DOMINATION NUMBERS OF m-CACTUS CHAINS

Snježana Majstorović¹, Antoaneta Klobučar², Tomislav Došlić³

Abstract: In this paper we present explicit formulas for domination numbers of equidistant m-cactus chains and find the corresponding minimum dominating sets. For an arbitrary m-cactus chain, we establish the lower and the upper bound for its domination number. We find some extremal chains with respect to this graph invariant.

Key words: m-cactus chain, minimum dominating set, domination number, perfect dominatina set

2000 subject classifications: Primary 05C69

Introduction and terminology 1

Cactus graph is a connected graph in which any two simple cycles have at most one vertex in common. The study of such graphs started in 1950's under the name Husimi trees, after a paper by Kodi Husimi [9]. Later, in 1953, Harary and Uhlenbeck wrote a paper [8], in which they used the term cactus graph for a graph in which every cycle is a triangle. Since then, the study of cactus graphs has attracted a significant attention because some NP-hard facility location problems can be solved in polynomial time for cactus graphs [1, 12].

An m-cactus graph is a cactus in which all cycles have m vertices. Finite m-cactus chain is an m-cactus graph consisting of cycles C_m^1 ,

 $C_m^2, \ldots, C_m^h, h \geq 2$, with the following properties:

(i) For i = 1, ..., h - 1, C_m^i and C_m^{i+1} have a common vertex,

(ii) each vertex belongs to at most two cycles.

Examples of finite m-cactus chains are given in Figure 1.

With G_m^h we denote an m-cactus chain of length h. We write $G_m^h = C_m^1 C_m^2 \cdots C_m^h$, where C_m^1 and C_m^h are terminal cycles. Subgraph $C_m^k C_m^{k+1} \cdots C_m^{k+t}$, $k \ge 1$, $t \ge 0$, $k+t \le h$, is called a subchain of G_m^h .

Let $c_i = min\{d(y, w) : y \in V(C_m^i), w \in V(C_m^{i+2})\}, i = 1, 2, ..., h-2$. We say that c_i is the distance between cycles C_m^i and C_m^{i+2} .

An *m*-cactus chain in which $c_1 = c_2 = \ldots = c_{h-2} = c$, $1 \le c \le \lfloor \frac{m}{2} \rfloor$ is called an *equidistant m*-cactus chain, and is denoted with EG_m^h . See Figure 1b.

¹Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia, e-mail: smajstor@mathos.hr

²Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia, e-mail: antoaneta.klobucar@os.htnet.hr

³Faculty of Civil Engineering, University of Zagreb, Kačićeva 26, HR-10000 Zagreb, Croatia, e-mail: doslic@grad.hr

The notion of m-cactus chain appeared in [4], where the authors considered hexagonal cactus chains.

A subset D of the vertex-set of G is called a *dominating set* if every vertex v not in D is adjacent to at least one vertex of D. The *domination number* $\gamma(G)$ is the cardinality of any smallest dominating set.

A dominating set D of a graph G is perfect if each vertex of G is dominated by exactly one vertex in D. A perfect dominating set of G is necessarily a minimum dominating set of G as well.

The domination number is one of the most studied simple graph invariants. Several books ([6, 7]) are written on this invariant alone, and many classes of graphs were investigated with respect to it [5, 10, 11].

This article deals with determination of minimum dominating sets of EG_m^h , and proving its minimum cardinality, i.e. determination of domination numbers of EG_m^h . For an arbitrary G_m^h , bounds for γ are established and extremal chains were found.

FIGURE 1. a) G_5^5 and b) EG_7^5

2 Domination numbers of EG_m^h

We start by labeling the vertices of EG_m^h in the way shown in Fig. 2.

Figure 2. Labeling of vertices of EG_m^h .

Evidently, p + l + 2 = m. We take $p \le l$ and $c = d(u_{i-1}, u_i)$, i = 1, ..., h. The following well-known result will be used repeatedly in our proofs.

Proposition 1 Let C_m be a cycle and P_m a path with m vertices. Then

$$\gamma(C_m) = \gamma(P_m) = \left\lceil \frac{m}{3} \right\rceil.$$

Now we can state our main results.

Theorem 1 Let EG_m^h be the equidistant cactus chain of length $h \ge 1$ and $m \ge 3$. Then

$$\gamma(EG_m^h) = \begin{cases} h \left\lceil \frac{m}{3} \right\rceil - (h-1), & \begin{cases} m = 1 \pmod{3}, \\ m, c = 0 \pmod{3}, \\ m = 2 \pmod{3} \text{ with } \\ c = 0, 2 \pmod{3}, \end{cases} \\ h \frac{m}{3} - \left\lfloor \frac{h}{2} \right\rfloor, & m = 0 \pmod{3} \text{ and } c = 1, 2 \pmod{3}, \\ h \left(\left\lceil \frac{m}{3} \right\rceil - 1 \right) + \left\lceil \frac{h+1}{3} \right\rceil, & m = 2 \pmod{3} \text{ and } c = 1 \pmod{3}. \end{cases}$$

Proof: The case h = 1 is settled in Proposition 1. We continue with the proof for $h \ge 2$.

Case 1 $m = 1 \pmod{3}$.

Let $c=0\,(\mathrm{mod}\,3)$. Then $l=0\,(\mathrm{mod}\,3)$ and $p=2\,(\mathrm{mod}\,3)$. We consider the set $D_i=\left\{z^i_{3j-2}:j=1,2,\ldots,\left\lceil\frac{p}{3}\right\rceil\right\}\cup\left\{x^i_{3j-1}:j=1,2,\ldots,\frac{l}{3}\right\}$. Set $P_0=\left(\cup_{i=1}^hD_i\right)\cup\left\{u_h\right\}$ is a dominating set of EG_m^h .

If $c = 1 \pmod{3}$, then $l = 2 \pmod{3}$ and $p = 0 \pmod{3}$. Set $P_1 = \left(\bigcup_{i=1}^h D_i\right) \cup \{u_h\}$, where $D_i = \left\{z_{3j-1}^i : j = 1, 2, \dots, \frac{p}{3}\right\} \cup \left\{x_{3j-2}^i : j = 1, 2, \dots, \left\lceil \frac{l}{3} \right\rceil\right\}$, is a dominating set of EG_m^h .

For $c = 2 \pmod{3}$ we have $l, p = 1 \pmod{3}$. Set $P_2 = \left(\bigcup_{i=1}^h D_i\right) \cup \{u_0\}$, where $D_i = \{u_i\} \cup \left\{z_{3j}^i : j = 1, 2, \dots, \left\lfloor \frac{p}{3} \right\rfloor\right\} \cup \left\{x_{3j}^i : j = 1, 2, \dots, \left\lfloor \frac{l}{3} \right\rfloor\right\}$, is a dominating set of EG_m^h .

By calculating the cardinality of sets P_r , r = 0, 1, 2, we obtain

$$\gamma(EG_m^h) \le |P_r| = h \left\lceil \frac{m}{3} \right\rceil - h + 1.$$

Examples of EG_m^h with $m = 1 \pmod{3}$ and corresponding dominating sets P_r , r = 0, 1, 2, are presented in Figure 3.

FIGURE 3. Minimum dominating set of a) C_{13}^3 with c=6, b) C_{10}^3 with c=4 and c) C_{10}^3 with c=5.

In the sequel we prove that P_r , r = 0, 1, 2 has the smallest cardinality among all dominating sets of EG_m^h .

Subcase 1.1 $c \neq 2 \pmod{3}$.

For $c = 0 \pmod{3}$ and $h \ge 1$, the set $P_0 \setminus \{u_h\}$ is a perfect dominating set of $EG_m^h \setminus \{u_h\}$, and therefore is the minimum one. To dominate u_h we need at least one more dominating vertex. The same conclusion is obtained for case $c = 1 \pmod{3}$.

We conclude $\gamma(EG_m^h) = h \lceil \frac{m}{3} \rceil - h + 1$.

Subcase 1.2 $c = 2 \pmod{3}$.

Lemma 1 There exists a minimum dominating set D such that $\{u_i : i = 0, 1, ..., h\} \subset D$.

Proof. Let D be a minimum dominating set such that $u_s \notin D$ for some fixed $s \in \{0, 1, ..., h\}$.

We first consider the case $s \neq 0, h$. If $u_s \notin D$, then u_s is dominated by at least one adjacent vertex. If we assume that C_m^s contains a vertex that dominates u_s , then from Proposition 1, C_m^s is dominated by at least $\left\lceil \frac{m}{3} \right\rceil$ vertices. Since $c = 2 \pmod{3}$, either $u_{s-1} \in D$ or $u_{s-1} \notin D$, but it is dominated by vertex from C_m^s . Let $T = D \cap C_m^s$ and $u_s \notin T$. We define $D' = D \setminus T \cup T'$, where $T' = \{u_{s-1}, u_s\} \cup \{z_{3j}^s : j = 1, \dots, \lfloor \frac{p}{3} \rfloor\}$

 $\cup \{x_{3j}^s: j=1,\ldots,\lfloor \frac{l}{3} \rfloor \}$. Since |T|=|T'|, we have |D'|=|D|, so D' is also a minimum dominating set of EG_m^h .

The case when u_s is dominated by some adjacent vertex from C_m^{s+1} is symmetric to the previous one. For s=0, only C_m^1 contains at least one adjacent vertex that dominates u_0 . Case s=h is symmetric to the case s=0.

Now, let D be a minimum dominating set that satisfies Lemma 1. Then $\forall i = 1, ..., h$, vertices z_1^i, x_1^i, z_p^i and x_l^i are dominated by the set

 $\{u_i:i=1,\ldots,h\}$. To dominate the remaining l+p-4 vertices in C_m^i , we need at least $\left\lceil \frac{l-2}{3} \right\rceil + \left\lceil \frac{p-2}{3} \right\rceil = \left\lceil \frac{m}{3} \right\rceil - 2$ vertices. It follows that $|D| = h\left(\left\lceil \frac{m}{3} \right\rceil - 2\right) + h + 1 = h\left\lceil \frac{m}{3} \right\rceil - h + 1$.

Case 2 $m = 2 \pmod{3}$.

Let $c = 0 \pmod{3}$. Then $p = 2 \pmod{3}$ and $l = 1 \pmod{3}$. Set $Q_0 = (\bigcup_{i=1}^h D_i) \cup \{u_0\}$, where $D_i = \{u_i\} \cup \{z_{3j}^i : j = 1, 2, \dots, \lfloor \frac{p}{3} \rfloor \}$ $\cup \{x_{3j}^i: j=1,2,\ldots, \left\lfloor \frac{l}{3} \right\rfloor \}$, is a dominating set of EG_m^h . It follows that $\gamma(EG_m^h) \leq |Q_0| = h \lceil \frac{m}{2} \rceil - h + 1$.

Now, let $c = 1 \pmod{3}$. Then $l, p = 0 \pmod{3}$. We consider the set $D_i = \{u_{1+3i}\} \cup \{z_{3j-1}^{1+3i}, z_{3j-1}^{2+3i}, z_{3j}^{2+3i}: j=1, \dots, \frac{p}{3}, s=1, 3\} \cup \{x_{3j-2}^{1+3i}, x_{3j}^{2+3i}, x_{3j-1}^{3+3i}: j=1, \dots, \frac{l}{3}\}.$

For $h = 0 \pmod{3}$ set $(Q_1)_0 = \left(\bigcup_{i=0}^{\frac{h}{3}-1} D_i\right) \cup \{u_h\}$ is a dominating set of

For $h = 1 \pmod{3}$ dominating set is

$$(Q_1)_1 = \left(\bigcup_{i=0}^{\left \lfloor \frac{h}{3} \right \rfloor - 1} D_i \right) \cup \{u_h\} \cup \{z_{3j-1}^h : j = 1, \dots, \frac{p}{3}\} \cup \{x_{3j-2}^h : j = 1, \dots, \frac{l}{3}\}.$$
 For $h = 2 \pmod{3}$ set

For
$$h = 2 \pmod{3}$$
 set $(Q_1)_2 = \left(\bigcup_{i=0}^{\left\lfloor \frac{h}{3} \right\rfloor - 1} D_i\right) \cup \{u_{h-1}\} \cup \{z_{3j-1}^{h-1}, z_{3j}^h : j = 1, \dots, \frac{p}{3}\}$

 $\cup \left\{x_{3j-2}^{h-1}, x_{3j}^{h}: j=1,\ldots, \frac{l}{3}\right\}$ is a dominating set of EG_m^h . Sets $(Q_1)_r$, r = 0, 1, 2 are a dominating sets of EG_m^h and

$$\gamma(EG_m^h) \le |(Q_1)_r| = h(\lceil \frac{m}{3} \rceil - 1) + \lceil \frac{h+1}{3} \rceil, \quad r = 0, 1, 2.$$

Finally, let $c = 2 \pmod{3}$. We have $p = 1 \pmod{3}$ and $l = 2 \pmod{3}$. Set $Q_2 = (\bigcup_{i=1}^h D_i) \cup \{u_0\}$, where $D_i = \{u_i\} \cup \{z_{3j}^i : j = 1, 2, \dots, \lfloor \frac{p}{3} \rfloor\}$ $\cup \left\{ x_{3j}^i: j=1,2,\ldots,\left\lfloor \frac{l}{3}
ight
floor
ight\}$, is a dominating set of EG_m^h .

We conclude $\gamma(EG_m^h) \leq |Q_2| = h \left\lceil \frac{m}{2} \right\rceil - h + 1$.

FIGURE 4. Minimum dominating set of a) C_{14}^3 with c=6, b) C_{11}^3 with c=5 and c) C_8^6

Let us prove that Q_0, Q_2 and $(Q_1)_r, r = 0, 1, 2$ are the smallest dominating sets of EG_m^h .

Subcase 2.1 $c \neq 1 \pmod{3}$

Lemma 2 If D is a minimum dominating set of EG_m^h , then D contains all cut-vertices.

Proof. Let D be a minimum dominating set such that $u_s \notin D$ for some fixed $s \in \{1, \ldots, h-1\}$. Then D contains at least one vertex adjacent to u_s . Let T be the set such that $D \cap C_m^s C_m^{s+1} = T$ and T contains at least one vertex adjacent to u_s .

We have $|T| = 2 \left\lceil \frac{m}{3} \right\rceil$ and $C_m^s C_m^{s+1}$ is dominated by vertices inside of $C_m^s C_m^{s+1}$. Let $T' = \{u_{s-1}, u_s, u_{s+1}\} \cup \{z_{3j}^s, z_{3j}^{s+1} : j = 1, \dots, \left\lfloor \frac{p}{2} \right\rfloor \}$ $\cup \{x_{3j}^s, x_{s+1} : j = 1, \dots, \left\lfloor \frac{l}{2} \right\rfloor \}$. Set $D' = D \setminus T \cup T'$ also dominates EG_m^h . Since |T'| < |T|, we have |D'| < |D|, and this is a contradiction to the assumption that D is a minimum dominating set. Therefore, every minimum dominating set necessarily contains all cut-vertices.

From Lemma 2 we conclude that we need at least $\left\lceil \frac{p-2}{3} \right\rceil + \left\lceil \frac{l-2}{3} \right\rceil = \left\lceil \frac{m}{3} \right\rceil - 2$ dominating vertices for C_m^j , $j=2,\ldots,h-1$. To dominate $C_m^1 \setminus \left\{ u_1, x_l^1, z_p^1 \right\}$ we need at least $\left\lceil \frac{m}{3} \right\rceil - 1$ vertices. The same number of vertices is necessary to dominate $C_m^h \setminus \left\{ u_{h-1}, x_1^h, z_1^h \right\}$. We conclude $\gamma(G_m^h) = h \left\lceil \frac{m}{3} \right\rceil - h + 1$.

Subcase 2.2 $c = 1 \pmod{3}$.

Let $t = \left\lfloor \frac{h}{3} \right\rfloor + 1$. We partition G_m^h into blocks B_j , j = 1, ..., t. For $j \neq t$ we define $B_j = C_m^{3j-2} C_m^{3j-1} C_m^{3j} \setminus \{u_{3j}\}$. The structure of B_t depends on h.

Lemma 3 For any dominating set D we have $|D \cap B_j| \geq 3 \lceil \frac{m}{3} \rceil - 2$, $j = 1, \ldots, t-1$.

Proof. Let j=1. Let x_l^3 and z_p^3 be dominated by vertices from adjacent block. To dominate $C_m^1 C_m^2$ we need at least $2 \left\lceil \frac{m}{3} \right\rceil - 1$ vertices. In this case $u_2 \notin D$. (If we assume that $u_2 \in D$, then we would need at least $2 \left\lceil \frac{m}{3} \right\rceil$ vertices to dominate $C_m^1 C_m^2$.) To dominate $C_m^3 \setminus \{u_2, u_3, x_l^3, z_p^3\}$ we need at least $\left\lceil \frac{l-1}{3} \right\rceil + \left\lceil \frac{p-1}{3} \right\rceil = \left\lceil \frac{m}{3} \right\rceil - 1$ vertices. Let $j \neq 1$. Let us assume that vertices u_{3j-3}, x_l^{3j} and z_p^{3j} are dominated by vertices from adjacent blocks. To dominate $C_m^{3j-2} \setminus \{u_{3j-3}, u_{3j-2}\}$, we need $\left\lceil \frac{m}{3} \right\rceil - 1$ perfect dominating vertices. This follows from the fact that $p, l = 0 \pmod{3}$. Then, to dominate $C_m^{3j-1} \setminus \{z_p^{3j-1}, u_{3j-1}\}$, we need $\left\lceil \frac{m}{3} \right\rceil - 1$ perfect dominating vertices. $C_m^{3j} \setminus \{z_p^{3j}, x_l^{3j}\} \cup \{z_p^{3j-1}, u_{3j-1}\}$ is dominated by at least $\left\lceil \frac{m}{3} \right\rceil$ vertices. We conclude $|D \cap B_j| \geq 3 \left\lceil \frac{m}{3} \right\rceil - 2, j = 1, \ldots, t-1$.

Let $h = 0 \pmod{3}$. Then $B_t = \{u_h\}$.

Lemma 4 If $|D \cap B_t| = 0$, then there exists a block B_s , $s \in \{1, \ldots, t-1\}$, such that $|D \cap B_s| \geq 3 \left\lceil \frac{m}{3} \right\rceil - 1$, for any dominating set D.

Proof. Let $|D \cap B_t| = 0$. Then D contains at least one of the vertices x_l^h and z_p^h . We consider three cases:

1° $z_p^h \in D$, $x_l^h \notin D$, 2° $z_p^h \notin D$ and $x_l^h \in D$, and

 $3^{\circ} z_p^h, x_l^h \in D.$

All cases imply that $|D \cap C_m^h| \ge \lceil \frac{m}{3} \rceil$. First two cases imply that either $u_{h-1} \in D$ or $u_{h-1} \notin D$. If $u_{h-1} \notin D$, then u_{h-1} is dominated by some vertex from C_m^h . The last case implies $u_{h-1} \in D$.

Let $u_{h-1} \in D$. If u_{h-3} is dominated by vertices from adjacent block, we have $|D \cap B_{t-1}| = 3 \left\lceil \frac{m}{3} \right\rceil - 2$. If u_{h-3} is dominated by some vertex inside of B_{t-1} , then $|D \cap B_{t-1}| \geq 3 \left\lceil \frac{m}{3} \right\rceil - 1$ and we are done with the proof.

If $u_{h-1} \notin D$, then, even if u_{h-3} is dominated by some vertex from adjacent block, we obtain $|D \cap B_{t-1}| \geq 3 \left\lceil \frac{m}{3} \right\rceil - 1$. However, this lower bound is not the minimum one.

Let us return to the case when $u_{h-1} \in D$ and u_{h-3} is dominated by some vertex from adjacent block. Then, u_{h-3} is dominated by at least one of the vertices x_l^{h-3} and z_p^{h-3} from B_{t-2} . We continue with the proof inductively and either obtain a block B_s such that $|D \cap B_s| \geq 3 \left\lceil \frac{m}{3} \right\rceil - 1$ for some $s \in \{2, ..., t-1\}$ or $|D \cap B_j| = 3 \left\lceil \frac{m}{3} \right\rceil - 2, \ j = 2, ..., t-1$. But then u_3 is dominated by at least one of the vertices x_l^3 and z_p^3 . Since all vertices from B_1 are dominated only by vertices inside of B_1 , we conclude that $|D \cap B_1| \geq 3 \left\lceil \frac{m}{3} \right\rceil - 1$.

From Lemmas 3 and 4 we conclude that for $h = 0 \pmod{3}$ we have $|D| \ge (t-2) \left(3 \left\lceil \frac{m}{3} \right\rceil - 2\right) + 3 \left\lceil \frac{m}{3} \right\rceil - 1 = h \left(\left\lceil \frac{m}{3} \right\rceil - 1 \right) + \left\lceil \frac{h+1}{3} \right\rceil.$

For $h = 1 \pmod{3}$ we have $B_t = C_m^h$. Since only u_{h-1} can be dominated by vertices from adjacent block, we conclude that $|D \cap B_t| \geq \left\lceil \frac{m}{3} \right\rceil$ for any dominating set D.

If $h=2 \pmod 3$, then $B_t=C_m^{h-1}C_m^h$. If u_{h-2} is dominated by some vertex from B_{t-1} , then $C_m^{h-1}\setminus\{u_{h-2},u_{h-1}\}$ is perfectly dominated by $\left\lceil \frac{m}{3} \right\rceil - 1$ vertices. To dominate C_m^h we need at least $\left\lceil \frac{m}{3} \right\rceil$ vertices. We obtain $|D \cap B_t| \geq 2 \left\lceil \frac{m}{3} \right\rceil - 1$.

By using Lemma 3 and the above conclusions, for $h = 1, 2 \pmod{3}$ we have $|D| \ge h(\lceil \frac{m}{3} \rceil - 1) + \frac{h+1}{3}$ for any dominating set D.

Case 3 $m = 0 \pmod{3}$.

For $c=0 \pmod 3$ we have $p,l=2 \pmod 3$. If we consider the set $R_0=\left(\cup_{i=1}^h D_i\right)\cup\{u_0\}$, where $D_i=\{u_i\}\cup\left\{z_{3j}^i:j=1,2,\ldots,\left\lfloor\frac{p}{3}\right\rfloor\right\}$ $\cup\left\{x_{3j}^i:j=1,2,\ldots,\left\lfloor\frac{l}{3}\right\rfloor\right\}$, then R_0 is dominating set of EG_m^h and $\gamma(EG_m^h)\leq |R_0|=h\frac{m}{3}-h+1$.

Let $c=1 \pmod 3$. We have $p=0 \pmod 3$ and $l=1 \pmod 3$. We consider the sets $D_{2i-1}=\{u_{2i-1}\}\cup \{z_{3j-2}^{2i-1}:j=1,2,\ldots,\frac{p}{3}\}$ $\cup \{x_{3j-1}^{2i-1}:j=1,2,\ldots,\lfloor\frac{l}{3}\rfloor\}$ and $D_{2i}=\{z_{3j}^{2i}:j=1,2,\ldots,\frac{p}{3}\}\cup \{x_{3j}^{2i}:j=1,2,\ldots,\lfloor\frac{l}{3}\rfloor\}$. Then $R_1=\left(\cup_{i=1}^{\lceil\frac{h}{2}\rceil}D_{2i-1}\right)\cup \left(\cup_{i=1}^{\lfloor\frac{h}{2}\rfloor}D_{2i}\right)$ is a dominating set of EG_m^h and $\gamma(EG_m^h)\leq |R_1|=h\frac{m}{3}-\left\lfloor\frac{h}{2}\right\rfloor$.

$$\begin{split} &\text{If } c = 2 \, (\text{mod } 3), \text{ then } p = 1 \, (\text{mod } 3) \text{ and } l = 0 \, (\text{mod } 3). \\ &\text{Set } R_2 = \left(\cup_{i=1}^{\left \lfloor \frac{h}{2} \right \rfloor} D_{2i-1} \right) \cup \left(\cup_{i=1}^{\left \lfloor \frac{h}{2} \right \rfloor} D_{2i} \right), \text{ with } \\ &D_{2i-1} = \{ u_{2i-1} \} \cup \left\{ z_{3j-1}^{2i-1} : j = 1, 2, \dots, \left \lfloor \frac{p}{3} \right \rfloor \right\} \cup \left\{ x_{3j-2}^{2i-1} : j = 1, 2, \dots, \frac{l}{3} \right\} \\ &\text{and } D_{2i} = \left\{ z_{3j}^{2i} : j = 1, 2, \dots, \left \lfloor \frac{p}{3} \right \rfloor \right\} \cup \left\{ x_{3j}^{2i} : j = 1, 2, \dots, \frac{l}{3} \right\}, \\ &\text{is a dominating set of } EG_m^h \text{ and } \gamma(EG_m^h) \leq |R_2| = h \frac{m}{3} - \left \lfloor \frac{h}{2} \right \rfloor. \end{split}$$

FIGURE 5. Minimum dominating sets of a) C_{12}^3 with c=6, b) C_9^3 with c=4 and c) C_{12}^3 with c=5.

Let us prove that sets R_r , r = 0, 1, 2, have the minimum cardinality among all dominating sets of EG_m^h .

Subcase 3.1 $c = 0 \pmod{3}$.

Lemma 5 Set R_0 is the unique minimum dominating set of EG_m^h and $(R_0)_{h-1} \subset (R_0)_h \ \forall h \geq 2$.

Proof. Set R_0 is a perfect dominating set of EG_m^h and therefore is the

minimum one. Uniqueness of R_0 follows from the fact that $\{u_i: i=1,\ldots,h-1\}\subset D$ for any minimum dominating set D of EG_m^h . To prove this, we use the same approach as in the proof of Lemma 2. Since vertices z_1^j, x_1^j, z_p^j and x_l^j are already dominated by u_{j-1}, u_j , there is the unique dominating set of vertices that dominates remaining vertices in $C_m^j, j=2,\ldots,h-1$. From $u_1,u_{h-1}\in D$, it follows that for undominated vertices in C_m^1 and C_m^h we need altogether $2\frac{m}{3}-2$ perfect dominating vertices. Therefore, $D=R_0$ and $(R_0)_{h-1}\subset (R_0)_h, \forall h\geq 2$.

From Lemma 5 it follows that $\gamma(EG_m^h) = |R_0| = h\frac{m}{3} - h + 1$.

Subcase 3.2 $c = 1 \pmod{3}$.

We partition EG_m^h into blocks B_j , $j=1,2,\ldots,t$, where $t=\left\lfloor\frac{h}{2}\right\rfloor+1$. We define $B_j=C_m^{2j-1}C_m^{2j}\setminus\{u_{2j}\},\ j=1,2,\ldots,t-1$. If $h=0\ (\mathrm{mod}\ 2)$, then $B_t=\{u_h\}$. For $h=1\ (\mathrm{mod}\ 2)$ we have $B_t=C_m^h$.

In a similar way as in the previous cases we conclude that for any dominating set D we have $|D \cap B_j| \ge 2\frac{m}{3} - 1$, $j = 1, \ldots, t - 1$. If $h = 0 \pmod{2}$, then $|D \cap (B_{t-1} \cup B_t)| \ge 2\frac{m}{3} - 1$. For $h = 1 \pmod{2}$ $|D \cap B_t| \ge \frac{m}{3}$.

We conclude
$$\gamma(EG_m^h) \ge h\frac{m}{3} - \left\lfloor \frac{h}{2} \right\rfloor$$
.

Subcase 3.3 $c = 2 \pmod{3}$.

The proof that R_2 is a dominating set of minimum cardinality is similar to the proof for the subcase 3.1. We simply interchange symbols l and p, and x and z.

Corollary 1 For $m=1 \pmod 3$ and $m=2 \pmod 3$ with $c \neq 1 \pmod 3$ there exists a minimum dominating set D_h of EG_m^h with the property $\{u_i: i=0,1,\ldots,h\} \subset D_h$. Then $D_{h-1} \subset D_h \ \forall h \geq 2$.

Proof. Let $m = 1 \pmod{3}$. For $c = 2 \pmod{3}$, we proved that P_2 is a minimum dominating set of EG_m^h . Since it contains all vertices from the set $\{u_i : i = 0, 1, \ldots, h\}$, its existence is proved.

Let $c = 0 \pmod{3}$. We consider the set

$$S_i = \{u_i\} \cup \{z_{3j}^i : j = 1, 2, \dots, \lfloor \frac{p}{3} \rfloor\} \cup \{x_{3j}^i : j = 1, 2, \dots, \frac{l}{3} \}.$$

Set $P'_0 = (\bigcup_{i=1}^h S_i) \cup \{u_0\}$ is a dominating set of EG_m^h .

Let $c = 1 \pmod{3}$. A dominating set of EG_m^h is $P_1' = (\bigcup_{i=1}^h S_i) \cup \{u_0\}$, where $S_i = \{u_i\} \cup \{z_{3j}^i : j = 1, 2, \dots, \frac{p}{3}\} \cup \{x_{3j}^i : j = 1, 2, \dots, \lfloor \frac{l}{3} \rfloor \}$.

We have $|P_0'| = |P_1'| = h \lceil \frac{m}{3} \rceil - h + 1$. The second assertion of the corollary follows from the construction of sets P_0' , P_1' and P_2 .

Assertion for the case $m = 2 \pmod{3}$ with $c \neq 1 \pmod{3}$ follows from the

definition of dominating sets Q_0 and Q_2 . These are the minimum dominating sets that satisfy Lemma 2 and $(Q_0)_{j-1} \subset (Q_0)_j$, $(Q_2)_{j-1} \subset (Q_2)_j$, $j=2,\ldots,h$.

3 Domination numbers of G_m^h

In this section we present some results about dominating sets and domination numbers of an arbitrary m-cactus chain G_m^h and find some extremal chains regarding to domination numbers. For $h \geq 2$ we will consider G_m^h as a chain obtained from G_m^{h-1} by adding one new cycle to C_m^{h-1} . With D_h we denote the minimum dominating set of G_m^h , $h \geq 1$.

Proposition 2
$$\gamma(G_m^{h-1}) + \left\lceil \frac{m}{3} \right\rceil \geq \gamma(G_m^h) \geq \gamma(G_m^{h-1}) + \left\lceil \frac{m}{3} \right\rceil - 1$$
.

Proof. The first inequality is obvious. To prove the second inequality, notice that vertices from the minimum dominating set of G_m^{h-1} can dominate at most 3 vertices in C_m^h of G_m^h . For the remaining vertices in C_m^h we need at least $\left\lceil \frac{m}{3} \right\rceil - 1$ dominating vertices.

Theorem 2 Let G_m^h be an arbitrary m-cactus chain of length $h \ge 2$. Then either $\gamma(G_m^h) = \gamma(G_m^{h-1}) + \left\lceil \frac{m}{3} \right\rceil - 1$ or $\gamma(G_m^h) = \gamma(G_m^{h-1}) + \left\lceil \frac{m}{3} \right\rceil$. If $\gamma(G_m^h) = \gamma(G_m^{h-1}) + \left\lceil \frac{m}{3} \right\rceil$, then $\gamma(G_m^{h+1}) = \gamma(G_m^h) + \left\lceil \frac{m}{3} \right\rceil - 1$.

Proof. Let $m = 1 \pmod{3}$. If we choose T_h to be a dominating set of G_m^h such that $\{u_i : i = 1, \ldots, h-1\} \subset T_h$, then we obtain $|T_h \cap (C_m^j \setminus \{u_{j-1}, u_j\})| \ge \left\lceil \frac{m}{3} \right\rceil - 2 \ \forall j = 2, \ldots, h-1,$ $|T_h \cap (C_m^l \setminus \{u_1\})| \ge \left\lceil \frac{m}{3} \right\rceil - 1$ and $|T_h \cap (C_m^h \setminus \{u_{h-1}\})| \ge \left\lceil \frac{m}{3} \right\rceil - 1$. Since

 $|T_h \cap C_m^j| \leq \lceil \frac{m}{3} \rceil, \ \forall j = 1, \ldots, h, \ \text{we conclude} \ |T_h| = h \lceil \frac{m}{3} \rceil - h + 1.$ From Proposition 2 it follows that $T_h = D_h$. Since D_h contains all cut-vertices, we have $\gamma(G_m^h) = \gamma(G_m^{h-1}) + \lceil \frac{m}{3} \rceil - 1.$

The same approach is used for the case $m = 2 \pmod{3}$ with $c_i \neq 1 \pmod{3}$ $\forall i = 1, ..., h-2$.

Let us prove the theorem for case $m = 0 \pmod{3}$. Adding one new cycle to G_m^{h-1} results in m-1 new vertices. Let $\{u_{h-1}\} = C_m^{h-1} \cap C_m^h$.

We consider the following cases:

1° $u_{h-1} \in D_{h-1}$. Then u_{h-1} dominates two more vertices in C_m^h . For the remaining m-3 vertices we need at most $\frac{m}{3}-1$ vertices. Therefore, $|D_h| \leq |D_{h-1}| + \frac{m}{3} - 1$. Since $|D_h \cap C_m^j| = \frac{m}{3}, \, \forall j=1,\ldots,h$, we conclude that $|D_{h-1}| \leq |D_h| - \frac{m}{3} - 1$. We obtain $|D_h| = |D_{h-1}| + \frac{m}{3} - 1$, that is, $\gamma(G_m^h) = \gamma(G_m^{h-1}) + \lceil \frac{m}{3} \rceil - 1$.

 $2^{\circ} u_{h-1} \notin D_{h-1}$. If there exists another minimum dominating set D'_{h-1} such that $u_{h-1} \in D'_{h-1}$, then we take into consideration D'_{h-1} instead of D_{h-1} and continue as in the previous case. Otherwise, u_{h-1} is dominating set D'_{h-1} and continue as in the previous case.

nated by at least one vertex from C_m^{h-1} . Then $|D_h| \leq |D_{h-1}| + \frac{m}{3}$, since we have m-1 undominated vertices in C_m^h . From $|D_h \cap C_m^h| = \frac{m}{3}$ it follows that $|D_{h-1}| \leq |D_h| - \frac{m}{3}$. We conclude $|D_h| = |D_{h-1}| + \frac{m}{3}$ and $\gamma(G_m^h) = \gamma(G_m^{h-1}) + \left\lceil \frac{m}{3} \right\rceil$.

If $\gamma(G_m^h) = \gamma(G_m^{h-1}) + \left\lceil \frac{m}{3} \right\rceil$, then at least m-2 vertices from C_m^h are not dominated by D_{h-1} . But then obviously $u_{h-1} \notin D_{h-1}$. From case 2° we obtain $|D_h| = |D_{h-1}| + \frac{m}{3}$ and dominating vertices in C_m^h can be chosen in a way so that $u_h \in D_h$, $\{u_h\} = C_m^h \cap C_m^{h+1}$. Now we have case 1° from which we conclude $\gamma(G_m^{h+1}) = \gamma(G_m^h) + \left\lceil \frac{m}{3} \right\rceil - 1$.

In a similar way we prove the theorem for $m = 2 \pmod{3}$ with $c_i = 1 \pmod{3}$, $\forall i = 1, ..., h-2$.

Corollary
$$2 \gamma(G_m^h) = h \left\lceil \frac{m}{3} \right\rceil - h + 1$$
 for $m = 1 \pmod{3}$ and for $m = 2 \pmod{3}$ with $c_i \neq 1 \pmod{3}$, $i = 1, \ldots, h - 2$.

Corollary 3 Let $m \neq 2 \pmod{3}$. There exists a minimum dominating set D_h of G_m^h such that $D_{i-1} \subset D_i \ \forall i=2,\ldots,h$.

Theorem 3 Let $m \geq 4$. Then $h\left\lceil \frac{m}{3}\right\rceil - (h-1) \leq \gamma(G_m^h) \leq h\left\lceil \frac{m}{3}\right\rceil - \left\lfloor \frac{h}{2}\right\rfloor$.

Proof. The first inequality follows from Proposition 2. The second inequality follows from Theorem 2 by constructing a chain G_m^h such that $g(G_m^i) = g(G_m^{i-1}) + \begin{bmatrix} m \\ i \end{bmatrix}$ 1 for $i = 0 \pmod{2}$ and

$$\gamma(G_m^j) = \gamma(G_m^{j-1}) + \left\lceil \frac{m}{3} \right\rceil - 1, \text{ for } j = 0 \pmod{2}, \text{ and } \gamma(G_m^j) = \gamma(G_m^{j-1}) + \left\lceil \frac{m}{3} \right\rceil, \text{ for } j = 1 \pmod{2}, j = 3, \dots, h.$$

An example of an m-cactus chain with the smallest domination number is EG_m^h with $m = 1 \pmod{3}$.

Examples of extremal m-cactus chains with the greatest γ are illustrated in Figure 6.

FIGURE 6. Extremal *m*-cactus chains with the corresponding minimum dominating sets: a) C_9^6 and b) C_9^6 .

Acknowledgment Partial support of the Ministry of Science, Education and Sport of the Republic of Croatia (Grants No. 177-0000000-0884 and 037-0000000-2779) is gratefully acknowledged.

References

- B. Ben-Moshe, B. Bhattacharya and Q. Shi Efficient algorithms for the weighted 2-center problem in a cactus graph, *Algorithms and Computation*, 16th Int. Symp., ISAAC 2005, Lecture Notes in Comput. Sci., 3827, 693703, 2005.
- [2] M. Bousquet, C. Chauve, G. Labelle, P. Leroux Two bijective proofs for the arborescent form of the GoodLagrange formula and some applications to colored rooted trees and cacti, Theoretical Computer Science 307, 277-302, 2003.
- [3] M. Chellali, Bounds on the 2-domination number in cactus graphs, Opuscula Mathematica, 26, 5-12, 2006.
- [4] T. Došlić and F. Måløy, Chain hexagonal cacti: Matchings and independent sets, Discrete Mathematics 310(12), 1676-1690, 2010.
- [5] R.J. Faudree and R.H. Schelp, The domination number for the product of graphs, Congr. Numer. 79, 2933, 1990.
- [6] T. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Decker, Inc., NY, 1998.
- [7] T. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Decker, Inc., NY, 1998.
- [8] F. Harary and B. Uhlenbeck, On the number of Husimi trees. I, Proc. Nat. Acad. Sci. 39,315-322, 1953.
- [9] K. Husimi, Note on Mayer's theory of cluster integrals, J. Chem. Phys. 18, 682-684, 1950.
- [10] A. Klobučar, Domination numbers of cardinal products, Math. Slovaca 49, 241-250, 1999.
- [11] A. Klobučar, Domination numbers of cardinal products $P_6 \times P_n$, Math. Communications 4, 241–250, 1999.
- [12] B. Zmazek and J.Žerovnik, Estimating the traffic on weighted cactus networks in linear time, Ninth International Conference on Information Visualisation (IV'05), 536-541, 2005.