v of T with $d_T(v) \geq 2$ is called a *sub-pendent vertex* if v is adjacent to at most one vertex of degree at least 2. Let S(T) denote the set of all sub-pendent vertices of T. We have

$$S(T) = \bigcup_{0 \le i \le 1} V_i(T - V_1(T)).$$

Let Q_p denote a plane graph of order p with vertices $u, v, x_1, x_2, \cdots, x_{p-2}$ and the edges $ux_1, ux_2, \cdots, ux_{p-2}, vx_1, vx_2, \cdots, vx_{p-2}$, and let $\overline{Q}_p = Q_p + uv$. Then $\Delta(Q_p) = p - 2$ and $\Delta(\overline{Q}_p) = p - 1$.

Lemma 2.3. [10] If G is a tree with $\Delta(T) \geq 2$, then $|S(T)| \geq 1$. Moreover, |S(T)| = 1 iff T is a star, that is, $T \cong K_{1,p(G)-1}$.

Lemma 2.4. If G is a 2-connected 1-tree with $\Delta(G) \geq 3$, then at least one of the following results holds.

- (1) $G \in \{Q_p, \overline{Q}_p, p = 3, 4, ...\}.$
- (2) There are two adjacent 2-vertices x and u;
- (3) There is a 4-face uxvy such that $xy \notin E(G)$, $d_G(u) = d_G(v) = 2$, $d_G(y) = \Delta(G)$ and $3 \le d_G(x) \le \lceil \frac{\Delta(G)+1}{2} \rceil$;
- (4) There is a 3-face uxy such that $d_G(u) = 2$, $d_G(x) = 3$ and $d_G(y) = \Delta(G)$;
- (5) There are two adjacent 3-faces uxy and vxy such that $d_G(u) = d_G(v) = 2$, $d_G(y) = \Delta(G)$ and $4 \le d_G(x) \le \lceil \frac{\Delta(G)+1}{2} \rceil$;
- (6) There is a 4-face uxvy adjacent to 3-face uxy such that $d_G(u) = d_G(v) = 2$, $d_G(y) = \Delta(G)$ and $4 \le d_G(x) \le \lceil \frac{\Delta(G)+1}{2} \rceil$.

Proof. Let y be a crown of G and T=G-y. Then T is a tree. Since G is a 2-connected, $\delta(G) \leq 2$, $\Delta(T) \geq 2$ and $V_1(T) \subseteq N_G(y)$. By lemma 2.1, we have $d_G(y) = \Delta(G)$.

Suppose that T has only one vertex of degree at least 2, that is, |S(T)| = 1, then $T \cong K_{1,p(G)-1}$ by Lemma 2.3. Let $S(T) = \{w\}$. If $yw \notin E(G)$, then $G \cong Q_p$; otherwise $G \cong \overline{Q}_p$. This implies that (1) holds for G. So in the following, we assume that $|S(T)| \geq 2$.

Let x be a vertex in S(T) such that $d_T(x) = \min\{d_T(z)|z \in S(T)\}$. It follow from $|S(T)| \geq 2$ and the minimality of x that $d_G(x) \leq \lceil \frac{d_G(t)+1}{2} \rceil \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. We consider the following cases.

Case 1. $xy \notin E(G)$.

If $d_T(x) = 2$, then there exists a vertex $u \in V_1(T) \cap N_G(x) \cap N_G(y)$ such that $d_G(u) = 2$, which implies that (2) holds. Otherwise, there exists two vertices $u, v \in V_1(T) \cap N(x)$ such that $d_G(u) = d_G(v) = 2$ and u, x, v, y form a 4-face, which implies that (3) holds.

Case 2. $xy \in E(G)$.

Then $d_G(x) \geq 3$, and there exists a vertex $u \in V_1(T) \cap N_G(x) \cap N_G(y)$ such that $d_G(u) = 2$ and u, x, y form a 3-face. If $d_G(x) = 3$, then (4) holds. Otherwise, $d_G(x) \geq 4$. If xy is incident with two 3-faces, then (5) holds. Otherwise, there exists a vertex $v \in V_1(T) \cap N_G(x) \cap N_G(y)$ such that $d_G(v) = 2$ and u, x, v, y form a 4-face, which implies (6).

3 The main results

Given an entire coloring σ of a plane graph G, we use x_{σ} denote the set of colors which are colored on the vertex x and its incident edges.

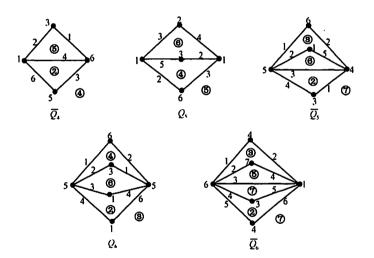
Lemma 3.1. [18] For fan F_p with $p \ge 6$, we have $\chi_c(F_p) = p$.

Lemma 3.2. [5] Let C_n be a cycle of length n. We have

$$\chi_T(C_n) = \begin{cases} 3, & \text{if } n \equiv 0 \pmod{3}; \\ 4, & \text{if } n \geq 3 \text{ and } n \neq 0 \pmod{3}. \end{cases}$$

Lemma 3.3. If $G \in \{Q_p, \overline{Q}_p : p \geq 4\}$, then

$$\chi_c(G) = \left\{ egin{array}{ll} 6, & \mbox{if } G \in \{Q_4, \overline{Q}_4, Q_5, Q_6\}, \ 7, & \mbox{if } G \in \{\overline{Q}_5, \overline{Q}_6\}, \ \Delta(G) + 1, & \mbox{if } p \geq 7. \end{array}
ight.$$



Proof. The proof of the case $p \leq 6$ can be seen in Figure 1, we omit the detail here. So we assume that $p \geq 7$. Let q = p-2. we will give a $(\Delta(G) + 1)$ -entire coloring σ of $G: V(G) \cup E(G) \cup F(G) \mapsto C = \{1, 2, \cdots, \Delta(G) + 1\}$ as follows.

Suppose that $G \cong Q_p$ for some $p(p \geq 7)$. Then $\Delta(G) = q$. Let $\sigma(u) = \sigma(v) = q + 1$, and for any $i(1 \leq i \leq q)$, $\sigma(ux_i) = i$, $\sigma(vx_i) = i + 1$, $\sigma(x_i) = i + 2$, $\sigma(f_{ux_ivx_{i+1}}) = i + 4$, $\sigma(f_{out}) = 4$,where all the subscripts in the paper are taken modulo q.

Suppose that $G \cong \overline{Q}_p$ for some $p(p \geq 7)$. Then $\Delta(G) = q + 1$. Without loss of generality, assume that u, v, x_1 form a triangle. Let $\sigma(uv) = q + 2$, $\sigma(u) = q + 1$, $\sigma(v) = 1$, $\sigma(ux_i) = i(1 \leq i \leq q)$, $\sigma(vx_i) = i + 1(1 \leq i \leq q)$, $\sigma(x_i) = q + 2(1 \leq i \leq q)$, $\sigma(f_{uvx_1}) = 3$, $\sigma(f_{ux_ivx_{i+1}}) = i + 3$, i = 1, ..., q - 3, $\sigma(f_{ux_{q-2}vx_{q-1}}) = 2$, $\sigma(f_{ux_{q-1}vx_q}) = 3$ and $\sigma(f_{out}) = 4$.

Hence, we get an entire coloring of G, and we complete the proof of the lemma.

Lemma 3.4. Let G be a 2-connected 1-tree and $\Delta(G) = 2$. Then $\chi_c(G) \leq 6$.

Proof. Since G is 2-connected, G is a cycle and it is very easy to check that the result holds.

Theorem 3.5. Let t be an integer at least 7 and G be a 2-connected 1-tree with $\Delta(G) < t$. $\chi_c(G) \le t$.

Proof. The proof is carried out by induction on |V(G)|+|E(G)|. If $|V(G)|+|E(G)| \leq 8$, then $G=K_3$ or C_4 , and the result is obvious. Let G be a 2-connected 1-tree with $|V(G)|+|E(G)| \geq 9$. In the following, we shall construct a new 2-connected 1-tree G' from G with |V(G')|+|E(G')| < |V(G)|+|E(G)| and $\Delta(G') < t$. By the induction hypothesis, we extend a t-entire coloring ϕ of G' to an entire coloring φ of G with G' colors, and we complete the proof of the theorem.

Let $S = \{1, 2, ..., t\}$. Note that $\lceil \frac{\Delta(G)+1}{2} \rceil \le \lceil \frac{t+1}{2} \rceil \le t-3$. By Lemma 3.4, we assume that $\Delta(G) \ge 3$. By Lemma 3.3 and Lemma 2.4, we just consider the following cases.

Case 1. There are two adjacent 2-vertices u and v.

Let $N(u) = \{u_1, v\}$, $N(v) = \{v_1, u\}$ and f_1, f_2 be the two faces incident with uv. Now we construct G' by setting $G' = G - u + u_1v$. Then G' is a 2-connected 1-tree. Giving a t-entire coloring ϕ of G', we color the rest elements of G by letting $\varphi(uu_1) = \varphi(u_1v), \varphi(u) \in S \setminus \{\phi(u_1), \phi(u_1v), \phi(v), \phi(f_1), \phi(f_2)\}$, $\varphi(uv) \in S \setminus \{\phi(vv_1), \varphi(u), \phi(u_1v), \phi(v), \phi(f_1), \phi(f_2)\}$.

Case 2. There is a 4-face f = uxvy such that $xy \notin E(G)$, $d_G(u) = d_G(v) = 2$, $d_G(y) = \Delta(G)$ and $3 \le d_G(x) \le \lceil \frac{\Delta(G)+1}{2} \rceil$.

Let f_1, f_2 be the two faces adjacent to f such that f_1 is incident with u. We construct G' by setting G' = G - u + xy. Then G' has a t-entire coloring ϕ . Since $\lceil \frac{\Delta(G)+1}{2} \rceil \leq t-3$, $x_{\phi} \leq t-2$ (note $\phi(xy) \in x_{\phi}$). We color the rest elements of G according to the following steps: First, let $\varphi(uy) = \phi(xy)$. Then, if $\phi(xy) \neq \phi(f_2)$, then $\varphi(xv) = \phi(xy)$ and $\varphi(xu) = \phi(xv)$; otherwise, if $\phi(f_1) \in x_{\phi}$, then let $\varphi(xv) = \phi(xv)$ and $\varphi(xu) \in S \setminus (x_{\phi} \cup \{\phi(f)\};$ otherwise, if $\phi(vy) \neq \phi(f_1)$, then $\varphi(xv) = \phi(f_1)$ and

 $\varphi(xu) = \phi(xv)$; otherwise, let $\varphi(xv) \in S \setminus (x_{\phi} \cup \{\phi(f_1)\})$ and $\varphi(xu) = \phi(xv)$. Finally, we recolor v and color u.

Case 3. There is a 3-face f = uvw such that $d_G(u) = 2$, $d_G(v) = 3$ and $d_G(w) = \Delta(G)$.

We use f_1, f_2 to denote the two faces adjacent to f such that f_1 is incident with u. Let G' = G - u, $\{v'\} = N_G(v) \setminus \{u, w\}$ and $S' = S \setminus \{\phi(f_1), w_\phi\}$. We color the rest elements of G according to the following steps: If $S' \neq \emptyset$, then $\varphi(wu) \in S'$ and $\varphi(vw) = \phi(vw)$; otherwise, $\varphi(wu) = \phi(wv)$ and $\varphi(vw) = \phi(f_1)$. $\varphi(f) \in S \setminus \{\phi(v), \phi(w), \phi(f_1), \phi(f_2), \varphi(vw), \varphi(uw)\}$, $\varphi(uv) \in S \setminus \{\varphi(f), \phi(f_1), \phi(v), \varphi(uw), \varphi(vw), \phi(vv')\}$, $\varphi(u) \in S \setminus \{\varphi(f), \phi(f_1), \phi(v), \varphi(uw), \varphi(uv)\}$.

Case 4. There are two adjacent 3-faces $f_1 = uxy$ and $f_2 = vxy$ such that $d_G(u) = d_G(v) = 2$, $d_G(y) = \Delta(G)$ and $4 \le d_G(x) \le \lceil \frac{\Delta(G)+1}{2} \rceil$.

Let f_3 be the face incident with u and f_1 and f_4 the face incident with v and f_2 . Let $G' = G - \{u, v\}$. Thus f_1 and f_2 are deleted, too. Then G' has an t-entire coloring ϕ . Let $\{a_1, a_2\} \subseteq S \setminus y_{\phi}$. Since $d_G(x) \leq t - 3$, $d_{G'}(x) \leq t - 5$. Let $\{b_1, b_2\} \subseteq S \setminus (x_{\phi} \cup \{\phi(f_3), \phi(f_4)\})$. Without loss of generality, assume that $a_1 \notin \{\phi(f_3), b_1\}$ and $a_2 \notin \{\phi(f_4), b_2\}$. We color the rest elements of G according to the following steps: Firstly, let $\varphi(uy) = a_1, \varphi(vy) = a_2, \varphi(ux) = b_1$ and $\varphi(vx) = b_2$. Secondly, if $a_2 \neq \phi(f_3)$, then $\varphi(f_2) = \phi(f_3)$ and $\varphi(f_1) \in S \setminus \{\phi(x), \phi(y), \phi(xy), \phi(f_3), a_1, b_1\}$; otherwise, if $a_1 \neq \phi(f_4)$, then $\varphi(f_1) = \phi(f_4)$ and $\varphi(f_2) \in S \setminus \{\phi(x), \phi(y), \phi(xy), \phi(f_4), a_2, b_2\}$; otherwise, if $\phi(y) \notin \{b_1, b_2\}$, then $\varphi(f_1) = b_2$ and $\varphi(f_2) = b_1$; otherwise, without loss of generality, assume that $b_1 = \phi(y)$, and then let $\varphi(f_1) = b_2$ and $\varphi(f_2) \in S \setminus \{\phi(x), \phi(y), \phi(xy), \phi(f_4), a_2, b_2\}$. Finally, we color u and v.

Case 5. There is a 4-face $f_1 = uxvy$ adjacent to 3-face $f_2 = uxy$ such that $d_G(u) = d_G(v) = 2$, $d_G(y) = \Delta(G)$ and $4 \le d_G(x) \le \lceil \frac{\Delta(G)+1}{2} \rceil$.

Let f_3 be the face incident with v and f_1 and f_4 the face incident with xy and f_2 . By the induced hypothesis, $G' = G - \{u, v\}$ has an t-entire coloring ϕ . Let $\{a_1, a_2\} \subseteq S \setminus y_{\phi}$ and $\{b_1, b_2\} \subseteq S \setminus (x_{\phi} \cup \{\phi(f_3), \phi(f_4)\})$. Without loss of generality, assume that $a_1 \notin \{\phi(f_3), b_1\}$ and $a_2 \notin \{\phi(f_4), b_2\}$. We color the rest elements of G as follows. Let $\varphi(vy) = a_1, \varphi(uy) = a_2, \varphi(vx) = b_1, \varphi(ux) = b_2, \varphi(f_1) = \phi(xy)$ and $\varphi(f_2) \in S \setminus \{\phi(x), \phi(y), \phi(xy), \phi(f_4), a_2, b_2\}$, $\varphi(u) \in S \setminus \{\phi(x), \phi(y), \varphi(f_1), \varphi(f_2), a_2, b_2\}$ and $\varphi(v) \in S \setminus \{\phi(x), \phi(y), \phi(f_3), \varphi(f_1), a_1, b_1\}$.

Hence, we have $\chi_c(G) \leq t$.

Corollary 3.6. Let G be a 2-connected 1-tree with $\Delta(G) \geq 6$, then $\chi_c(G) = \Delta(G) + 1$.

References

- [1] J. A. Bondy and U. S. R. Murty. Graph with Application. Macmillan Press, New York, 1976.
- [2] O. V. Borodin, The structure of edge neighborhoods in planar graphs and the simultaneous coloring of vertices, edges and faces. Metem. Zametki, 1993, 53:35-47(in Russian).
- [3] O. V. Borodin, Structural theorem on plane graphs with application to the entire coloring number. J. Graph Theory, 1996, 23:233-239.
- [4] O. V. Borodin and D. R. Woodall, Thirteen colouring numbers for outerplane graphs, Bull. Inst. Combin. Appl., 1995, 14:87-100.
- [5] D. L. Chen and J. L. Wu, the Total coloring of some graphs, Combinatorics Graph Theory Algorithms and Applications(Beijing, 1993), World Sci. Publishing, River Edge, N.J., 1994, Supp. 17-20.
- [6] H. Kronk and J. Mitchem. A Seven-Color Theorem on the Sphere, Discrete Mathematics, 1973, 5(3):253-260.
- [7] L. Z. Liu, Z. F. Zhang and J. F. Wang. On the Complete Chromatic Number of Pseudo-Halin Graphs with $\Delta(G) \geq 6$, Journal of Mathematical Research and Exposition, 2002 22(4):663-668.
- [8] D. P. Sanders and Y. Zhao, On the entire coloring conjecture, Canad. Math. Bull., 2000, 43(1):108-114.
- [9] N. S. Wang and Z. F. Zhang, On the Complete Chromatic Number of Maximum Outerplanar Graphs with Maximum Degree $\Delta = 6$, Pure and Applied Mathematics, 1996, 12(1):68-72.
- [10] W. F. Wang, Edge-Face Chromatic Number of 1-Tree, Chinese Quarterly Journal of Mathematics, 1999, 14(4):76-83.
- [11] W. F. Wang, and X. D. Zhu, Entire coloring of plane graphs, Journal of Combinatorial Theory(Series B), 2011, 101:490-501.
- [12] W. F. Wang, On the Colorings of Outerplanar Graphs, Discrete Mathematics, 1995, 147:257-269.
- [13] W. F. Wang, Entire Chromatic Number of Outerplane Graphs with Maximum degree four, Journal of Engineering Mathematics, 2000, 17(4):19-24.
- [14] J. L. Wu and Y. L. Wu, The Entire Coloring of Series-Parallel Graphs, Acta Mathematicae Applicatae Sinica, 2005, 21(1):61-66.

- [15] M. Yao, B. Yao and X. E. Chen, On Complete Chromatic Numbers of Cubic Halin Graphs, Journal of Shandong University(Natural Science), 2012, 47(2):65-70.
- [16] Z. F. Zhang and L. Z. Liu, On the Complete Chromatic Number of Halin Graphs, Acta Mathematicae Applicatae Sinica(English Series), 1997, 13(1):102-106.
- [17] Z. F. Zhang, J. F. Wang and W. F. Wang, The Entire Chromatic Number of Some Planar Graphs, Science in China(Ser.A), 1993, 23(4):365-368.
- [18] Z. F. Zhang, J. X. Zhang and W. F. Wang, The Entire Chromatic Number of Some Planar Graphs, Journal of Xinjiang University(Natural Science), 1991, 8(1):17-18.