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Abstract

Bizley [J. Inst. Actuar. 80 (1954), 55-62] studied a generaliza-
tion of Dyck paths from (0, 0) to (pn, qn) (ged(p, ¢) = 1), which never
go below the line py = gz and are made of steps in {(0,1),(1,0)},
called step set, and calculated the number of such paths. In this
paper, we mainly generalize Bizley’s results to an arbitrary step set
S. We call these paths S-(p,q)-Dyck paths, and give explicit enu-
meration formulas of such paths. In addition, we provide a proof of
these formulas by the method raised in Gessel [J. Combin. Theory
Ser. A 28 (1980), no. 3, 321-337]. As applications, we calculate
some examples which generalize the classical Schréder and Motzkin
numbers.

Keywords: lattice paths; generalized Dyck paths; Motzkin numbers; gen-
erating functions.
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1 Introduction

Define an S-(p,q)-Dyck path, denoted by S-(p,q)-path for short, to be a
lattice path from (0, 0) to (pn, gn) which never goes below py = gx with step
set S, where p,q,n € N, ged(p,q) = 1, and S is a multiset in N2 \ {(0,0)}
(regard repeated elements as steps with different colors).
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Figure 1: A {(0,2), (2,1), (2,0),(3,0)}-(3,2)-path.

With the above notation, {(0, 1), (1,0)}-(1, 1)-paths represent the clas-
sical Dyck paths, and many previous studies are concerned with S-(p, q)-
paths. Examples include S-(1, 1)-paths for certain special step sets [17, 11],
{(0,1),(1,0)}-(1, k)-paths where k is an arbitrary positive integer [10],
{(k, k), (0,2),(2,0)}-(1, 1)-paths by some rotations [13], {(0, 1), (1,0)}-(p, q)-
paths [18], and general S-(p,q)-paths of which solutions are given with
generating functions satisfying corresponding equations [12, 3].

The earliest study related to S-(p,q)-paths seems to appear in [9)
described as a bhallot problem: suppose an election results in pn votes for
A and gn votes for B, where p, g, n are positive integers and ged(p, q) = 1.
In how many ways can votes he cast so that A’s vote is always at least p/q
times B’s? The author gave without proof the result

Fn
> H T (11)

ny+2ny+3ng 4= d=1

where F; = —1— ("*'). Clearly this is the number of {(0,1),(1,0)}-(p, q)-

pitqi
paths from (0,0) to (pn gn). Denote (1.1) by ¢,.. As usual, for a multivari-
ant formal power series f(z1,- - ,,), denote the coefficient of z{* - - - z}; by

[z} - zi](f(zx1,- -, xa)). Bizley [2] showed that ¢, = [z™)(eX%n Fua' -1)
with the generating function method, and thus

o0
Zd’imi - ez;’;, F,x
i=]

Two additional formulas are given in [2}:
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(i) The number of {(0,1), (1,0)}-(p, g)-paths from (0,0) to (pn,qn)
intersecting with the diagonal only at the ends is

> H( 1) "v+1 (1.2)

ny+2n,43ng+---=ni=1

(ii) The number of {(0,1), (1,0)}-(p, g)-paths from (0,0) to (pn,qn)

intersecting with the diagonal exactly ¢ times (¢ < n) except (0,0) is [z"](1—
- E:: F"'I‘. )t
e 1 .

Recently [5] gave another proof of (1.1) by algebraic calculation with
the recurrence relations.

In this paper, we are inspired to generalize Bizley’s conclusions to an
arbitrary step set S, that is, give explicit formulas of S-(p, g)-paths.

In what follows, we assume without special explanation that the step
set S = {u; = (a;i,b;) | i € v} is fixed in N2\ {(0,0)}, p and g are fixed
co-prime positive integers, all the variables are non-negative integers, and
all the paths are planar lattice paths.

Notation 1.1. In the paths from (0,0) to (pn,gn), let Cfn gn denote the
set of all S-(p, q)-Dyck paths, let BS, ., denote the set of all S-(p,q)-Dyck
paths intersecting with the diagonal only at the ends, and CS, on.qn,t denote the
set of all S-(p, q)-Dyck paths mtersecfzng with the dzagonal ezactly t times

except (0,0). Let C3, .., By 4n and C,,,, gn.e denote |C5 |, |B§n,qn| and
|C§n,qn,z|: respectively.

Definition 1.2. Define the class of a path m to be a sequence a = (¢i)iey
(without loss of generality we regard the elements in S as ordered, thus o
is a sequence), denoted by a(w), where a; is the number of u;-steps in .

The class describes the distribution of steps in #. All the {(0, 1), (1,0)}-
(p, 9)-paths from (0,0) to (pn,gn) have a unique class (gn, pn), while there
may be various classes for general S.

Notation 1.3. For o € N, let C$ ,CS . and Bs denote the number of

00 .
pat};‘s in Un =0 cgn gn? Un—u Cpu qn,t and Un—() pn,qn with class o, respec-
tively.

Notation 1.4. Let
A;,q = {(ai)iE‘Y € N” I Zai(aiabi) = (pn’ qn)}

i€y

and Apq = Unvo Ap,,, denoted by A" and A for short.
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Notation 1.5. For a multiset M in N satisfying 3, prm < 00, let

ap = 1 (Zmem ™)!
ZmGAI m HmGM m!

and Gpngn = Y qcan G- (Define apy =0 when 3 2y m =0.)

For convenience, we omit S in the following when it causes no confu-
sion. E.g., S-(p, q)-path and C;f",qn are denoted by (p, g)-path and Cp ¢n.

Our main result, Theorem 2.1, gives the explicit formulas of Cpn gn,
Bpngn, Cay Ba, Cpngn,t and Cq ¢ by calculating their generating functions,
that is, the numbers of (p, g)-paths from (0,0) to (pn,gn) with restricted
conditions of none, intersecting with the diagonal only at the ends, with
class a, intersecting with the diagonal only at the ends with class «, in-
tersecting with the diagonal exactly ¢ times except (0,0), and intersecting
with the diagonal exactly ¢ times except (0,0) with class @. Thus our theo-
rem generalize Bizley's results as the S = {(0,1),(1,0)} case. Although, as
Bizley said, these formulas are not particularly convenient for computation,
there still seems to he no better explicit expressions up to now except for

special (pn, gn)s.

This paper is organized as follows. In Section 2, by generating func-
tions method, we prove Theorem 2.1 and obtain some conclusions including
recursive relations of these enumeration results. When n = 1, Theorem 2.1
becomes a much simpler form Theorem 2.4, which deals with paths from
(0,0) to (p,q) and deduces a useful corollary Lemma 2.6. In Section 3, we
give another proof of Theorem 2.1 by decomposing paths and generating
functions with Gessel’s method {7], and calculate some further enumera-
tion problems. In section 4, we show some applications of our conclusions
by several examples, including the generalized Catalan numbers, Schréder
numbers and Motzkin numbers derived from Lemma 2.6.

2 Main results

Let u® denote [],.., ui". We define the generating functions of the enu-
merative sequences:

oo . o0 .
A(x) = E QpigiT’, B(z) = E Bpiqiz’,
i=1 i=1

o0 o0

by . .
C("lt) = L C]Ji.("i:l:‘1 Ct(-"') = z Cpi.qi.tw‘,

i=] i=1
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and the multivariable generating functions by further considering the classes
of the paths:

A(z,u) = Z a.z'u®, B(z,u) = Z B.z'u®,

i>1,a€A i>1,a€ Al
C(z,u) = Z Coziu®,Ci(z,u) = Z Ca,t:ciua.
i>2l.a€Af i>l,ac At
Theorem 2.1. Forn >t >0, a € Ay ,, there holds:
(i) C(x) = eA™® — 1. Thus
o0 aﬂ.s‘ .
Cpn,qn = Z _::#

ny4+2n+43ng+---=ni=l

(ii) B(z) =1 —e 4, Thus

o n.
_ 1+3°%  n; P':Q‘
Bpnn= 3 (-)MEEm]]
nm+2ny+3ny+---=n i=1 '

(iii) C(z,u) = eA®=w) — 1. Thus

Co =

Paca dua=a z\GA
(iv) B(z,u) =1 — e~ A% Thys

— a™
B, = L (_1)“‘2.\94"* H -7-1%

rea Ana=ca AEA

(v) Ce(z) = (1 — e~ At Thus

Z t X ali .

Cpn gn,t = ( 1)k+2 =1 (k) kZ:’:, ni pt,‘q: .

o n;!
0Lk<t,n +2n2+3ny+--. = i1 i

(vi) Ci(z,u) = (1 - e~ A=W, Thus

A
Ca = Z (1)t Zaeams (ltc)kZAEA ma H it

ny!
O0Sk<t, T\ q Ma=ar A€A A
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To prove Theorem 2.1, first we define a relation "~”, as (5] did, on
the lattice paths with step set S as follows: given two paths 7 = u;, - - - u;,
and ¢, say m ~ ¢ if and only if there exists some 1 € k € a such that m, £
Ui, ., - U 04 - - - Uy, is just ¢. Obviously, "~ is an equivalence relation.
Let [x] denote the equivalence class of 7 and per(m) £ min{r|r > 0,7 = m,}
denote the period of 7. Then per(m) | 3, @i, where (c:)iy is the class
of .

We say that a path @ from (0,0) to (pn,qn) have a lowest point, as
[2] defined, at a lattice point X = (z;,22) on m (we mean that X is an
endpoint of some step in w) if pry — gy = min{py2 — qy,} where the min
extending over all lattice points Y = (y;,y2) on n. E.g., the path in Figure
2 have lowest points at X3, X2 and X3. Obviously, for a path 7 from (0, 0)
to (pn,gn), all those paths in [x] have the same number of lowest points
which is no more than n (the starting and ending points are seen as the
same point), denoted hy Ip().

‘ i I
] i - ‘/: -
P /T X4
e e
T e
._.. R N SRS S

X1
Figure 2: A (2,1)-path with 3 lowest points.

The following lemma is the key to proving Theorem 2.1:

Lemma 2.2. Forn>t>0, a € A" _, we have:
P.qQ

=1
(]) Qq = Z ?Cn,b
t=1
n 1
(ii) Apn,gn = Z szn,qn.t-
t=1

Proof. Note that Cpngn.t = D qean Cat and Gpp gn = Y acAn Gar We only
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need to prove (i). It is equivalent to

(Piey ) _ Zn: Dicy ‘Ca . (2.1)

g e
Hie‘v @it t=1 t

Let a = Zte o;, P and C, denote the sets of paths with class a and
(p, q)-paths w1th class «, respectively. Then the left side of (2.1) is |Pq].
Note that a (p,q)-path 7 intersecting with the diagonal exactly ¢ times
except (0,0) has t lowest points, and there are ¢ (p, g)-paths in 7y, .- , 7.
We have

n
;% Z > Lireca to(m)= z}z > L{g=m)

t=1 " =€P, k=1¢€Pq
Z Z Z 1(reca ip(m)=t,¢p=mx}
t=1 "~ k=1n.0€P,
Z Z 1{lp(¢) =t} Z Z l{ﬂ-eco'w_¢“_k}
PEP,, t=1 k= l7r€‘P,,

=2 Z 1(4,-reCa)
scm, ko1 1P(9)

= |Pal.

Accordingly, (2.1) is true. .

Now we could prove Theorem 2.1 by generating functions method:

Proof of Theorem 2.1. We only need to prove the relationships between
these generating functions, which the formulas of Cpn gny Bpn,gns Cas Bas
Cpn,gn,t and Coq ¢ could be easily derived from.

By the definitions, any (p, g)-path in Cpp gn,¢ could be divided into ¢
paths in (J2, Bpi g: uniquely. Thus

Cpn,qn,l = Z H Brmi.qn; = [xn}(B(x))t’

ntnetfup=ni=1

Applying Lemma 2.2 (ii), we have

n

aman =Y {Cmans = 3 112" I(B@)* = ~z"]In(1 - B(z)). (22)
t=1

t=1
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The last equality holds since when t > #,
[z")(B(z))* = [z"])(z"((B(z)/z)")) = 0.
Therefore A(x) = —In(1 — B(x)). This prove Theorem 2.1 (ii).
Since Cpn.gn,e = [#"](B(x))* and Theorem 2.1 (ii), we have
Cilx) = (B(x))* = (1 — e 4@,
This is Theorem 2.1 (v).

Similarly to (2.2), we have
Cpn,gn = Zc,m gnt =[x 12(3 (z))* = [z")(B(z)(1 - B(z))™?).

Then C(z) = B(z)(1 — B(z))~! = e4®) — 1, which is Theorem 2.1 (i).

The proofs of Theorem 2.1 (iii), (iv) and (vi) are similar. Any path in
Cpn,gn,t With class o could be divided into ¢ paths in U 1 Bpii,qi uniquely
such that the sum of the classes of these paths is «, thus

Cou = D H B,: = [z"u®](B(z, w)).

al+a4tat=qi=l

Applying Lemma 2.2 (i), we have

Qo = ; %Co,t = ; %[n:"u"](B(:lr, u))t = =[z"u*]In(1 — B(z,u)). (2.3)
Then A(z,u) = —In(1 — B(a,«)). This prove Theorem 2.1 (iv).
Since Cq = [z"u®](B(z,«))" and Theorem 2.1 (iv), we have
Ci(z,u) = (B(z,u))" = (1 — e~ A@WE,
This is Theorem 2.1 (vi).

Similarly to (2.3), we have
Co = ZCM [z"u®) L(B(z u))* = [z"u]|B(z,v)(1 — B(z,u))~".
Then C(z,u) = B(z,u)(1 — B(z,u))~! = eA="*) _ 1, that is Theorem 2.1
(iii).
This completes the proof. |
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Remark 2.3. From Theorem 2.1 (i)-(iv), one could get the inverse for-
mulas. E.g., since Theorem 2.1 (iv) implies A(z,u) = —In(1 — B(z,u)),

we have 5
Qo = Z ag H B*,
Y rea Ar=a A€EA

where B = (Bx)rea-

When n = 1, note that there are no integral points on the seg-
ment {(x,‘-',{») | 0 < z < p,x € R}, and the equations } o, in; = 1 and
Y »ea A = @ have a unique solution, we get the following corollary from

Theorem 2.1 immediately:

Theorem 2.4. For o € Al , we have:

»4q
(i) The number of (p, q)-paths from (0,0) to (p,q) is
1 (Xieq)!
C)‘ =B),r=a‘y = = '
Pq Py P.q "§, EiE'y a; HiE"y !

(ii) The number of (p, q)-paths from (0,0) to (p,q) with class a is

1 (g )!
Zie-y Qi Hie—y a;!
Remark 2.5. Theorem 2.4 implies that the formulas of (p, q)-paths from
(0,0) to (p.q) have pretty forms. It could also derive from Lemma 2.2
letting n = 1, where the combinatorial meaning of (Xiey @i)Ca = %f;”’—:‘—,)'
becomes that for each path m from (0,0) to (p,q) with class a, there ezists
unique (p, q)-path in 7.

Co=B,=0a,=

The following lemma deduced from Theorem 2.4 shows that (m,1)-
paths from (0,0) to (mn,n) has a close relation with (mn + 1, n)-paths:

Lemma 2.6. Suppose (1,0) € S, m,n > 0. For any u; = (a;,b;) €
S\ {(1,0)}, we have mb; > a;. Then Cpnpn = @mni1,n and Cy = aq,
where o € A,‘,m“,n,

’ o; — 1, ifu=(1,0),
a; = .
? a;, otherwise.

Proof. ¥ 0 < i < n, the segment {(z,i) [ mi < z < mi+ %,z € R}
contains no integral points. Hence, there are no integral points in the
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segment {(z,72%=) | 0 < z < mn + 1,z € R} and the interior of the
area surround by y = L,y = ;ﬁﬁ—l— and y = n. From the geometric
meaning of the conditions, any (mn + 1, n)-path from (0,0) to (mn +1,n)
is composed of a (m, 1)-path from (0,0} to (mn,n) and a (1,0)-step. Since
ged(mn + 1,n) = 1, we get the conclusion immediately from Theorem 2.4.

|

Remark 2.7. The notation of (1n,1)-paths is an important generalization
of Dyck paths. In recent years much work has been done in this field, such
as [10], [19]. In section 4, we will apply Lemma 2.6 to such problems, and
obtain some results which seem hard to get by other methods.

From Theorem 2.1 (i) and Lemma 2.6, we have:

Theorem 2.8. Suppose (1,0) € S, m,n > 0. For any w; = (a;,b;) €
S\ {(1,0)}, we have mb; > a;. Then

> [[%e- ¥ o

n1+2n2+3ng+--=ni=1 ac Al

mn+l.n

Theorem 2.9. Forn >t >0, o € A", there holds:

(Y
. — n i ) .

(i) Cpn.qn = Zi:l 7;al't-q'cn(n—i)-q(n—i)-

. _ n—-1;

(ii) Brm,qn = Qpn,gn — Zi:l ﬁani,rﬂBP(u—i).q(n-—i)'

(lll) Cpn,q" = Z Bpr q:c)(n i)qg(n-i)-

Aib
Ca = Z,\+u =a’ eq’,, —a.,\C',,, where A\, v € A.

b

(v) B —aa-Z)‘_‘_'/_n—-z———L)‘B,,, where A, v € A.

(vi) Cpn.qn,t = Z" .k Bpt.qlc (n—i),q(n—i),t-1 (t>1).
(vii) Cot = Y a0 BaCu—1, where A, v € A (t > 1).

Proof. It follows from Theorem 2.1 (i) that

oo [e o]
lll(l + Z Cpn,qn-'vu) = Zapi,qixi)

n=1 i=1

take the derivatives, we get

o0

e o0
P \ n : i
nC)H.{ n'll - (l + Cm. nT ) a i,qix .
pn.q pn.g P

n=1 n=1 i=]

234



This proves (i) by comparing the coefficient of ™ on both sides of the
equality. Similarly, (ii) could be derived from Theorem 2.1 (ii).

The conclusions of (iii}, (vi) and (vii) may be easily obtained from the
combinatorial meanings.

Theorem 2.1 (iii) deduces that

In(1 + Z Caz"u®) = Z aaz u’.

n2l,a€ A" i21,a€Af

Take the partial derivatives for variable x, we get

Z nCoz™u® = ( Z iaer'u®)(1 + Z Coz"u®). (2.4)

n21l,ae A" i>1l.a€A’ n>l,acA®

Note that if @ € A", n = 3, a;b;/q. We prove (iv) by comparing the
coefficients of z"u™ on bhoth sides of (2.4). Similarly, (v) could be derived
from Theorem 2.1 (iv). |

3 Another proof of Theorem 2.1

In this section, we provide another proof and a generalization of Theo-
rem 2.1 applying Gessel's method [7]. We also calculate some similar enu-
meration problems. First, we review the relevant definitions and results
in [7].

Definition 3.1. Define the height of a point (a,b) to be a — b. For a
path m from (my,n,;) to (ma,ny), define the height of  to be the height of
(mo —my,ny —ny), which is defined to be the endpoint of ® and denoted by
(e1{m), e2(m)). Define the hight of the empty path, which has no steps and
no points, to be zero. and height zero.

Definition 3.2. Define a minus-path to be either the empty path or a path
the height of whose endpoint is negative and less than that of any other
point. Define a zero-path to be a path of height zero all of whose points
have non-negative height. Define a plus-path to be a path all of whose
points have positive height.

Clearly a non-empty zero-path never goes ahove the diagonal y = =z,
which corresponds to a Dyck path by inversing the steps in it.
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Definition 3.3. For a set of paths P, define

D(P) =T(P)(t,x) = Y _ ter(M=ealmgealm),
neP

Let S* be the set of all paths with step set S. It is easily seen that
[(o102) = [(01)T(02), T(S*) = Z000(I(9)™ = (1 - T(5))~.

(7, Theorem 4.1] shows that any element of C[[t,z/t]] with constant
term 1 has a unique decomposition in C{[t, z/t]] f = f- fof+, Where

fo=1+ Z a;;T't™, fo=1+ Zaixi,
i,j>0 i>0
and
f+=1+ Z ai,-:::‘tj.
i20,j>0
Thus

. . L pied oo g X X ptpd
f_ — ez.>o.,<n bi,z’t , fO — eZ.:; bz , f+ = 62‘20-J>° bzt ,

where In f = Zi,j bi;xz't!. (7, Lemma 4.3] showed that any path 7 has a
unique factorization m_momy, where 7w_ is a minus-path, g is a zero-path,
and 7y is a plus-path. These conclusions follow [7, Theorem 4.4] which
proved that

I(S-) = (T(S™))-, T'(So) = (T(S™)o, T(S4) = (T(S™))+,

where S_, Sp, and S, are the sets of minus-paths, zero-paths, and plus-
paths with step set S, respectively.

Figure 3: A path m with factorization 7 = m_mom..
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We generalize these results to prove Theorem 2.1. For convenience, we still
use the same notation. Define

[(P) =T(P)(t,x) = Z raer(m)—pez(m) ea(m), olm)
nEP

Thus I'(6y02) = I'(01)T(02), and T'(S*) = (1 —I'(S))~!. Now the height
of a point (a,b) is defined to he ga — pb. We could similarly get that any
element of C[[t,u,z/t]] (the ring of formal power series in the variables ¢,
{u:}icy and z/t on C) with constant term 1 has a unique decomposition in

Clit,u,z/t)] f = f-fof+, where
fo=1+ Z aijaxit‘ju", fo=1+ Z GinT'u®,

1,§>0,0 i>0,0

and o
f+=1+ Z (lijnl‘ltj‘ua

i20,7>0,0

In fact,

iy X i g X . 43
f— = ezi>().j<()." bijnx L’u", fO = 62‘2"" bignz'u , f+ = ezn'zo.jﬂ).u bijaz't’u

1

whereln f = 3=, . bijex*t/u®. Thus In fo = [t°]In f. Therefore we get the
generalization of [7 Theorem 4.4] as the u; = 1(i € «) case:

Theorem 3.4. We have ['(S_) = (T'(5))—, T(So) = (T(5*))o, and T'(S,)
= (['(5*)+-

Now a non-empty zero-path m corresponds to a (p, g)-path by inversing
the steps in 7, thus

[(So) = Z gae1(m)—pez(m) p.e2(m), o
m€So

=1+ i Z anua(w)

n=1w€Sa,(e1(n),c2(m))=(pn,gn)
=1+ C(.’U‘l,u)-

Now we can give the proof of Theorem 2.1 using Theorem 3.4. Since
(v) and (vi) could be easily gotten from (ii) and (iv), respectively, we only
need to prove (i)-(iv) :
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Proof. From above, we get T'(5*) = (1-3_,, t% —Phighiy;)~1 and T'(Sp) =
1+ C(2%,u). Applying Theorem 3.4, we have
InT'(So) = In(T'(5*))o
= [t%)InT(S*)
— 1
=13 S Qe Tty

n=1 i€y

o0
|
—_ [tO] z Z l . n |t‘l Z.‘e-, av'ai"'pz.‘e-y b‘aizzie-y b"“-'uo‘
n=1 Z‘Eﬁ wiz=n n Hie'f Qi

- z 1 (ziew ai)!xz‘.ev bia;, o

u
Liey @i [ligy !

9 e 0iCi=p T e, biai>0

[e o]
= E okl E Ao u™

n=1 aEA"
= A(27,u).

Therefore 1 4+ C(z%,u) = eA(*"¥) which prove Theorem 2.1 (iii).
Letting u; = 1(2 € ) in Theorem 2.1 (iii), we have
14 C(z) =1+ C(z,u)|ui=1,iey = €@ |y,o1,5ey = 2.
This prove Theorem 2.1 (i).
By decomposing (p, g)-paths as the proof of Theorem 2.1 does in sec-

tion 2, one could prove (ii) and (iv) from (i) and (iii), respectively. This
completes the proof. |

We can similarly get some further conclusions.

Let f be a function S* — A, where A is a commutative ring with
identity 1. f satisfies:

(i) f(o102) = f(01)f(02) for any path gy,09 € S*.
(i) f(m) =1 if and only if 7 is the empty path.

For a set of paths P, define

T(P) = T(P)(t, A) = 3 t9e1(m=pea(m f(r).

nepP
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I'(S-), I'(So) and I'(S;) are defined similarly as above. One can similarly
get
T'(So) = Z f(1r) = eZnEA 8o [Tic f°"(ul)’
m€Sn
I's-) = e=e21mep—c @t [le, [79(W) _ o3, ep- 20 [Tie, (f(ui)esm=Po) ’

I‘(S+) = eZnZl."e‘D" a, b n«'e-, FAMCH — ez.ye‘p+ Qe I_Le.,(f(m)t“""”"‘)"‘ ,

where
D°={aeN" |q) aia;—pY b =c} (c€ Z),
i€y i€y
and
U D-e, DF = U De.
c=1

Let A be a ring of polynomials with complex coefficients in some
variables and assign a variable as f(u;) (i € v). E.g., let f(u;) be v;,
v;tPPi=9¢i and v;tPb—9¢ in the three equalities ahove, respectively. We get
the following theorem:

Theorem 3.5. We have:
(i) 14 e g Cav® = eXneatet”,

(il) 1+ X pep- Cav™ = eXaer- %" where for a € D¢, Cq is
defined to be the number of minus-paths starting from (0,0) with class a.
Thus

ni

c.= Y I “*..

ZAG‘D‘ Ar=«a AED-

(iii) 1+ cp+ Coav® = eXaep+ “"" where for a € D¢, C, is defined
to be the number of plus-paths starting from (0,0) with class a. Thus

na

- T OE

Laep+ Ana=a AG'D‘*‘

Theorem 2.1 (i) and (iii) are the v; = z% and v; = z%wu; (i € 7) cases
of Theorem 3.5 (i).

Notation 3.6. Let
* = {(s,t) € N? | gs — pt > 0}.
For (m, n) € Et, let C}, |, denote the set of all plus-paths from (0,0) to

L
(m!n) m n Icm nl and am n= z:wec,"',._,. aﬂl(ﬂ’)‘
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Notation 3.7. Let
E~ = {(s,t) € N? | gs — pt < 0}.
For (m,n) € E~, let C, ,, denote the set of all minus-paths from (0,0) to

(m,n), Cr;,n = ‘C;,nls and Gn = ZrGC,T.,., Qa(n)-

Letting v; = t* 2% in Theorem 3.5 (ii) and (iii), we get the following
theorem:

Theorem 3.8. We have:

. + mon
(i) 1+ X mmyes+ Chint™z™ = e=(mmeE+ Gmat™T" mp.

C:tx.n = Z H

e+ #dy=(man) neE+

(af)%
d,!

(ll) 1+ Z(m,n)EE- Cr:,ntmm" = ez(""")e"-_ a,'"_,_t"'m"' Thus

- (az)%
LD S )

ZI‘EE— I‘d;n =(m,n) HEE-

Remark 3.9. One could generalize the theorems above to higher dimension
cases. E.g., givend > 3, S = {u;}iey is a multiset in N4\ {(0,--- ,0)} and
P =(p1, - ,pd) € Z9 such that

max{p;,--- ,pa} min{py,--- ,pa} < 0.

Define C, to be the number of lattice paths in Z¢ starting from (0,0) with
class o that never go below the hyperplane p - x = Y iey PiTi = 0. Define

AD = {(ei)iey € N | p- (3 i) = 0}

i€y

Thus
1+ Z Cv™ = eXncald) Gu¥ ,
ag Al

which is a d-dimensional generalization of Theorem 3.5 (i).



4 Applications

In this section, conclusions are obhtained for several special sets S. Some of
these results generalize the classical Schréder and Motzkin numbers.

Example 4.1. Let S = {(0,1),(1,0)}. Then A™ = {(gn,pn)}, andapn gn =

o - (””;l""). According to Theorem 2.1, the number of (p, g)-paths from

(0,0) to (pn,gn) is

oo n;

c _ pi,gi
pr,gn — T

n;!
ny+2n24+3ny+-=ni=1 :

This is the main result in [5]. Let n == 1, we have

1 (p+gq
C = Q. = .
me p+q< P )

Lemma 2.6 gives that

1 mn+1+n 1 mn+n
Cmn.n =0mntln = —T— ’

mn+l+n mn + 1 =mn+1 n

which is the generalized Catalan number found in [6] and shown by many
papers as the number of generalized Dyck paths, e.g., [10]. It is also a
direct corollary of the generalized Ballot Problem considered in [1] which
has various solutions as well (see, e.g., 4], {15, p.8],[14],[16, p.10], [20,
p.10] and [8]).

Example 4.2. Let S = {(0,1),(1,0),(1,1)}. Then
A" = {(gn —i,pn —1,1) | i < min{pn,gn},i € N}.

Applying Theorem 2.4, the number of (p, q)-paths from (0,0) to (p,q) with
class (g —i,p —i,1) (i.e., with i diagonal steps) is

1 ptq—1
C —ipeid) = Q(g—ip—ii) = ———— )
('1 uLp "l) a(l P i,i) p+ q —_ '[: (p —_ i,q - i,i)

and the number of (p, q)-paths from (0,0) to (p,q) is

q ,
_ 3 1 ptg—1
Cp.q —aP»‘I'—Zp.Fq—i(p—i,q—iyi)‘

i=0
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In particular, let (p,q) = (mn + 1,n), applying Lemma 2.6 we have
that the number of (m,1)-paths from (0,0) to (mn,n) with i diagonal steps

8
C 1 mn+n—i
) —d g — a — —i 4 o= —— . ..
(n—1i,mn—i,7) (n—i,mn+1-14,i) mn—i+1\mn— in—i,i 3

and the number of (mn,1)-paths from (0,0) to (mn,n) is
o 1 mn+n—i
Conn =3 T (o 5)

The number Cpn,n is indeed the m-schroder number ST introduced and
calculated in [19].

Example 4.3. Let S = {(0,1),(1,0), (k,k)}. Similarly to Example 4.2, we
have

A = {(qn— ki,pn — ki) | § < TP ¢y

1 (p+q—(2k—1)i)’

Cla-kim=kit) = S5 —GE T\ g - ki, p — ki i
c ‘lfi 1 p+q—(2k-1)i
PO Laptq— (2k—1)i\ q—ki,p—ki,i )’

Especially, let (p, q) = (mn+1,n), we have that the number of (m, 1)-paths
from (0,0) to (mn,n) with i diagonal steps is

1 (mn +n—(2— l)i),

Clnmkimn—ki i) = ———F— it
(n—kimn—kid) = o —ki+ 1\ mn — ki,n — ki

and the number of (m,1)-paths from (0,0) to (mn,n) is

G = 1 (= 1
mn,n"i=0 nln-ki-{-l nzn—ki,'n—ki,i.'

Thus we get a more widely generalization for Schrider path as the k = 1
and m =1 case.

Example 4.4. Let S = {(0,2),(2,0),(2k+1,2k+1)}. Similarly to Exam-

ple 4.2 and .3, we have

gn — (2k +1)i pn— (2k + 1)i i li< min{pn, gn}
2 ’ 2 T

A" = {( =T ok+1

i=pn=gn (mod 2),i € N},
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1 =4 — 2ki
C(J—é—"‘“'*”‘,l—é——"""*”',i) = M (q-(2§+1)i’ P—(2§+1)i,i)’

where 0 < i < %{-’%l i = p = q (mod 2). (For convenience, we omit

these conditions of the variables in the following discussion.)

To calculate the number of (m, 1)-paths from (0,0) to (mn,n) with i
diagonal steps C Bo(htD): e Qhs: 0 WE discuss the parities of m and n:

o Case 1: m is even while n is odd. Then mn + n is odd. Hence

.A::,’I ’—'—“0, C n=(2k41)i mn—(2k+1)i .\ = 0.
( P) ’ 5 1)

o Case 2: m and n are both odd. Then ged(mn+2,n) = 1. Similarly to
the proof of Lemma 2.6, any integral point in the interior of the area

surround by three lines y = &,y = Y =1 and the segment
{(z,5255) | 0 < = < mn + 2,x € R} must be the form of (mj +

1,)(0<j<n) Sincemj+1+j=(m+1)j+1 is odd, it can’t
belong to any (m,1)-path. Therefore

C( :0-(2;'+l)i , mn-(:k+l)z "') = ( n—(2k+1)¢ , mn—(2k+1)¢ +l,1)

= a( .._(-z:-o.l)y , nzn—(gi-blli +1,i)

- m.n—(22k+1)1' +1 11-(22’9“'9‘1" mn—(§k+1)j, 'L) *

o Case 3: m is odd while n is even. Then ged(mn+2,n) = 2. Similerly
to Case 2, we have

C( u-(2;+l>i_uu--(gk+n-' S C( 'A—(Z:-i-l)i‘mn~§§k+l)i+1‘i).

Applying Theorem 2.1 (iii) with

n—(2k+1)i mn— (2k + 1)7

o= 5 , 3 +1,7),

we have

ay
C( nIQA L) o @R Gy T Z H (4.1)

ZAGA AII.,\—Q Ae.A

Note that (mn +2)/2 + n/2 =1+ n(m + 1)/2 is odd, the equation

mn+2 n)
'2

1(0,2) + a2(2.0) + a3(2k + 1,2k + 1) = (

243



has no integral solutions, thus ) ¢ 4 Ana = a has a unique solution
ne = 1,ny =0, A # «. Therefore (4.1) follows that

C n=(2k+1)i mn~(2k+1)r . = Qg
( 3 ) 2 ¥i)

1 ( mntn _ o )
m11—(§k+_1_)_i_+1 n—(2£c+l)i,mn—(:k+1)i’i .

e Case 4: m and n are both even. The method for case 3 does not work
in this case. Applying Theorem 2.1 (iii) with

n—(2k+1)i mn— (2k+1)i |
=( 2 ) 2 11')1

we have
- a';"
Ca = E I I -
nN.
ZAGA Ana=a A€EA A

Finding a simpler formula for this case would be an interesting prob-
lem.

As a corollary, we get a generalization of the classical Motzkin num-
bers:

Theorem 4.5. Given S = {(0,2),(2,0), (2k + 1,2k + 1)}, an even integer
i £ | 5557, and an odd integer m. Then the number of (m,1)-paths from
(0,0) to (mn,n) with i diagonal steps is

1 ( ﬂl1l.2j:7l — le. )
mn—(2k+1)i N n=(2k+1)i mn—(2k+1)i . J°
mn 2 Py A ’ 2 i

and the number of (m, 1)-paths from (0,0) to (mn,n) is

1 mntn 2%
2
Z nu;-g22k+1)i +1 (n—(Z;'+l)‘i, mn—(gk+l)i7i).

0<ig|apglii=n (mod 2)
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