DOMINATION NUMBERS OF m-CACTUS CHAINS
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Abstract: In this paper we present explicit formulas for domination numbers of equi-
distant m-cactus chains and find the corresponding minimum dominating sets. For an
arbitrary m-cactus chain, we establish the lower and the upper bound for its domination
number. We find some extremal chains with respect to this graph invariant.
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1 Introduction and terminology

Cactus graph is a connected graph in which any two simple cycles have at
most one vertex in common. The study of such graphs started in 1950’s
under the name Husimi trees, after a paper by Kodi Husimi [9]. Later, in
1953, Harary and Uhlenbeck wrote a paper (8], in which they used the term
cactus graph for a graph in which every cycle is a triangle. Since then, the
study of cactus graphs has attracted a significant attention because some
NP-hard facility location problems can be solved in polynomial time for
cactus graphs [1, 12].

An m-cactus graph is a cactus in which all cycles have m vertices.

Finite m-cactus chain is an m-cactus graph consisting of cycles C1,,
C2,...,Ch h > 2, with the following properties:

(i) Fori=1,...,h—1,C and Cit! have a common vertex,

(ii) each vertex belongs to at most two cycles.

Examples of finite m-cactus chains are given in Figure 1.

With G, we denote an m-cactus chain of length k. We write

Gh = CLCZ ...Ch, where CL, and C! are terminal cycles. Subgraph
CrCkH!...Ck¥t k> 1,6 >0,k+t < h, is called a subchain of G-

Let ¢; = min{d(y,w) : y € V(C{ ), w € V(CH2)},i=1,2,...,h— 2. We
say that ¢; is the distance between cycles Ci, and Cif2.

An m-cactus chainin whiche; =c; = ... =cpa =¢,1 < c < | ] is called
an equidistant m-cactus chain, and is denoted with EG?,. See Figure 1b.
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The notion of m-cactus chain appeared in [4], where the authors considered
hexagonal cactus chains.

A subset D of the vertex-set of G is called a dominating set if every vertex
v not in D is adjacent to at least one vertex of D. The domination number
v(G) is the cardinality of any smallest dominating set.

A dominating set D of a graph G is perfect if each vertex of G is dominated
by exactly one vertex in D. A perfect dominating set of G is necessarily a
minimum dominating set of G as well.

The domination number is one of the most studied simple graph invariants.
Several books ([6, 7]} are written on this invariant alone, and many classes
of graphs were investigated with respect to it [5, 10, 11].

This article deals with determination of minimum dominating sets of EG?,,
and proving its minimum cardinality, i.e. determination of domination
numbers of EG",. For an arbitrary G?, bounds for v are established and
extremal chains were found.
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FIGURE 1. a) G§ and b) EGS

2 Domination numbers of EG"

We start by labeling the vertices of EG", in the way shown in Fig. 2.

FIGURE 2. Labeling of vertices of EGP,.

Evidently, p + ! + 2 = m. We take p <! and ¢ = d(ui—1,u;), i =1,...,h.
The following well-known result will be used repeatedly in our proofs.
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Proposition 1 Let C,, be a cycle and P,, a path with m vertices. Then

Cm) =2(Pm) = [ 3]

Now we can state our main results.

Theorem 1 Let EG?, be the equidistant cactus chain of length A > 1 and
m > 3. Then

( m = 1(mod 3),
m m, ¢ = 0(mod 3),
h[?] = (h=1), m = 2 (mod 3) with
¢ =0,2(mod 3),
WEGh) = { m |k
h? - [5," m = 0(mod3) and ¢ = 1,2 (mod 3),

h(l-%] - 1) + [h—;l], m = 2 (mod 3) and ¢ = 1 (mod 3).

\

Proof: The case h = 1 is settled in Proposition 1. We continue with the
proof for h > 2.

Case 1 m = 1 (mod 3).

Let ¢ = 0(mod3). Then ! = 0(mod3) and p = 2(mod3). We consider
theset D; = {2, ,:5=1,2,..., [l u{zi; i :d=12,...,§}.

Set Py = (UL, D;) U {us} is a dominating set of EGE .

If ¢ = 1 (mod 3), then ! = 2 (mod 3) and p = 0 (mod 3).

Set P, = (UL, D;) U {us}, where

Di={23;_1:5=1,2,...,8}u{z};,_,:5=1,2,...,[4]}, is 2 dominating
set of EGPL,.

For ¢ = 2(mod3) we have l,p = 1(mod3). Set P, = (UL, D;) U {uo},
where D; = {u;} U {z};:j=1,2,...,| 2|} U{zi;:i=12,...,[4},isa
dominating set of EG%,.

By calculating the cardinality of sets P,, r = 0,1, 2, we obtain

Y(EGY) < |Pr|=h [g] —h+1.
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Examples of EG!, with m = 1 (mod 3) and corresponding dominating sets
P., r=0,1,2, are presented in Figure 3.

FIGURE 3. Minimum dominating set of a) C}; with ¢ = 6, b) C}; with c =4 and c)
C3, with c= 5.

In the sequel we prove that P., r = 0,1,2 has the smallest cardinality
among all dominating sets of EG?,.

Subcase 1.1 ¢ # 2 (mod 3).

For ¢ = 0 (mod 3) and h > 1, the set Py\ {un} is a perfect dominating set of
EG! \ {un}, and therefore is the minimum one. To dominate u, we need
at least one more dominating vertex. The same conclusion is obtained for
case ¢ = 1 (mod 3).

We conclude v(EGh) = h|'_13£'| —h+1.

Subcase 1.2 ¢ = 2 (mod 3).

Lemma 1 There exists a minimum dominating set D such that
{ui:i=0,1,...,h} C D.

Proof. Let D be a minimum dominating set such that u; ¢ D for some
fixed s € {0,1,...,h}.

We first consider the case s # 0,h. If u, ¢ D, then u, is dominated by
at least one adjacent vertex. If we assume that Cj, contains a vertex that
dominates u,, then from Proposition 1, C3, is dominated by at least [-':;—']
vertices. Since ¢ = 2(mod3), either u,—1 € D or us—; ¢ D, but it is
dominated by vertex from C3,. Let T = DN C}, and u, ¢ T. We define
D'=D\TUT', where T = {us—1,us} U {23;: 5 =1,..., |§]}

U{zs,; :j=1,...,|%]}. Since |T| =|T|, we have |D’| = |D|, so D' is also
a minimum dominating set of EG%,.

The case when u, is dominated by some adjacent vertex from C3} lis
symmetric to the previous one. For s = 0, only C}, contains at least one
adjacent vertex that dominates ug. Case s = h is symmetric to the case
s=0. O

Now, let D be a minimum dominating set that satisfies Lemma 1. Then
Vi=1,...,h, vertices z},z}, z} and zj are dominated by the set
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{ui:i=1,. h} To dominate the remaining ! + p — 4 vertices in C?,, we
need at least [" 1+ [252] = [2] - 2 vertices.
It follows that |[D| =h ([2] —2) +h+1=h[Z] - h+1.

Case 2 m = 2 (mod 3).
Let ¢ = 0(mod 3). Then p = 2(mod 3) and ! = 1 (mod 3).

Set Qo = (U, D; ) U {uo}, where D; = {u;} U {23_1 i=12,...,|8]}
U{z};:5=1,2,...,(§]}, is a dominating set of EG%,.

It follows that 7(EG ) < Qo = [ﬁ] —h+1.

Now let ¢ = 1(mod 3). Then {,p = 0 (mod 3) We consider the set

{u1+3z} ) {z§:3irzg;-_3;;z§;-31 :3=1..., 3)3 =1, 3}
U {xé;"_ag,zgfs‘,:cg;":’; i=1,...,5}.
For h = 0(mod3) set (Q1)o = (U?__I,ID,-) U {un} is a dominating set of
EGh.

For h = 1 (mod 3) dominating set is

@1 = (V7D ) uundueor 7= B 9 = 1 ).
For h = 2 (mod 3) set

@)z = ( uld)- ‘D,-) U{un1}U {254, 25:5=1,...,2}

U{z4 2k :5=1,...,4} is a dominating set of EGE,.

Sets (@1)r, 7 =0,1,2 are a dominating sets of EG?, and

'Y(EG:In) < (@) = h([%’] - 1) + [%‘,’ r=0,1,2.

Finally, let ¢ = 2 (mod 3). We have p=1(mod3) and { = 2 (mod 3).
Set Q2 = (UL, D; ) U{uo}, where D; = {u;}U {2};:5=1,2,...,|2]}
U{zi;:i=12,...,|§]} isa dommatmg set of EGh,.

We conclude 'y(Ean) <|Qz2| = m —h+1.

OEKZ}OOODGQQ

FIGURE 4. Minimum dominating set of a) C3, with ¢=6, b) C}; with c=5 and c) C§
with ¢ =4.

Let us prove that Qo, @2 and (Q;),, r = 0,1, 2 are the smallest dominating
sets of EGh,.
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Subcase 2.1 ¢ # 1 (mod 3)

Lemma 2 If D is a minimum dominating set of EG , then D contains all
cut-vertices.

Proof. Let D be a minimum dominating set such that u, ¢ D for some
fixed s € {1,...,h — 1}. Then D contains at least one vertex adjacent to
u,. Let T be the set such that DN C3,C3! = T and T contains at least
one vertex adjacent to u,.

We have [T| = 2[%] and C5C5t! is dominated by vertices inside of
C2.Cot, Let T' = {us—1,us, Ug41} U {zf;j,z""'l i=1,...,|8]}

U{z§;, %41 : 5 =1,...,|4|}. Set D' = D\TUT also dominates EGh.
Since |T'| < |T|, we have |D’| < |D|, and this is a contradiction to the
assumption that D is a minimum dominating set. Therefore, every mini-
mum dominating set necessarily contains all cut-vertices. O

From Lemma 2 we conclude that we need at least [252] + [152] = ["‘] 2
dominating vertices for CJ,, j = 2,...,h—1. To dominate Cis \{w1,2}, 2 l}
we need at least ["‘] — 1 vertices. The same number of vertices is ne-
cessary to dominate C%, \ {un—1, %}, 2}

We conclude v(G%) = h[%-l —h+1.

Subcase 2.2 ¢ = 1 (mod 3).

Let t = |#] + 1. We partition G%, into blocks Bj, j = 1,...,t. For j #¢
we define B; = C3~2C3%-1C% \{us_,} The structure of B, depends on h.

Lemma 3 For any dominating set D we have |D N B;| > 3[%] - 2,
j=1,...,t—1.

Proof. Let j = 1. Let z} and zg be dominated by vertices from adja-
cent block. To dominate C},C2, we need at least 2 ["‘] 1 vertices. In this
case ug ¢ D. (If we assume that u € D, then we would need at least 2 [ 2]
vertices to dominate C1,CZ.) To dominate C3, \ {uz,us,z},23} we need
at least [ 1+ f&'—'l] = ["‘] — 1 vertices. Let j # 1. Let us assume that

vertices ug;j—3, :zr:;3 and zgf are dominated by vertices from adjacent blocks.
To dominate C3J~ —2\ {u3;—3,u3;-2}, we need ["‘] — 1 perfect dominating
vertices. This follows from the fact that p,l = O(mod 3). Then, to domi-
nate Cs"’1 \ {231, u3;_1}, we need [%] — 1 perfect dominating vertices.
C3\ {2%,2}7} U {2371, ugj_1} is dominated by at least [%] vertices.

WeconcludelDﬂB|>3|-'"]—2 ji=1,. -1 ]
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Let h = 0(mod)3. Then B; = {us}.

Lemma 4 If |D N B,| = 0, then there exists a block B,, s € {1,...,t -1},
such that |D N B,| > 3[2] — 1, for any dominating set D.

Proof. Let |D N B,] = 0. Then D contains at least one of the vertices
x} and zh. We consider three cases:

1° zgeD,x?¢D,

2° z} ¢ D and z} € D, and

3° zp,xf € D.

All cases imply that |[D N Ch| > [2]. First two cases imply that either
Unh—1 € Dor up_y ¢ D. If up_y ¢ D, then up_; is dominated by some
vertex from C%. The last case implies up_; € D.

Let up—y € D. If up_3 is dominated by vertices from adjacent block, we
have |[DN B;_1| = 3[%] — 2. If up_3 is dominated by some vertex inside
of Be—1, then |[DN B,_;| > 3 [%] — 1 and we are done with the proof.

If up_y ¢ D, then, even if up_3 is dominated by some vertex from adjacent
block, we obtain |D N B;_| > 3 [%2] — 1. However, this lower bound is not
the minimum one.

Let us return to the case when up_; € D and u;_3 is dominated by some
vertex from adjacent block. Then, up_3 is dominated by at least one of
the vertices z;'~® and z~3 from B;_,. We continue with the proof indu-
ctively and either obtain a block B such that |D N Bs| > 3[%] — 1 for
some s € {2,...,t —1} or [DNB;| =3[%] -2, 5 =2,...,t — 1. But
then u3 is dominated by at least one of the vertices xi’ and zg. Since all
vertices from B, are dominated only by vertices inside of B;, we conclude
that |[DNB,| >3 [%] - 1. O

From Lemmas 3 and 4 we conclude that for A = 0 (mod 3) we have
IDI2 (-2)(3[51-2) +3[F] -1=h([F] -1) + [2}].

For h = 1(mod 3) we have B; = C%. Since only ux_; can be dominated
by vertices from adjacent block, we conclude that |D N B;| > [2] for any
dominating set D.

If h = 2(mod3), then B, = Ch-1Ck. If up_, is dominated by some
vertex from B;_;, then C%'\ {up—2,un—1} is perfectly dominated by
[%] — 1 vertices. To dominate C% we need at least [2] vertices. We

3
obtain [DN B;| > 2[Z] - 1.

By using Lemma 3 and the above conclusions, for A = 1,2(mod 3) we
have |D| > h ([%3] — 1) + 24 for any dominating set D.
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Case 3 m = 0(mod 3).

For ¢ = 0(mod 3) we have p,l = 2(mod 3). If we consider the set
Ro = (U, D;) U {uo}, where D; = {u;} U {z}; : i =1,2,...,|&|}
Uf{ak;:5=12,..., |£]}, then Ry is dominating set of EG", and

Y(EGE) < |Ro| = h%‘- —h+1.

Let ¢ = 1(mod 3). We have p = 0(mod 3) and ! =1 (mod 3)

We consider the sets Dg;—1 = {ugi—1} U {252;:2 i=1.2,. }
U{xg;:i :j = 1,2,..., I_%J} and

Dy ={z%:j=12,...,8}u{adi:j=1,2,..., 4]}
& A
Then R; = (U,L’l] Dzi_l) U (U,L’IJ ng) is a dominating set of EG?, and
h

h)y < Byl =h — | 2.
A(EGH) < IRl =g - | 3]
If ¢ = 2 (mod 3), then p = 1(mod 3) and { = 0 (mod 3).
Set Ry = (Ul—é.-.| Do ) U (U!‘fil Dgi), with

Dyiy = {uzi1}U{egiT1 =12, [§]}u{afiy: 5 =1,2,..., 5}
and Dy; = {22! j—12 L|BlYuf{aZ :i=1,2,..., i},

is a dominating set of EG", and v(EG!) < |R;| = h— - l-’ﬁJ .

OO0 OO0 U0

FIGURE 5. Minimum dominating sets of a) C}, thh ¢ =6, b) C§ with ¢ =4 and c)
C}, withc=

Let us prove that sets R, r =0, 1,2, have the minimum cardinality among
all dominating sets of EG%,.

Subcase 3.1 ¢ = 0 (mod 3).

Lemma 5 Set Rp is the unique minimum dominating set of EG® and
(Ro)h—1 C (Ro)n Yh > 2.

Proof. Set Ry is a perfect dominating set of EG? and therefore is the
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minimum one. Uniqueness of Ry follows from the fact that
{ui:i=1,...,h—1} C D for any minimum dominating set D of EGh,.
To prove this, we use the same approach as in the proof of Lemma. 2.
Since vertices 27, z], zg and z] are already dominated by u;_1, u;, there is
the unique dominating set of vertices that dominates remaining vertices in
Cl,j=2,...,h—1. From uj,us-1 € D, it follows that for undominated
vertices in C}, and C? we need altogether 2 — 2 perfect dominating
vertices. Therefore, D = Ry and (Ro)a—1 C (Ro)n, Vh > 2. a

From Lemma 5 it follows that y(EG") = |Ro| = h-’g ~h+1.
Subcase 3.2 ¢ =1 (mod 3).

We partition EG”, into blocks B;, 7 = 1,2,...,t, where t = [%J + 1.
We define B; = CZ~1C%\ {ug;},j=1,2,...,t—1. If h = 0(mod 2), then
B; = {un}. For h = 1(mod2) we have By = Ck,.

In a similar way as in the previous cases we conclude that for any domi-
nating set D we have |[DNB;| > 2% ~1,5=1,...,t—1. If h = 0(mod 2),
then |D N (Bi—1 U By)| 2 2% — 1. For h =1(mod2) |[DN By| > .

We conclude y(EG!,) > h% - 15|

Subcase 3.3 ¢ = 2 (mod 3).

The proof that R; is a dominating set of minimum cardinality is simi-
lar to the proof for the subcase 3.1. We simply interchange symbols | and
p, and z and z. [}

Corollary 1 For m = 1(mod3) and m = 2(mod3) with ¢ # 1(mod3)
there exists a minimum dominating set D; of EGZ, with the property
{ui:4=0,1,...,h} C Dy. Then Dp_y C Dy, VR > 2.

Proof. Let m = 1(mod3). For ¢ = 2(mod3), we proved that P, is a
minimum dominating set of EG!,. Since it contains all vertices from the
set {u; :4=0,1,...,h}, its existence is proved.

Let ¢ = 0 (mod 3). We consider the set
Si={uw}u{zf;:5=12,...,|B]}u{sl;:5i=1,2,...,i}.

Set P§ = (UL;S:) U {uo} is a dominating set of EGE .

Let ¢ = 1(mod3). A dominating set of EG% is P{ = (UL,S;) U {uo},
where S; = {ui}U{2};: 7 =1,2,...,8}u{z}; : s =1,2,...,[§]}.

We have |P§| = |P|| = h [%] — h+1. The second assertion of the corollary
follows from the construction of sets Pj, P{ and P;.

Assertion for the case m = 2(mod 3) with ¢ # 1 (mod 3) follows from the
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definition of dominating sets Qo and Q2. These are the minimum domi-
nating sets that satisfy Lemma 2 and (Qo);-1 C (Qo);, (@2)j—1 C (Q2);,
i=2,...,h a

3 Domination numbers of G*,

In this section we present some results about dominating sets and domina-
tion numbers of an arbitrary m-cactus chain G* and find some extremal
chains regarding to domination numbers. For kA > 2 we will consider G%,
as a chain obtained from G%! by adding one new cycle to C*~1. With Dj,
we denote the minimum dominating set of G%, h > 1.

Proposition 2 v(G%) + [2] > v(Gk) > v(GE ) + [2] - 1.

Proof. The first inequality is obvious. To prove the second inequality,
notice that vertices from the minimum dominating set of G*~! can domi-
nate at most 3 vertices in C? of G%,. For the remaining vertices in C% we
need at least [Z] — 1 dominating vertices. O
Theorem 2 Let G?, be an arbitrary m-cactus chain of length h > 2. Then
either y(G) = 7(Gh 1) + [B] - L or v(GE) =+(Gh71) + [Z].

If y(GE) = v(GiY) + [Z], then v(GiFY) =v(GE) + [F] - 1.

Proof. Let m = 1(mod3). If we choose T, to be a dominating set of
G! such that {u;:i=1,...,h ~1} C Th, then we obtain

ITh N (CL N\ {uj—1,u )l 2 [F] -2Vi=2,...,h—1,

[T N (CE N\ {w})] = [-’;;‘-] —1and [T, N(CH\ {un-1})| 2 [-’sﬂ] — 1. Since
IT» N CL| < [2],Vj =1,...,h, we conclude |Th| = h [Z] — A+ 1. From
Proposition 2 it follows that T}, = Dj,. Since Dj, contains all cut-vertices,
we have y(Gh) =v(GE 1) + [2] - L.

The same approach is used for the case m = 2 (mod 3) with ¢; # 1 (mod 3)
Vi=1,...,h—2.

Let us prove the theorem for case m = 0 (mod 3). Adding one new cycle to
G"~1 results in m — 1 new vertices. Let {up—1} = Ci-1nCh.

We consider the following cases:

1° up—1 € Dp-31. Then up_; dominates two more vertices in CP. For
the remaining m — 3 vertices we need at most 3 — 1 vertices. Therefore,
|Dh| < |Dh-1| + B — 1. Since |[DyNC}| = B, Vj =1,...,h, we conclude
that |Dr—1| < {Dn| — -';—‘ — 1. We obtain |Dp| = |Dp-1| + % — 1, that is,
v(Ch) =v(GhH +[3] - 1.

2° up_; ¢ Dp—y. If there exists another minimum dominating set D} _,
such that up—; € Dj,_,, then we take into consideration Dj _, instead
of D;_; and continue as in the previous case. Otherwise, up_) is domi-
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nated by at least one vertex from C%~!. Then |Dy| < |Dp—y] + 2 =, smce
we have m — 1 undominated vertices in C%. From |D, N C%| = -5- it
follows that [Dy_1| < |Dn| - 3. We conclude |Dr| = |Dp-1| + % and
v(Gh) =G ) + [%].

If v(Gh,) = ¥(G51) + [ 2], then at least m — 2 vertices from C¥, are not
dominated by Dj_;. But then obviously up_y ¢ Dp—;. From case 2° we
obtain |Dp| = |Da_y| + 3 and dominating vertices in C% can be chosen
in a way so that up, € Dh, {un} = CE N Ch+l, Now we have case 1° from
which we conclude v(G/!) = (G’,;,) + l""] -1.

In a similar way we prove the theorem for m = 2 (mod 3) with
¢i=1(mod3),Vi=1,...,h—2. O

Corollary 2 v(G%) =h[Z] — h+1 for m = 1 (mod 3) and for
m = 2 (mod 3) with ¢; # 1(mod3),i=1,...,h —2. (]

Corollary 3 Let m # 2 (mod 3). There exists a minimum dominating set
Dy, of Gt such that D;_; C D; Vj=2,...,h. O

Theorem 3 Let m > 4. Then h [2] — (h—1) < y(GR) < h[Z] - |2].

Proof. The first inequality follows from Proposition 2. The second inequa-
lity follows from Theorem 2 by constructing a chain G%, such that

YGE) =v(Gi; 1) + [%] — 1, for j = 0(mod 2), and

YGE) = (G 1) + [Z], for j =1(mod?2), j=3,...,h 0

An example of an m-cactus chain with the smallest domination number is
EG?, with m =1 (mod 3).

Examples of extremal m-cactus chains with the greatest v are illustrated
in Figure 6.

FIGURE 6. Extremal m-cactus chains with the corresponding minimum dominating
sets: a) C§ and b) C§.
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