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Abstract

Graph theory, with its diverse applications in theoretical computer science and in
natural (Chemistry, Biology) in particular is becoming an important component
of the mathematics. Recently, the concepts of new zagreb eccentricity indices
were introduced. These indices were defined for any graph G, as follows:
M} (G) = Zey,ce0)ec @) + £6(0)], Mi*(6) = Lvev(s)lec()]? and M3(G) =
Zewee()[ec(W)eg(V)], where £5(u) is eccentricity value of vertex ¢ in the
graph G. In this paper, new zagreb eccentricity indices M;(G), M;"(G) and
M;(G) of cycles related graphs namely gear, friendship and corona graphs are
determined. Then, a programming code finding values of new zagreb indices of
any graph is offered.
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1. Introduction

A topological representation of a molecule can be carried out molecular
graph. The concept of topological indices is very important in chemical graph
theory. This theory applies graph theory in mathematical modeling of chemical
structure. A topological index is the graph invariant number calculated from a
graph representing a molecule.

The vulnerability value of a communication network shows the resistance of
the network after the disruption of some centers or connection lines until a
communication breakdown. So, vulnerability values are the important for
network robustness. Also, these new zagreb indices can be vulnerability
parameters for networks that modeled by the graphs. )

In this paper, we consider simple finite undirected graphs without loops and
multiple edges. Let G = (V(G), E(G)) be a simple undirected graph of order 77
and size m. We begin by recalling some standard definitions using throughout
this paper. For any vertex v € V(G), the open neighborhood of v is Ng(v) =
{ueV(@)|luv € E(G)} and closed  neighborhood of v s
Ng[v] = Ng(v) U {v}. The degree of vertex vin G denoted by dg;(v), that is the
size of its open neighborhood [2]. The distance d(u, v) between two vertices
and vin G is the length of a shortest path between them. The diameéter of G,
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denoted by diam(G) is the largest distance between two vertices in V(G).
Eccentricity of vertéx v in G denoted by &5 (u), that is the largest between Verfex
v and any other vertex v of G, gg(u) = max,ey(yd(u, v) [4]. The complement
G of a graph G has V(G) as its vertex sets, but two vertex are adjacent in G if
only if they are not adjacent in G [2]. There are several topological indices which
are graph stable number calculated from a molecule that is represented by a
graph.

The Wiener index is the first distance based topological index [5]. The aim of
Wisner index is to the sum of half of the distances between every pair of vertices

of G and is defined as: W(G) = -;-Z};I Yie1d(vy, v). After that the Zagreb
indices were introduced by Gutman and Trinajstié [6]. They are defined as:

M,(G) = ZueV(G)(dc(V))z and  M;(G) = X, ee(6)d6(Wdg(v) . Then, new
versions of Zagreb eccentricity indices have been introduced by Ghorbani and
Hosseinzadeh [13]. They are defined as: M;(G) = X, er(s)le6(W) + £(V)],
Mi*(G) = zvtsv'(c;)[sa(v)]2 and M;(G) = Eewes(a)[ea(u)ea(v)] . They have
also studied of the well-known graphs. These graphs are complete graph, path
graph, cycle graph, star graph and wheel graph [13]. You can see different
studies about distance based topological indices in [3,7,8,10,11,12,14,15].

Let v and vbe any two vertices of G. If these two vertices are adjacent in G,
then the edge between these two vertices is denoted by e,,, in G. We shall use
e, for the some edges.

Our aim in this paper is to consider the computing the new Zagreb
eccentricity indices of cycles related graphs. In section 2, definitions are given
and M;(G), M;*(G) and M;(G) of gear graphs, friendship graphs and corona
graphs are computed, respectively. Then, an algorithm is offered for computing
the new Zagreb indices of any given graph in Section 3.

2. Main Results
In this section some new Zagreb indices of cycles related graphs namely gear,
friendship and corona graphs are computed.

Definition 2.1 [2,9] The wheel W, with 77 spokes is a graph that contains an 77
cycle and one additional central vertex ¢ that is adjacent to all vertices of the
cycle.

Definition 2.2 [1] Gear graph is a wheel graph with a vertex added between each
pair adjacent graph vertices of the outer cycle. Gear graph G, has (2n+7) vertices
and 377 edges.

Theorem 2.1 Let G, be a gear graph. Then, M;(G,) = 19n, M;(G,) = 30n
andM;*(G,) =25n+ 4.
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Proof. Let the vertex set G, be V(G,) =V, UV, UV;, where: V; ={v; €
V(G| dg,(v) =n,i=1}, V; = {v, € V(Gy)l dg,(v) =3, 2<i<n+1}and
Vs={v €V(G)ldg,(v) =2, n+2<i<2n+1}

Let u,v and w be any vertices of V;, V, and V3, respectively. It is clear that
d(u,v) = 1and d(u,w) = 2. So, we obtain &;,(u) = 2. Furthermore, value of
d(v,w) can be equal to 1, 2 and 3 for n > 4. So, &5, (v) = 3 for every v € V5. Let
Z be any vertex which is further from the vertex w of V3. Then, we obtain
d(w, z) = 4. Because this path that from vertices Wand 2is zN;(2)uNg(w)w. So,
we have &g, (w) = 4 for every w € V3. Furthermore, let the edges set of G, be
E(G,) =E,UE, , where: E, ={ey €EG)lueV,veV,} and E, =
{euy € E(Gy)|u € V5, v € V3}. When the M{(G,) and M;(G,) are calculated for
all edges in the graph G,, the edges in two cases should be examined.

Casel. Let e, be any edge of set E;. It is clear that u € V; and v € V,. Then, we
have g;, (u) + &, (v) = 5 and &, (W&, (v) = 6 for every e, € E;.

Casg2. Let ey, be any edge of set E,. We know that u € V, and v € V3. Hence,
&6, (W) + &6, (v) = 7 and ¢, (u)eg, (v) = 12 for every ey, € E;.

By Casesl and 2, we have:
M;(Gp) = Xe, 5,166, @) + €6, ()] + Teypes, (6, (W) + &6, (V)]
=¥, 5+Ym7=19n. 0o

M;(Gn) = Ze, ek, [Ecn Weg, (v)] + Xeyvek, [san(u)san (v)]
=¥r,6+X™12=30n. o

M;*(Gp) = Soev,[56, O] + Zvev,[e6, W] + Zven[e6, @]
=22+31,32+31,4°=25n+4. 0o

Theorem 2.2 Let G, be a gear graph. Then, M;(G,) = M3(G,) = 8n?* — 8n and
M (G,) =8n+4.

Proof. 1t is clear that in the graph G,, cardinality of vertices and edge set are

(2n+ 1) and (2n? — 2n), respectively. Let V(G,) = V; U V,, where V; includes
vertices of n-cycle in W, and V, includes vertices that are added to n-cyc/e in G,
and the center vertex . Thus, the vertices of V/; form a complete graph of order 7
in the graph G,,. Similarly, vertices of V, form a complete graph of order (n + 1)
in the graph G,. Furthermore, the graph G, contains some edges joining graph
Kps1 to the graph K, . Let u €V, and v €V, . If there exist w; € V, and
euw, € E @ orw, €V, and e,,,, €E (G_,,), then d(u, w,) and d(v, w,) are equal
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to two for every ey, € E(Gy). So, we obtain &5- (v) = 2 for every v € V(G,).

Then, we have

M;(Gy) = Z., cemlem@) + e (0)] = TP "4 = 8n? - 8n. 0
Mz(j zewes(an)[san(u)gan(v)] 22"2'2"4 =8n%2-8n. o
MI”(—H) = ZveV(ﬁ)[s'c;(V)] =Yn+22 =8n+4. O

Definition 2.3 [4] The line graph L(G) of a graph & is a graph such that each
vertex of L(G) represents an edge of &, and any two vertices of L(G) are
adjacent if and only if their edges are incident, meaning they share a common
end vertex, in the graph G.

Theorem 2.3 Let G, be a gear graph. Then, Mi(L(G,)) = 2n® +20n,
M;(L(G,)) = 2n? + 28n and M;*(L(G,)) = 22n.

Proof. The number of vertices and edges of the graph L(G,) are (3n) and
((n2 +7n)/ 2), respectively. It is easy to see that the degree of vertices of the
graph L(G,) are 3 or (n + 1). We partition the vertices of the graph L(G,,) into
two subsets V; and V,, as follows: V; = {v; € V(L(Gy))| dygy(v) =31 <i <
2n}and V, = {v; € VIL(G))l dyy(v) =n+1, 2n+ 1 < i < 3n).

To calculate the £, )(v;) of vertices of the graph L(G,), the vertices should be
examined two cases.

Casel. Let u,v,x,y €V, and w € V,. If e,,, € E(L(G,) ), then d(u,w) = 1.
Otherwise, ey, € E(L(G,)), then d(u,w) = 2. Because vertices of V, form a
complete graph Ky,. Let x = Ny(s,)(w) and y = Ny(,.)(v). It is clear that when
x #y, path uxyv is found. Hence, £,(c,)(v) = 3 for every vertices of V;.

Case2. Similar to CaseT, value of £,¢,)(v) is equal to 2 for every vertices of V.

Furthermore, we partition the edges of L(G,,) into three subsets E,, E, and Ej, as
follows: E; = {ey, € E(L(G))|u,v €Wy}, E; ={ey, € E(L(G))|u€EVy, v E
V,}and E; = {ey, € E(L(Gp))| w,v € V,}. It is clear that cardinality of sets E;,
E, and E; are (2n), (2n) and ((n? — n)/2), respectively. Then, we have

M (L(Gn)) = Yeyv€E; [EL(G,,) () + 51.(0,,)(17)] + Eeu,esz[&(a,l) (u) +
EL(Gn) (”)] + Ze,,,,ee-_,, [EL(G,l) (u) + EL(Gn) (V)]
=P 6+ 22 S+ 3 V2 = 202 4 20m. ©
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M;(L(Gn)) = Zeyyees [E1em WG W] + Zeper|Eren WL @)] +
LeuveEs [5L(an) (WeLgy (v)]

=TI+ X6+ 20 P a=2n2 4280 O

M3 (L(G) = Zver,[euian @]’ + Eversleriam @]’
=Y 3243022 =220 O

Definition 2.4 [2] The (Cartesian) product G; X G, of graphs G, and G, also has
V(G,) X V(G,) as its vertex set, but here (uy, u;) is adjacent to (v,, v,) if either
u; = v, and u, is adjacent to v, or u, = v, and u, is adjacentto v;.

Theorem 2.4 Let G, be a gear graph. Then, M;(K, X G,) =68n+6,
M;(K; X G,) = 145n + 9 and M}* (K, X G,) = 82n + 18.

Proof. Since the definition of cartesian product, there are two gear graphs G,, are
denoted by G, and G,, where adding a perfect matching between corresponding
vertices which have same label. So, we obtain |V(K, X G,)| =4n+2 and
|[E(K; X G,)| =8n+ 1. Let V(K, X G,) =V, UV, UV UV, U Vs UV, where:
V= {V € V(G1)l dg,xg,(¥) =n + 1}, V, = {v e V(G))] Arx6, (V) = 4},

V3 = {17 € V(Gy)] diyxg, (V) = 3}, Vo= [" € V(G2)| dyyxg,(v) =n + 1},

Vs = {v e V(G| di,xc, (V) = 4} and Vs = {v € V(G))| dk,xc, (V) = 3}.

Since the structure of K; X G, and the Theorem 2.1, &, ¢, (v)=¢&5,(v) + 1. So,
we obtain &g, g, (V)=3, &k, xc, (v)=4 and &k, xc, (v)=5 forevery v € V,orv E V,,
v Ely,orv € Vs andv € Vzor v € V, respectively. Then, we partition the edges
of K, X G, into five subsets E,, E,, E3, E, and Es, as follows:

Ey={ewy EE(K; XGp)|uEV;,vEV}, E; ={ey, EE(K, X Gy)|uEVpv E
Va} , Es={ew €EE(K; X G)lu€V,veVs}, E, ={e,, EEK,; X Gp)|ue
Vs,v €Vg}and Es = {e,,, € E(K, X G,)|u € V3, v € V).

Moreover, we have |E;| = n, |E;| = 2n, |E3|l = n, |E,| = 2n and |Eg| = 2n + 1.
Thus, we have

M(K; X G,) = zeu,es,[fxzxan(u) + fxzxa,.(v)] + Zeu,eaz[szxan(u) +
€K,%Gn (v)] + Zeu.,ez-:;,[szxa,, W) + 5sza,,(v)] + Zeuve£4[£szo,, W+
Exyx6n (V] + Doyt (€1, x60 (W) + Expxa, (V)]
=X 7+ ZE 9+ T, 7+ 289+ (6 + XL, 8 + Tk, 10)
=68n+6. D
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M3(K; X Gp) = Zepek, [skzxa,, (Wek,xq, (V)] + Zeu,eszlexzxc,, Wek,x6, (v)] +
Yeuy€Es [eszGn(u)el{sz,, (V)] + Zeu.,es.[sxzxa,,(u)exzxa,,(l’)] +
Zeupeas [51(2 XGn (Weg, XGn (”)]
=¥, 12+ 3320+ 2%, 12+ 224 20+ (9 + X1, 16 + TF, 25)
=145n+9. O

. 2 2 2
M (K, X Gy) = Zvevi[eszG"(v)] + ZVevz[exszn(v)] + ZveV,[Eszc,,(V)] +
2 2 2
ZveV4[eszGn(v)] + Zuevs [Exzxc,, (”)] + Zvevﬁlfxzxan (V)]
=94+ 3,16+ X-,25+9+ 3,16+ 3,25
=82n+18. o

Theorem 2.5 Let G be a connected graph order n and size m that includes only
one induced sub graph H as a star. Then, M;(G) =4m —n+ 1, M3(G) = 4m —
2n+2 andM;*(G) = 4n - 3.

Proof. Let ¢ be a vertex whose degree is (n — 1). We have £;(c) = 1 by the
definition of eccentricity. Furthermore, let x,y € V(G) — {c}. It is easy to see that
d(x,y) = 2. So, we obtain £;(x) = 2 for all vertices x € V(G) — {c}. Then, we
partition the edges set of the graph G into two subsets E; and E,, as follows:

E; ={e,, € E(G)|dg(c) =n—1,v€V(G) — {c}} and E;, = {e,, € E(G)|u,v €
V(G) —{c}} . It is clear that cardinality of sets E; and E, are (n — 1) and
(m — n + 1), respectively. Thus, we have

Mi(G) = X, e, [e6(c) + ec(V)] + e, e, [€6 (1) + £6(V)]
=¥rl3+3¥M ™ 4=4m-n+1 o

M;(G) = X, ek, [66(C)ec (W] + Ze,ex, [ (W) 6 (V)]
=Yrt2+ ¥R l4=4m-2n+2 o

M;i*(6) = [&6(0)])* + Zvevio)-(e)ec W)]?
=1+322=4n-3. o

Definition 2.5 [9] Friendship graph D} is collection of 7 triangles with a
common point. Another way of obtaining friendship graph is addition of K, and
n copies of K;.

Result 2.1 M;(DT) = 10n, M3(D?) = 8n and M;*(D}) = 8n + 1.
Definition 2.6 [16] The corona product GoH of two graphs G and H is defined as
the graph obtained by taking one copy of G and |V (G)| copies of H and joining

the /-th vertex of G to every vertex in the i—th copy of H. The i—th copy of H is
denoted by H;, where 1 < i < n.
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Theorem 2.6 Let G be a connected graph order n and size m that includes only
one induced sub graph H as a star and let Q be any connected graph order r and
size p. Then, M;*(GoQ) = 16nr + 9n — 7r — 5.

Proof. The number of vertices of the graph GoQ is (nr + n). Let the vertices set
of the graph GoQ be V(GoQ) =V, UV, U V3 UV,, as follows:

Vl = {Vi € V(G)l dG(vi) =n-1i= 1}, Vz = V(G)\Vl,

Vs ={v; e V(H)| x € V, and e, € V(Go@Q)}and V, = V(G)\{V; UV, U V3}.

It is clear that we have |V}| =1, |V, =n—1, Vsl =r and |V,| = nr —r. Let
u€eV,,a€V,,beV;andc €V,. Since dg(u) =n—1 and dgeo(u) =n+r—
1, we have d(u,a) =1, d(u,b) =1 and d(u,c) = 2. So, &o(u) =2 is
obtained. Let H, be any copies of the graph / and every vertices of H, joining the
vertex U, where vertices of V3 are them. Furthermore, we have d(b,a) = 2 and
d(b,c) = 3. So, £goq(b) = 3 for every b € V; is obtained. Similarly, £5,(a) = 3
and &g,9(c) = 4 are found for every a € V; and ¢ € V,, respectively.

Then, we have

M;*(60Q) = Zoev,[Ecoq@)]” + Zvew,[6600 D] + Zven[ecoo ]’ + vev,[€600 @]
=22+ 30132+ 37 32+ X 42
=16nr+9n—-7r-5. o

Theorem 2.7 Let G be a connected graph order n and size m that includes only
one induced sub graph H as a star and let C, be a cycle graph. Then, M{(GoC,) =
15nr + 6m — 4r —n+ 1 and M3(GoC,) = 28nr + 9m — 13r —3n + 3.

Proof. Firstly, let the vertices set of the graph GoC, be V(GoC,) =V, UV, U5 U
V4. These sets are the same as set finding Theorem 2.6. Furthermore, eccentricity
values of every vertices of sets V;,V,,V; and V, are equal to 2, 3, 3 and 4,
respectively. Then, we partition the edges set of GoC, into six subsets E, ,
E,, E3, E,;, E5 and E,, as follows:

E; = {ey, € E(GoC,)|u € V;,v €V,}, E; = {ey, € E(GoC,)| u,v € V,},

E; = {ey, € E(GoC,)|u € V},v € V3}, E, = {ey, € E(GoC,)| u,v € V;},

Es = {e,, € E(GoC,)|u € V,,v € V,} and Eg = {e,, € E(GoC,)| u,v € V,}.

It is clear that we have |Ej| =n—1, |E;l=m—n+1, |E3| =71, |[E =T,
|Es| =nr —r and |Eg| =nr —r.
Thus, we get
M (GoCy) = X, ek, [Ecocr(u) + EGocr(v)] + Xeyves, [anc,(u) + ancr(v)] +
Tewvets Ecoc, () + Eoc, W] + Teyer,[£c0c, (W) + goc, )] +
YeuveEs [egoc, (W) + €6oc, )] + YeuveEe [anc, (W) + £coc, )]
=TI S+ER™ 6+, 5+, 6+ NI 7 + DT
=15nr+6m-4r-n+1. o
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M;(GoC,) = X, ek, [Ecoc, Wecoc, V)] + Zey ek, [coc, WEgoc, V)] +
Zem,eb', [faocr(u)saacr(v)] + Yoy eE, [fcoc,, (Wegoc, (V)] +
Zem,eEs ["—'coc, (u)SGoC,- (V)] + Zewess [anc,.(u)faocr (V)]
=X 6+ TR 9+ T, 6+ XL, 9+ ETT 12+ 2T 16
=28nr+9m—-13r-3n+3. o

Theorem 2.8 Let G be a connected graph order n and size m that includes only
one induced sub graph H as a star and /et B, be a path graph. Then, M;(GoP,) =
15nr + 6m — 4r — 9n + 3 and M3(GoP,) = 28nr + 9m — 13r — 19n + 10,

Proof. The proof follows dirsctly from the Theorem 2.7.

3. Algorithm for the Zagreb Eccentricity Indices of a Graph

In this section, we offer an algorithm computing the new Zagreb indices for
given graph G. Firstly, algorithms finds disfance matrix by using adjacency
malrix. Then, eccentricity values of every vertices are found and, then new
Zagreb indices are computed by the algorithm. The time complexity for this
algorithm is O(n3). Code that written in Pascal Programming Language of
algorithm is given graph G as below:

Program New Zagreb Indices; if (m=1) then
Uses crt; begin;
VAR for i:=1 ton do

ad,v,s.e : array[1..1000,1..1000] of longint;
i,j,k,m,top,b,h,f,enb,enk,n,s1,52,s3: integer;
suml,sum2,sum3 : integer;

tus:char;

label L,T;

BEGIN

clrscr;

m=l;

writeln('Input number of vertices of graph');
readin (n);

fori=1tondo

for j:=1 to n do
begin
writeln ('Input value of ',i,".row",!
'J.-column”);
readln (a[i,j]);
if i=j then a[i,j]-=0;
end;

fori=1tondo
for j=1 tondo
v[ij):=afi,j);

for j:=1 to n do
if afi j]=1 then dfi,j]):=alij]
else if i=j then df[i j]:=ali,j]
else dfi,j]:=50000;
end;

f:=0;
fori:=1tondo
for j:==1 ton do
if d[i,j]=50000 then f:=f+1;
if =0 then goto T;

L:
if (m>1) then
begin
fori:=l tondo
for j=1 ton do
if (d[i,j]=50000) and (a[i,j]=1) then
d[ijl=m;
end;

if (m>1) then
f:=0;
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begin
for i:=1 to n do
for j:==1tondo
if d[i,j]=50000 then f:=f+1;
if £=0 then goto T;
end;
fori:=1tondo
begin
forj:==1tondo
begin
top:=0;
forb:=1 tondo
begin
top := (top + (a[i,b]*v[b,D));
end;
s[i,j]:=top;
end;
end;
fori:=1tondo
begin
for j==1 tondo
begin
if i=j then s[i,j]:=0;
if s[i,j]=0 then s[ij]:=0
else s[ij]:=1;
end;
end;
fori:=1 tondo
begin
for j:=1 ton do
begin
if i=j then afi,j]:=0
else afijJ:=s[ij];
end;
end;
m:=m+l;
gotoL;
T:
writeln;writeln;
writeln ( 'Distance Matrix of Graph’);
writeln;writeln;
fori:=ltondo
begin
forj==1tondo
begin

if d[i,j]=50000 then write(3)

else write(d[i,j]:3);
writeln;
end;
end;
for i:==1 ton do
begin
for j:=1 tondo
begin

if (j=1) then enb:= D[i,j];
if ( D[i,j} >= enb ) then enb:=D[i,j];
end;
Efi,1]:=enb;
end;
writeln; writeln;
writeln ('Eccentricity Values For Al
Vertices');
writeln; writeln;
fori:=1 ton do
for j:=1to 1 do
writeln( E[ij]:3):
writeln; writeln;
suml:=0; sum2:=0; sum3:=0;
fori:=1tondo
begin
s1:=E[i,1]*E[i,1];
suml:=suml+sl;
for j:=1 ton do
begin
if ((i<j) and (v[i,j]=1)) then
begin
s2:=E[i, 1 J+E[j,1];
sum2:=sum2-+s2;
s3:=E[i,1]*E[j,1];
sum3:=sum3+s3;
and;
end;
end;
writeln ("Value of index M*1="sum2);
writeln ("Value of index M**1=";sum1);
writeln ('Value of index M*2=",sum3);
writeln ( 'Press the enter for exit');
repeat
tus:=readkey;
until tus=#13;
END.
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