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Abstract

A 2-rainbow dominating function of a graph G is a function f
from the vertex set V(G) to the set of all subsets of the set {1,2}
such that for any vertex v € V(G) with f(v) = 0 the condition
U.en) (@) = {1,2} is fulfilled, where N(v) is the open neighbor-
hood of v. A rainbow dominating function f is said to be a rainbow
restrained domination function if the induced subgraph of G by the
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vertices with label 0, has no isolated vertex. The weight of a rainbow
restrained dominating function is the value w(f) = 3 cv (g |f()|-
The minimum weight of a rainbow restrained dominating function of
G is called the rainbow restrained domination number of G. In this
paper we continue the study of the rainbow restrained domination
number. First we classify all graphs G, of order n, whose rainbow
restrained domination number is n — 1. Then we establish an upper
bound on the rainbow restrained domination number of trees.

Keywords: domination, rainbow dominating function, rainbow dom-
ination number, rainbow restrained dominating function, rainbow
restrained domination number

1 Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set
E = E(G). The order |V| of G is denoted by n = n(G). For every vertex
v € V, the open neighborhood N (v) is the set {u € V(G) | uwv € E(G)} and
the closed neighborhood of v is the set N[v] = N(v) U {v}. The degree of a
vertex v € V is deg(v) = |N(v)|. The minimum and mazimum degree of a
graph G are denoted by § = §(G) and A = A(G), respectively. The open
neighborhood of a set § C V is the set N(S) = |J g N(v), and the closed
neighborhood of S is the set N[S] = N(S)US. A treeis an acyclic connected
graph. For two integers v, s > 1, a double star S(r,s) is a tree with exactly
two vertices that are not leaves, with one adjacent to r leaves and the other
to s leaves., A vertex adjacent to a leaf is a support verter. A support
vertex adjacent to at least two leaves is called a strong support verter. If
A C V(G), then G[A] is the subgraph induced by A. If A, B C V(G), then
E(A, B) is the set of edges between A and B. We write K, for the complete
graph of order n, P, for a path of order n and C, for a cycle of length n.
Consult [6, 9], for terminology and notation on graph theory not defined
here.

For a positive integer k, a k-rainbow dominating function (kRDF) of a
graph G is a function f from the vertex set V(G) to the set of all subsets
of the set {1,2,...,k} such that for any vertex v € V(G) with f(v) = 0 the
condition |J, ¢ Nw) f(@) = {1,2,...,k} is fulfilled. The weight of a kRDF
f is the value w(f) = }_ cv |f(v)|. The k-rainbow domination number of
a graph G, denoted by 7v,4(G), is the minimum weight of a kRDF of G.
A 41(G)-function is a k-rainbow dominating function of G with weight
~v-1(G). Note that «. (G) is the classical domination number 4(G). The k-
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rainbow domination number was introduced by Bresar, Henning, and Rall
[2] and has been studied by several authors (see for example [3, 4, 5, 7, 8,
10, 11)).

A 2-rainbow dominating function f : V — P({1,2}) can be repre-
sented by the ordered partition (Vo, V1, Ve, Vi2) (or (V{,V{,V/, VI{ q) to
refer f) of V, where Vg = {v € V | f(v) =0}, Vi = {v e V| f(v) = {1}},
Vo= {veV|fv) = {2} Via = {v € V| f(v) = {1,2}}. In this
representation, its weight is w(f) = |V1| + |V2| + 2|V ,2].

A 2-rainbow dominating function f = (Vo, V}, V2, V},2) is called a rain-
bow restrained dominating function (RRDF) if the induced subgraph G[V}]
has no isolated vertices. The rainbow restrained domination number of
G, denoted by 7v,+(G), is the minimum weight of an RRDF on G. A
~Yrr(G)-function is an RRDF of G with w(f) = 4+(G). The rainbow re-
strained domination number was investigated by Amjadi et al. in [1]. If
G1,Gy, -+ ,G, are the components of G, then v(G) = Y _, 7r(Gi).
Hence, it is sufficient to study 4,.(G) for connected graphs.

In this paper, we continue the study of the rainbow restrained domi-
nation numbers. We first classify all connected graphs G of order n with
Yr(G) = n — 1. Then we establish an upper on the rainbow restrained
domination number of trees.

We make use of the following two results in this paper. The proofs can
be found in [1].

Theorem A Let G be a connected graph of order » > 2. Then 4,.(G) =n
if and only if G ~ K1 ,—1,C4,Cs or G = P, for n = 2,3,4,5,6.

Observation 1 If H is a subgraph of G, then v,-(G) < v.-(H) +|V(G)| —
[V (H)I.

A subdivision of an edge uv is obtained by removing the edge uv, adding
a new vertex w, and adding edges uw and wv. The subdivision graph S(G)
is the graph obtained from G by subdividing each edge of G. The graph
S(Ky,) for t > 2, is called a healthy spider S;, while a wounded spider S, is
the graph formed by subdividing at most ¢t —1 of the edges of a star K , for
t > 2. Clearly stars are wounded spiders. A spider is a healthy or wounded
spider.

Example 2 (a) yr(Pn) =n for 1 < n <6 and vrr(P) = [2H] + 1 for
n>T7.
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(b) 7r(Cn) = 2[%] when n # 2 (mod 3) and ¥,,(C,) = 2[2] + 1 other-
wise.

(c) vrr(S(rys)) =r+sfor2<r < s, ¥ (S(r,s)) =r+s+1forr=1,s > 2
and v,-(S(r,s)) =r+s+2forl=r=s.

(d) If T is a spider different from stars, Py and Ps, then v,.(T) = |V(T)|-1.

Examples 2 (a) and (b) can be found in (1] and (c) and (d) are easy to
prove.

2 Graphs with large rainbow restrained dom-
ination number

In [1] the authors characterize all graphs whose rainbow restrained domi-
nation number is equal their order (Theorem A). In this section we char-
acterize all graphs G of order n with v.(G) = n — 1. We start with the
following lemmas.

Lemma 3 Let G be a connected graph of order n. If G has two adjacent
vertices each of degree at least 3, then v,.-.(G) < n —2.

Proof. Assume z and y are adjacent vertices each of degree at least three in
G. Let 1,22 € N(z)\{y} and y1,y2 € N(v)\ {z}. If [{z1,22}N{y1,92}| >
1, then let ; = y; and define f : V(G) — P({1,2}) by f(z) = f(y) =
0, f(z1) = {1} and f(u) = {2} otherwise. If {z1,z2} N{ y1,¥2} = O, then
define f(z) = f(y) =0, f(z1) = f(y1) = {1} and f(u) = {2} otherwise. It
is easy to see that in each case, f is an RRDF of G of weight n — 2 that
implies v(G) <n—2. 0

Lemma 4 Let G be a connected graph of order n with diam(G) > 6. Then

Yer(G) S+ 1+ [_—d’w] :
In particular, if diam(G) > 9, then v,(G) < n —2.

Proof. Let P be a diametral path in G. By Observation 1 and Example
2, we obtain

Y(G) < (n—diam(G)-1)+ [zgdimgggngﬂ'l 41
nt 1+ [=p@].

212



r(G) < (n—diam(G) - 1)+ [Mlﬂ&q +1

O

n+1+[ diam!G!]
Lemma 5 Let G be a connected graph of order n. If G has a path
z122 ...z (k > 6) such that |[N(z1) \ {z2,z3,...,2%}| 2 2, then v+ (G) <
n-—2.

Proof. Let z,y € N(:z:l) \ {z2,z3,...,zx}. Define f: V(G) = P({1, 2})
by f(z) = {1}, f(z3) = f(ze) = {1, 2}, f(z1) = f(z2) = f(z4) = f(xs) =
and f(u) = {2} otherwise. Obviously, f is an RRDF of G of weight n — 2
and hence v,.(G) <n—-2. 0

Lemmas 3 and 5 lead to the next result immediately.

Corollary 6 Let G be a connected graph of order n that is not a cycle. If
G has a cycle of length at least 7, then v (Cp) < n — 2.

Now we introduce a family of trees. Let F be the family of trees con-
sisting of

(a) P, P3, Py and S(1,s) for s > 2,
(b) spiders except stars, P; and Ps,

(c) trees that can be obtained from two disjoint stars K, and K} s (s >
2,7 > 1), by adding a new vertex v and joining it to the central
vertices of stars,

(d) trees that can be obtained from two disjoint stars K, and K; s (s >
3,7 > 1), by adding an edge joining one leaf of K, to one leaf of
K 1,8

(e) trees that can be obtained from a star K, (r > 2) and a spider S
different from star, by adding an edge joining one leaf of K , to the
central vertex of S,

(f) trees that can be ohtained from P, and a spider S different from a star,
by adding an edge joining one leaf of P to the central vertex of S,

(g) trees that can be obtained from P; (respectively Py) by adding pen-
dant edges at the central vertex of P; (respectively Pg) or joining the
central vertex of P; (respectively Py) to exactly one leaf of ¢ > 0
disjoint complete graphs Kj,
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(h) trees that can be obtained from P; by adding pendant edges at one of
the central vertices of P, say z, or joining x to exactly one leaf of
g > 0 disjoint complete graphs K.

Theorem 7 Let T be a tree of order n. Then v,..(T) = n — 1 if and only
ifT € F.

Proof. One side is clear. Let v,(T) = n — 1. It follows from Lemma 4
that diam(T") < 8. Assume that vjvy... vy is a diametral path in 7. First
let diam(T) = 8. By Lemma 5, deg(vs) = deg(vs) = deg(vs) = deg(vg) =
deg(v7) = deg(vg) = 2. If T has a path vsz12223 where 2; & {v4,v6}, then
the function f defined by f(23) = f(vs) = f(v2) = f(uvs) = {1,2}, f(21) =
f(22) = f(v3) = f(vq) = f(vs) = f(v7) =0 and f(z) = {1} otherwise, is an
RRDF of T of weight n — 2, a contradiction. We deduce from this fact and
Lemma 3 that each neighbor of vs except vy, vs, if any, is a leaf or a support
vertex of degree 2. Thus T = P, or T satisfies (g) and hence T € F. Now let
diam(T") = 7. By Lemma 5, deg(vz) = deg(vs) = deg(ve) = deg(vy) = 2.
If deg(vq) = deg(vs) = 2, then T = Py € F. Assume, without loss of
generality, that deg(vs) > 3. Then deg(v4) = 2. As above we can see that
each neighbor of vs except vy, vg, is a leaf or a support vertex of degree
2. Thus T satisfies (h) and hence T € F. Hence let diam(T) < 6. By
Theorem A, diam(T") > 3. Let vyvy... v, be a diametral path in T and let
deg(vz) be as large as possible. We consider the following cases.

Case 1. diam(T) = 3.
We deduce from Example 2 that T = S(1, s) for some positive integer s > 2
andsoT € F.

Case 2. diam(T) = 4.

If deg(v2) = 2, then by the choice of the diametral path, all support vertices
on diametral paths have degree two implying that T is a spider, except Ps,
and so T € F. Assume deg(vz) > 3. By Lemma 3, we have deg(v3) = 2.

Then clearly the components of T' — v3 are stars and hence T satisfies (c)
and hence T € F.

Case 3. diam(T') = 5.

First let deg(v2) = 2. By the choice of the diametral path, all support
vertices on diametral paths have degree two. Since ,(Ps) = n, deg(vs) > 3
or deg(vs) = 3. Assume, without loss of generality, that deg(vs) > 3. Then
deg(v4) = 2. Rooting T at vg, we can see that T, is a spider different from
stars. Thus T satisfies (e) and so T € F. Now let deg(v2) > 3. By Lemma
3, we have deg(vs) = 2. If deg(vs) > 3, then deg(vy) = 2 and clearly T
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satisfies (d) that yields T € F. Assume deg(vs) = 2. Similarly, we may
assume that all support vertices adjacent to v4 have degree 2. Rooting T
at vy, we see that T,,, is a spider. Thus T satisfies (e) and so T € F.

Case 4. diam(T) = 6.

By Lemma 5, we have deg(v2) = deg(v¢) = 2. By the choice of the diame-
tral path, we deduce that all support vertices in N(v3) U N (vs) but v4, have
degree 2.

First let deg(vs;) > 3 (the case deg(vs) > 3 is similar). It follows from
Lemma 3 that deg(v4) = 2. Rooting T at vy, implies that T, is a spider.
We claim that deg(vs) = 2 that in the case T satisfies (f) and so T € F.
Assume to the contrary that deg(vs) > 3. Let z € N(v3) — {v2,v4} and
y € N(vs) — {ve,vs}. Then the function f defined by f(z) = f(y) =
{1}, f(w1) = f(v7) = {1,2}, f(v2) = f(v3) = f(vs) = f(ve) =P and f(u) =
{2} otherwise, is an RRDF of T of weight n — 2, which is a contradiction.

Now let deg(v3) = deg(vs) = 2. If deg(vy) =2, then T = P, € T. Let
deg(vq) > 3. If there is a path v4ziz223 in T where z; & {v3,vs}, then by
the arguments above we may assume that deg(z;) = 2 fori = 1, 2. It is easy
to see that the function f defined by f(z) = 0 for z € {vs, v3,vs, vg, T2, Z1}
and f(v4) = f(v1) = f(v7) = f(z3) = {1,2}, is an RRDf of G of weight less
than n — 1, a contradiction. On the other hand, we deduce from Lemma 3
that each support vertex adjacent to v4 has degree two and hence T satisfies
(g), and the proof is complete. O

The next result is an immediate consequence of Example 2 and Obser-
vation 1.

Corollary 8 For n > 3, v(C,) = n —1 if and only if n = 3,7,8. More-
over, if G has a cycle different from Cs,Cy4,Cs, C7 and Cs, then v,.(G) <
n-—2.

Fig. 1: The graphs G; and G,
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Let H; be the family consisting of C3 and the graphs obtained from
C3 = wvw by adding pendant edges at u or joining u to one leaf of ¢ > 0
disjoint complete graphs K5. (Figure 2.)

Fig. 2: Family H,;

Lemma 9 Let G be a connected graph of order n. If G has a triangle,
then v,.(G) = n — 1 if and only if G € H,.

Proof. If G € H;, then clearly v,(G) = n — 1. Conversely, let v..(G) =
n—1. If G = Cj, then we are done. Let G # C3. Suppose uvw is a triangle
in G. Since G is connected, we may assume that deg(u) > 3. It follows
from Lemma 3 that deg(v) = deg(w) = 2. Now let z € N(u) - {v,w}. By
Lemma 3, deg(x) < 2. If deg(x) = 1, we are done. Assume that deg(z) = 2
and y € N(z) — {u}. We claim that deg(y) = 1. Assume to the contrary
that deg(y) > 2 and let z € N(y) \ {z} (note that z = u is possible). Define
the function f by f(v) = f(w) = f(z) = f(y) = 0, f(v) = f(2) = {1,2}
and f(a) = {1} otherwise. It is easy to see that f is an RRDF of G of
weight at most n — 2 which is a contradiction. Thus deg(y) = 1. This
implies that G € H;. O

Fig 3: Family H,
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Let Gy, G, ..., Gk be mutually pairwise vertex-disjoint graphs, k > 2,
and u; € V(G;) fori = 1,2..., k. The multiple coalescence G10Gzo0...0Gy
of G1, Gy, ...,Gy on u; is the graph obtained from the union of these graphs
by identifying the vertices uy,ua,...,ur. Let Hs be a family consisting of
graphs obtained from multiple coalescence of two copies of Cs and some
copies of P, and P;. (Figure 3.)

Lemma 10 Let G be a connected graph of order n with at least two dis-
tinct cycles. Then 7,.(G) = n — 1 if and only if G € {G1, G2} U H,.

Proof. Let v.+(C,) = n — 1. By Corollaries 6 and 8 and Lemma 9, all
cycles of G have length 4 or 5. Let C, = (2173 ...2,) and Cs = (y192-- - ¥s)
be two distinct cycles of G. We may assume r < s.

First assume that C,. and C, are vertex-disjoint. By Lemma 3, there is
no edge joining C, and C,. Let 1,2, ...2,y; be a path joining V(C,) and
V(C;) such that z,...,2x € V(C,)UV(C,). Then the path z12; ... zxy; ...
Y, satisfies the condition of Lemma 5, a contradiction.

Assume now C, and C, have exactly one vertex in common, say z; = y;.
If r = 4, then fi = ({z1,Z2,z4}, {92}, V(G) \ {21, 22, T3, Z4, Y2}, {3}) is
an RRDF on G with w(f1) < n — 1, a contradiction. Let r = s = 5. By
Lemmas 3 and 5, all vertices of V(C,) U V(C,) — {z1} have degree 2 in
G. If G has order 9, then G = C5 0 Cs € Hp. We claim that d(z,,2) < 2
for each z € V(G). Assume to the contrary that d(z;,z) > 3 for some
z € V(G). Then clearly 2z € V(G) — (V(C,)UV(C,)). Let z12125...2;
be a (z1, z)-path of length d(z,, z) where z = z;. Obviously, z; € V(C;) U
V(Cs) for each i. Then the function f2 = ({z2,z3,y2,¥3, 21, 22}, V(G) —
{z1, z2, 3, T4, Y2, Y3, ¥4, 21, 22, 23}, 0, {1, T4, Y4, 23}), is an RRDF on G with
w(f2) < n—1, a contradiction. This proves the claim. Also by Lemma
3, each vertex adjacent to z; has degree at most 2. Thus G is a multi-
ple coalescence of two copies of Cs and copies of P, and P; on z;. Hence
Ge Ho.

Henceforth, we assume that any pair of cycles in G have at least two
vertices in common. It is easy to see that if G has two cycles with exactly
two vertices in common, then G will have two cycles with at least three
vertices in common. We may assume, without loss of generality, that C, and
C, have at least three vertices in common. First assume |V(C, )NV (C,)| =
4. Suppose z; = y; for i = 1,2,3,4. Then r = s = 5, otherwise G
will have a triangle which is a contradiction. By Lemma 3, we deduce
that deg(z;) = deg(zs) = deg(zs) = deg(ys) = 2. If z4 has a neighbor
outside V(C,) U V(C;), say z, then the function p : V(G) — P({1,2})
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defined by p(z) = {1},p(z1) = {1,2}, f(z4) = f(zs) = f(ys) = 0, and
p(x) = {2} otherwise, is an RRDF of G of weight n — 2, a contradiction.
Thus deg(z4) = 3. Similarly, deg(z;) = 3. Therefore G is the union of two
copies of Cs having 4 vertices in common and hence G = Ga.

Suppose now |V(C;) N V(Cs)| = 3 and let no pair of cycles in G have
four vertices in common. Suppose z; = y; for i = 1,2,3. If r > 5, then the
function hy = ({Z4,2s5,v4,¥5}, {z2}, V(G) — (V(Cr) U V(Cy)), {z1,23}) is
an RRDF on G of weight n — 2, a contradiction. Therefore r = 4. If s =5,
then two distinct cycles (zyZ2z3ysys) and (z17473y4ys) have four vertices
in common, a contradiction. Henceforth, s = 4. By Lemma 3, the vertices
T3,T4,Ys have degree 2 in G. If z; has a neighbor z not in V(C,) UV (C,),
then the function hy = ({z1,z2, 24}, {z}, V(G) — {z1, 72, 73,24, 7}, {z3})
is an RRDF on G of weight n — 2, a contradiction. Therefore deg(z;) = 3.
Similarly, deg(z3) = 3. Thus G = G and the proof is complete. O

g4 T3 =V U2 Ud<3z T4 T1 =701 V2 Vd-1 Ud<s
L 3 - e e @ o —e

G G2

Fig 4: Family H3

Lemma 11 Let G be a connected graph of order n with exactly one cycle.
Then v~(G)=n—1if and only if G € G, U Ga U Hs.

Proof. Let C; = (z172...2,) be the unique cycle of G. Clearly, r € {4,5}.
Since 7,r(G) =n — 1, G % C,. Let deg(z;) > 3. We consider two cases.

218



Case 1. Assume that r = 4.

If z, has two neighbors in V(G) — V(C,), say y,z, then the function
h : V(G) = P({1,2}) defined by h(z)) = h(z2) = h(z4) = 0,h(z3) =
{1,2}, h(y) = {2} and h(u) = {1} otherwise, is an RRDF of G of weight
n — 2, a contradiction. Thus deg(z;) = 3. Similarly, we can see that
2 < deg(z;) < 3 for ¢ = 2,3,4. Suppose that P = x,2;...2; is a path in
G such that z; € V(C,) for each 2 £ j < k. By Lemma 5, k¥ < 5. Since
G is unicyclic, we deduce that deg(zx) = 1. By Lemma 3, deg(z;) < 2.
If deg(z3) > 3 and y € N(23) — {22, 24}, then the function h; defined by
hi(22) = hi(z3) = hi(z2) = ha(zs) = 0, h1(z1) = ha(zd) = {1,2}, h1(y) =
{2} and h;(u) = {1} otherwise, is an RRDF of G of weight less than n — 1,
a contradiction. Thus deg(z3) = 2 if k¥ > 4. Applying a similar argu-
ment, we can see that deg(z4) = 2 when k = 5. If there is another vertex
of degree more than 2, it can only be z3. If deg(zs) = 2, then clearly
G € G3. Let deg(x3) > 3. Let Q = z3t2...t, be a path in G such that
t; € V(C,) for each j. Assume, without loss of generality, that £ > m.
As above we can see that deg(zs) = 3 and deg(t;) < 2for2 < j <t If
k > 4, then the function f defined by f(z) = @ when = € {z2, z3, 24, 22, 23},
f(t2) = f(z1) = f(24) = {1,2} and f(z) = {2} otherwise, is an RRDF of
G of weight less than n — 1, a contradiction. Hence k < 3. Next we will
show that & = 3 implies m = 2. Otherwise the function f; defined by
fi(z) = 0 when = € {1, 23, 22, t2}, f1(ta) = fi(z3) = {1,2}, fi(x2) = {1}
and fi(z) = {2} otherwise, is an RRDF of G of weight less thann —1, a
contradiction. Thus G € G;.

Case 2. Assume that r = 5.

Let P = zy25...z; be a longest path in G, where z; ¢ V(C,) for each
i. By Lemma 5, £k < 5. By Lemma 3, deg(2;) = 2. Now we show that
deg(z3z) = 2 if £k = 4 and deg(23) = deg(z4) = 2 when k = 5. Indeed, if
u € N(z3) — {22, 24}, then the function g; defined by g1(z1) = g1(z3) =
{1,2}, 91(22) = 91(23) = g1(z4) = g1(zs) = 0, 91(w) = {1} and g;(z) = {2}
otherwise, is an RRDF of G of weight less than n—1, a contradiction. Also,
if u € N(z4)—{z23, 25}, then the function g, defined by go(u) = {1}, g2(z3) =
92(za) = g2(z1) = g2(z5) = 0,92(22) = g2(z4) = {1,2} and ga(z) = {2}
otherwise, is an RRDF of G of weight less than n — 1, a contradiction again.
If P, = zyus...u,, is a path in G where uy & {29, 22,25}, then it is easy
to verify that min{k,m} < 3. In G has no vertex of degree least 3 but
z3, then clearly G € H;. Now let G has another vertex of degree at least
3, say w. Then w can only be one of the z3 or 4. Assume, without loss
of generality, that w = z3. Let Q = zafz...t; be a path in G such that
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t; € V(C;) for each j. Suppose that k > s. If k > 3, then the function
g3 defined by gs(z3) = ga(xs) = {1,2},g3(t2) = {1}, 93(z1) = g3(22) =
g3(z3) = ga(z4) = 0 and g3(z) = {2} otherwise, is an RRDF of G of weight
less than n — 1, a contradiction. Thus max{k,m} = 2. It follows that
G € H3. This completes the proof. O

Our main theorem is an immediate consequence of Theorem 7, Lemmas
9, 10 and 11.

Theorem 12 Let G be a connected graph of order n. Then v,.(G) =n—1
ifand only if G€ FUG, UG, UH; UH, UH3z U {G1,G2}.

3 Bounds on trees

In this section, we establish an upper and a lower bound on the rainbow
restrained domination number in trees. If T is a tree, then let s(T) and
£(T) be the number of support vertices and leaves, respectively.

Theorem 13 Let T be a tree of order n > 3. Then

ee(T) < [271 + 43(T)3+ oT) - 5] .

This bound is sharp for stars, and for paths P, such that n = 0(mod 3) or
n = 2 (mod 3) with n > 8.

Proof. We proceed by induction on n. By Example 2, the statement holds
for all trees of order n = 3,4. Let n > 5 and assume that for every tree T of
order at least 3 and less than n the result is valid. Let T be a tree of order
n > 5. If T is the star K; 1, then by Theorem A, we have v,.(T) =n =
[M;MIE] If T is the double star S(r, s) then s(T) = 2,4(T) = r+s
and therefore 7,(T) < n < [32£] = [2"+4’(T:),+£(T)'5’|. Henceforth, we
may assume that diam(T") > 4. In the following let f = (Vo, V4, Vo, V3 2) be
a Yrr(T')-function. We proceed further with a series of claims that we may
assume satisfied hy the tree.

Claim 1. T has no strong support vertex.

Proof. Let T have a strong support vertex u and let v,w are two leaves
adjacent to u. Set T = T —v. Then |V(T')| = n -1, s(T") = s(T)
and £(T') = {T) — 1. On the other hand, f = (Vo,V1 U {v},V2,V1,2} is
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an RRDF of T implying that v.-(T) < %-(T') + 1. It follows from the
induction hypothesis that

Yrr (T) '7rr(T,) +1

2(n—1)+48(T')+£(T'L5-I +1
l- n+4s!T +£!T! -I +1
|-2n+4s!T +C!T) 'l

IA A

as desired. (m)

Let viv2...vp be a diametral path in T and root T at vp. From
Claim 1, we deduce that deg(v;) = deg(vp—1) = 2 and v3 is only adjacent
to leaves or support vertices of degree 2. If diam(T) = 4, then T is a
spider and we have s(T') > 2 and s(T) + 4T) > n — 1. It follows that
Yr(T) <n < [Mzaﬁﬂzbj]_ Henceforth, we assume that diam(T') > 5.

Claim 2. deg(v3) = 2.
Proof. Suppose that deg(vs) > 3 and let " = T — {v;,v2}. Obviously, f =
(Vo, ViU{w1,v2}, V2, V1 2) is an RRDF of T and hence v,+(T) < ¥ (T")+2.
Since |V(T")| = n — 2, s(T") = s(T) — 1 and £(T") = {(T) — 1, it follows
from the induction hypothesis that
¥rr(T) Yrr(T') + 2

|'2(n—2)+43(T')+e(T') 5'| +92
l- n+48!T!+l!T!—l ~|+2

_nJ_L_(_)_
I’ +4s(T)+4(T 'l (.)

I IA A

A

Claim 3. deg(v4) = 2.

Proof. Suppose that deg(v4) > 3 and let T/ = T — {vs,vq,v;}. Clearly,
f can be extended to an RRDF of T by assigning {1} to v;,vs,v3 and
s0 Yrr(T) € ¥r(T") 4+ 3. Since [V(T')| = n -3, s(T") = s(T) — 1 and
£(T') = ¢(T) — 1, we deduce from the induction hypothesis that

Yr(T) < 'Yrr(T,)‘l"?’
2(n—3)+4sz')+Z(T') 5~| +3
" n+43!T!+e!T!—l '|+3

l— n+4s!T2+£!T! .l- (.)

IA I IA

Claim 4. deg(vs) = 2.
Proof. Suppose that deg(vs) > 3 and let T" = T — {v,,v3,v2,v1}. Then
V(T =n—-4, s(T') = s(T)—1 and £T") = ¢(T) — 1. On the other hand,
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f can be extended to an RRDF of T by assigning {1} to vy, v2,v3,v4. Thus
Yor(T) € ¥r(T') + 4. As above, we have v,.(T) < [MI%MM']. (m)
If vs is a support vertex, then T = Ps and

2n+-4s(T)+€¢(T)-5
3
Hence suppose that vs is not a support vertex.

Claim 5. deg(vg) = 2.

Proof. Suppose that deg(vs) > 3 and let T’ = T — {vs, v4, v3,v2,v1}. Then
[V(T")| =n-—5, s(T') = s(T)—1 and ¢T') = £(T)—1. On the other hand,
f can be extended to an RRDF of T by assigning {1} to vy, vs,v3,vs, 05
and so ¥pr(T) € +(T") + 5. It follows from the induction hypothesis that
Yrr(T) < [2t2HUTI-8, (W)

If vg is a support vertex, then T = P; and so

on(T) =6 < [22F 4s(T)3+ «T) -5,

Hence we may assume that vg is not a support vertex.

Claim 6. deg(v;) = 2.
Proof. Suppose that deg(v7) > 3 and let T' = T — {vs, vs,v4,v3, V2,01 }.
Then |[V(T')| =n — 6, s(T') = s(T) — 1 and 4T") = {T) - 1. If v; € Vg,
then f can be extended to an RRDF of T by assigning {1} to v, {1,2}
to vo,vs and @ to vs, v4,ve, and if vy & Vp, then f can be extended to an
RRDF of T by assigning {1,2} to v;,v4,v7 and 0 to vy, vs, vs, ve, implying
that v,(T') < v,+(T')+5. By the induction hypothesis, we obtain v,.(T) <
Yrr(T') + 5 < [2tdelDpiD)=07, (m)
We now return to the proof of the theorem. If T is a path of order n > 8,
then it follows from Example 2 (a) vr(T) = [284] < [Mfu@:ﬁé].
Now suppose that T is not a path, and let vi,; be a vertex of degree
at least 3 such that & is minimum. Then k£ > 7, and by symmetry we
know that vp_1,vp—2,...,vp—¢ are vertices of degree two. Let T/ =T —
{v1,v2,...,v}. Then |V(T")| = n—k, s(T') = s(T) -1, &(T") = (T)—-1. If
k =1,2(mod 3), then it follows by Example 2 and the induction hypothesis,
that

'Yrr(T)=6= I- ]

7rr(T) < [Z’%‘l'\ + [z(n—k)+4s(g')+2(7‘)_lo‘|
< [ M&ﬂl‘ﬂ]

3

Let now k = 3t for an integer t > 3. If vk41 € Vi, then f can be extended
to an RRDF of T by assigning {1} to v;, {1,2} to va,vs,...,v3—; and
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@ to the remaining vertices of {v1,vs,...,vs:}, and if veyy € Vo, then f

can be extended to an RRDF of T by assigning {1,2} to vi,vs,...,V3t+1

and 0 to the remaining vertices of {v1,v2,...,vs:}. This implies ,.(T) <

Yr+(T') + 2t + 1. By the induction hypothesis, we obtain

2n+4s(T)+¢(T) -5
3

Yor(T) S ver(T) + 2t +1 L [ 1.

This completes the proof. O
Observation 14 Let T be a tree of order n > 2. Then
e (T) 2 (T).

If diam(T') > 3, then ~,.(T") = £(T') if and only if each vertex of T is a leaf
or a strong support vertex.

Proof. If g is an RRDF on T', then g(v) # 0 for each leaf v of T. Therefore
Yr+(T) 2 €(T), and the lower bound is proved.

Now let diam(T") > 3. Assume first that each vertex of T is a leaf or a
strong support vertex. Let S = {u,u2,...,ux} be the set of strong support
vertices. Since diam(T) > 3, the subtree T[S] is connected and contains at
least two vertices. Let v; be a leaf adjacent to u; for i € {1,2,...,k}, and
define f: V(T) = P({1,2}) by f(u:) =0, f(v;) = {1} for i € {1,2,...,k}
and f(x) = {2} otherwise. Then f is an RRDF on T of weight £(T") and
thus v,..(T) = ¢(T).

Conversely, assume that 4,..(T) = #T). Let h be an RRDF on T.
Suppose that T contains a vertex w which is neither a leaf nor a support
vertex. If h(w) # @, then we obtain the contradiction v..(T) > ¢T) + 1.
If h(w) = 0, then w has a neighbor y such that h(y) # 0. Since y is not a
leaf, we obtain the contradiction 4,-(T') > ¢(T) + 1. Therefore each vertex
of T is a leaf or a support vertex.

Suppose that u is a support vertex adjacent to exactly one leaf v. If
h(u) # 9, v (T) > €(T)+1, a contradiction. If h(u) = @, then h(z) = {1,2}
for z € N(u) and so ~,-(T) > 4(T) + 1, a contradiction again. Hence each
support vertex is strong, and the proof is complete. O

The star K -1 shows that the condition diam(7") > 3 in Observation
14 for the characterization of trees with v.~(T) = €(T') is necessary.
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