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Abstract

A radio labelling of a connected graph G of diameter d is a map-
ping f: V(G) — {0,1,2,---} such that d(u, v) +|f(u) — f(v)| = d+1
for each pair of distinct vertices u and v of G, where d(u,v) is the
distance between u and v. The value rn(f) of a radio labelling f is
the maximum label assigned by f to a vertex of G. The radio num-
ber rn(G) of G is the minimum value of rn(f) taken over all radio
labellings f of G. A caterpillar C is a special tree that consists of
a path z122 - - - T (m > 3), with some pendant vertices adjacent to
the inner vertices z2,z3, * ,Zm-1. If d(z;) = t (the degree of z;)
for i = 2,3,--- ,m — 1, then the caterpillar is called standard, and
denoted by C(m,t). In this paper, we determine the exact value of
the radio number of C(m,t) for all integers m > 4 and t > 2, and
explicitly construct an optimal radio labelling. Our results show that
the radio number and the construction of optimal radio labelling of
paths are the special cases of C(m,t) with ¢t = 2.
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1 Introduction

Motivated by FM Radio Channel Assignment Problem [6, 7, 8], radio k-
colorings were introduced by Chartrand, Erwin, Harary and Zhang (2, 4].
For a connected graph G of diameter d, an integer k with 1 < k < d, a
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radio k-coloring of G is a mapping f: V(G) — {0,1,2,---} (color set) such

that
d(u,v) + |f(uv) — f(v)| 2 k +1

for all distinct vertices v and v of G, where d(u, v) is the distance between
v and v. The value rci(f) of a radio k-coloring f of G is the maximum
color assigned by f to a vertex of G. The radio-k chromatic number rci(G)
of G is the minimum value of r¢i(f) taken over all radio k-colorings f
of G. A radio k-coloring f of G with rci(f)=rci(G) is called an optimal
radio k-coloring of G. We remark that for technical reasons we follow the
definitions in [16], and thus the radio-k chromatic number rci(G) defined
here is one less than that defined in [2].

Radio k-colorings generalize many graph colorings. It is easy to see
that the radio 1-colorings and ordinary vertex colorings are synonymous,
and the radio 2-colorings problem correspond to the well studied L(2,1)-
colorings (see (11} and references therein). Moreover, radio d-colorings are
referred to as radio labelings and the radio d-chromatic number is called
the radio number, denoted by rn(G). Radio (d — 1)-colorings and radio
(d — 2)-colorings are referred to as antipodal colorings and nearly antipo-
dal colorings, radio (d — 1)-chromatic number and radio (d — 2)-chromatic
number are called the antipodal chromatic number and the nearly antipodal
chromatic number, denoted by ac(G) and ac’(G), respectively (see [1, 3, 5]).

In general, the research of radio k-colorings are mainly concentrated
on the three largest values of k. At present, there are several results for
k € {d,d —1,d — 2}, restricted to some basic families of graphs, such as
paths, cycles, square of paths, square of cycles, and hypercubes [1, 3, 5, 9,
10, 12, 13, 14, 15, 16, 17, 18].

Determining the radio number of a graph is interesting problem with
potential applications to FM Radio Channel Assignment. As determining
the radio number for paths and cycles was a challenging task, some scholars
believe that in general determining the radio number would be difficult even
for trees. In {12] Liu investigated the radio number for trees, presented a
lower bound for the radio number of trees and characterized the trees with
radio number achieving this bound. Moreover, Liu generalized the results
for path to spiders (trees with at most one vertex of degree more than
two), leading to determining the exact value of the radio number in certain
special cases. In [15] Li, Mak and Zhou determined the radio number for
any complete m-ary tree with any height.

Here, we investigate the radio number for another special kind of tree
graph, namely the standard caterpillar. A tree is said to be a caterpillar if
it consists of a path P,, = z1z2- - z,n (m = 3), called the spine of C, with
some pendant edges known as legs, which are incident to the inner vertices
Z9,Z3,** ,Lm—1. The degree d(z) of a vertex z in a graph G is the number
of edges incident with z. If the degrees of z3,z3,-+- ,Z,m_1 in C are the
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same, then the caterpillar C is called standard, and denoted by C(m,t) if
d(z;)=tforali=23,--- ,m—-1.

In [2], Chartrand et al. have showed that for a complete k-partite
graph Ko, ng o nir ™Ky nge me) = (58, m3) + (k = 2). For m = 3,
as C(m,t) = C(3,t) = K, ., it follows that rn(C(3,t)) = t + 1 by the
above result. In this paper, We determine the radio number of the standard
caterpillars C(m,t) for all integersm > 4 and ¢ > 2, and explicitly construct
an optimal radio labelling. Our results show that the radio number and
the construction of optimal radio labelling of paths are the special cases of
C(m,t) with t = 2.

2 Preliminaries

Let T be a tree rooted at vertex r. A vertex u is called a descendant of
another vertex v (or v is an ancestor of u) if v is on the unique path of
T from r to u. The subtree of T induced by r, a child « of r, and all
descendants of u is referred to as a branch of T. For any vertex z € V(T')
as the root, define the level function on V(T') by

L.(x) = d(z,u) for all u € V(T).

For any u,v € V(T'), define
¢z(u,v) = {max L. (t)|t is a common ancestor of u and v}.

For any vertex z in a tree T, define the weight of T rooted at z by wo(T) =
ZueV(T) L.(u). Let the weight of T be the smallest weight among all
possible roots z of T

w(T) = min{w,(T),z € V(T)}.

A vertex r* of a tree T is called a weight center of T if w,-(T) = w(T).
For a graph G, a maximal connected subgraph of G is called a compo-
nent of G. By the above definitions, the following facts are obvious.

Lemma 1. [12] Suppose r is a weight center of a tree T. Then each com-
ponent of T — r contains at most |V (T)|/2 vertices.

Lemma 2. [12] Each tree T has either one or two weight centers, and T
has two weight centers, say r and 7, if and only if v’ is an edge of T and
T — rr’ consists of two equal-sized components.

Lemma 3. [12] Let T be a tree rooted at r. Then for any vertices u and v,
(1) d(u,v) = Ly(u) + Lr(v) — 2¢,(u,v);
(2) ¢r(u,v) = 0 if and only if r € {u,v} or u,v belong to different
branches.
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For C(m,t) with m > 4 and ¢ > 2, denote the spine of C(m,t) by
P, = 7122+ Tm, and let the legs of C(m,t) be z;,),z: 2, -+ ,Zi -2 for
i=2,3,---,m—1andt > 2 (see Figure 1 for m = 2k(k > 2) and Figure
2 for m = 2k + 1(k > 2), respectively).

-’ch.c—z -’Ek 1, :—2 -’L‘k—2 c—z Z3,e—-2 Z2,e—2
Tk,1 T2,
i H i
: 3 g
Tk :Bk— Tpe—2 T2 1
Tr41 Tr+2 Tir+3 Tok—2 T2k—~1 T2k
ondoi- /\ /\ /\ /\
Th+1 :—2 xk 2, t—2 xk 3, ¢-2 zzk-z ¢—2 Sb‘zk—x t—2
Figure 1: C(m,t) with m = 2k(k > 2).
Tkpt~2 Th-1,1-2 xk—z.:-z T3,-2 Z2,-2
Tia ZTk-1,1 Tk—2,1
$
Th1,1 Tk Tpo1 Ti_2 x
Tkt1,6—-2 Tr42 Tr+3 Lh+4 T2k T2k+1
A A A

Trio,i " Tga3,i Trta,1 " Tak11 " 2k,
Tr42,6—-2 Tr4+3,t-2 Lht4,6-2 T2k—-1,-2 T2k,t-2

Figure 2: C(m,t) with m =2k + 1(k > 2).

By Lemma 1 and Lemma 2, it is easy to see that r = zx and r = 24
are the weight centers of C(2k,t), and r = x4y, is the weight center of
C(2k + 1,t). Then, by the definition of weight of tree, we have

w(C(2k,t)) = (t — 1)ZE i+ 14 (£ — V)X i = (£ - 2)(k2 - 1) + k2; (1)
w(CRk+1,t)=t+2t-1)Zrpi=(t -2)(K*+k-1)+Kk2+k (2)

3 Lower bounds of rn(C(m,t))

First of all, note that the diameter d of C(m,t) is m — 1. Let f be a radio
labelling of C(m,t). By the definition of radio labelling, f is injective,
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that is f(u) # f(v) for distinct u,v € V(C(m,t)). Hence, f induces a
linear order ugp,u),us, - ,un—1 of V(C(m,t)), where n = |V(C(m,t))| =
m+ (m — 2)(t — 2), with

0 = f(uo) < f(u1) < flue) <+ < f(un-1). ®3)
Then the value of m(f) = f(un-1) = Yiy [f(w:) — flwi-1)]-
Note f(u;) — f(ui—1) 2 d+1—d(ui—y1,u;) for 1 < i < n—1 Dby the
definition of radio label. We call
g = f(ui) — f(uim1) — [d+1—-d(uimg,w)], 1<i<n—-1, (4)

the jump of f from u;_; to u;.
For C(m,t) with m = 2k + 1 and k > 2 (see Figure 2), denote Vy =

{Tr41,1, Th41,20 > Tht1,e—2}, VI = {21, 22,1, %22, -+ , T2e—-2}, Vo = {T2k41,
Tok,1,T2k,2, "+ » T2k,e—2}-

Definition 1. Let f be a radio labelling of C(m,t) with m = 2k + 1 and
k > 2. Rename the vertices of C(m,t) as ug,uy,uz, - ,un—1 o that they

satisfy (3). A vertex u;, (1 < ip < n — 2) is called bad, if u;, € V1 UV,
such that u;y—1 and ui,4 belong to the same branch of C(m,t), and none
of vig—1 and uiy41 s the weight center r = Tryg.

Lemma 4. Let f be a radio labelling of C(m,t) with m = 2k + 1 and
k > 2. Rename the vertices of C(m,t) as ug,u1,uz,"** ,Un—1 S0 that they
satisfy (3) and (4). If f satisfies the following conditions: for each i =
1,2,--- ,n—1, u;_, and u; belong to different branches, unless one of them
is the weight center r = ziy1, and {uo,un-1} = {r,v}, where v is a vertex
with L.(v) = 1, then there must ezist a bad vertezx u;, € V3 U V3, such that
Eip + Eip41 = 1.

Proof. Note that |Vp| =t—2 and |V}| = |V2| = t—1. Suppose u; is not bad
for all vertices v; € VUV,. Then u;_; and u;;; belong to different branches
of C(m,t), unless one of them is the weight center r = 4. Since for each
i=1,2.--,n—1, u;—; and u; also belong to different branches (unless
one of them is the weight centers r), and {ug,un—1} = {r, v}, where v is a
vertex with L.(v) = 1, then at least one of u;_; and u;4, belong to VouU{r}
by the structure of C(m,t). Denote Vi UV5 = {u;,,uiy, - , Uip,_, }, Where
i1 <ig < -+ < ig—3. Without loss of generality, let 4y = r. By the above
discussion we know that for every pair u;, and u;,,, (p=1,2,--+,2t - 3),
there exists a vertex u; with i, < j < ip41 such that u; € V, otherwise
it must be that w;, 41 € V. This implies that |V > [V U V;|/2 =
(i} + |V2])/2 = t — 1, contrary to |Vo| =t — 2. Thus, there must exist a
bad vertex, call it u;,, in V3 U V3.
In the following, we show €;, + €i,+1 = 1. By (4) and Lemma 3,
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Fluigs1) = 1) = f(Uio41) = Fuio) + fluio) — fuio-1)
=2d+2 -~ d(u,'o_l, u,-o) - d(uio,u,'°+1) + iy + Eip41
=2d+2- [Lr(uio—l) + Lf(ui'o)] - [Lf(uio) + Lr(uio-i-l)] + €ip + Eip41
=2d + 2 — 2Ly (uiy) — [Lr(uig-1) + Lr(uig+1)] + €55 + Eig1
=2d+2 - 2Lr(uio) - d(uio—li uio+l) - 2¢r(uio—11 uio+l) + Eip + €ig+1-

As u;, is bad, then d = 2L, (u;;) and ¢,(uiy—1,Uig+1) = 1, we have
f(uio+1) - f(uio—l) < d— d(uio—l’uio+l) + €ip + Eig+1-

Suppose €5, + €ig+1 = 0, then

f(ut'o+l) - f(uio—l) < d— d(uio—l’uio+1)’
contrary to that f is a radio labelling of C(m, t). Thus, we have &;,+€;,41 =
1. O
Theorem 1. For all integers m > 4 and t > 2,

2k% — 2k + 142t -2)(k—-1)?, if m =2k, k>2;
m(C(m, 1)) Z{ 2k2 + 2+ (t—2)(2k2 — 2k + 1), if m =2k +1,k > 2.

Proof. Let f be an optimal radio labelling of C(m,t). Rename the ver-
tices of C(m,t) as ug, u1,ug,** ,un—1 so that they satisfy (3) and (4). By

Lemma 3, we have

m(C(m,t)) = f(un-1 )= T f () - f(ut-x)]
=(n-1)(d+1)-37, d(u,_l,u.) + z,_l €
=(n-1)(d+1)- 21—1 [Lr(tie1) + Lp(us) - 2¢r(ut—11“1)] + 2;-—-1 €
=(n- 1)(d +1) -2 L (u,) + L (uo) + Le(tn-1)

+2 E,-—l ¢r(uz—l,ut) + Z‘l"'l €
=(n —1)(d+1) = 20(C(m, 1)) + Lr(uo) + Lr(un—1)

+ 2 Z?:l Or(uio1,us) + E,—l £i.

Recall n = m + (m — 2)(t — 2) and d = m — 1. We consider two cases

according to the parity of m.
Case 1. m = 2k,k > 2.
In this case, d =2k —1and r = :rk or r = Tx41. Note that L,(up) +

Le(un—1)+23 0 ¢r(u,_1,u,) +30 le;>1. By (1), we have
rn(C(m, t)) = m(C(2k,t))
>2k+(2k—2)(t—2)—1]-2k—-2{(t-2)(kK®2 - 1) + k%] +1
=2k% -2k +1+2(t—2)(k—-1)>2

Case 2. m=2k+1,k>2.
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In this case, d = 2k and r = zx4,. By (2), we have

m(C(m,t)) = mn(C(2k + 1,t))
=[2k+1+(2k—-1)(t-2) - 1](2k+ 1) —2[(t- 2)(k2 +k—1)+k%+ k]
+ L,-(uo) + Lr(un— ) -+ 22'31 ¢r(ut—1y ut) + 21:1

=2k2 + (t —2)(2k? — 2k + 1) + Ly (u0) + Ly (un-1) + 22._1 Or(uiz1, ui)
+¥ e,

Note L,(uo)+ Ly (un—1) > 1. If there exists an ig such that @, (uiy—1,Usis) =
1, or Ly (ug) 4+ Ly(up—1) = 2, we have

m(C(m,t)) > 2k% +2 + (t — 2)(2k2 — 2k + 1).

Otherwise, for each i = 1,2,--+,n — 1, ¢(uj—1,u;) = 0 and L.(up) +
Ly (un—1) = 1, that is u;—; and u; belong to different branches (unless
one of them is the weight center ), and {ug,un—1} = {r,v}, where vis a
vertex with L.(v) = 1. Then by Lemma 4, there must exist a bad vertex
Uiy € V1 U Vo, such that €4, + €i541 > 1. Thus, we also have

m(C(m,t)) > 2k? +2 + (t — 2)(2k% — 2k + 1).
a

4 Upper bounds and the exact value of rn(C(m, t))

Theorem 2. For all integersm >4 and t > 2,

2k? — 2k +1+2(t — 2)(k —1)2, if m = 2k, k> 2;
m(C(m, 1) < { %2424 (t—2)(2k2—2k+1), f m=2k+1,k>2.
Proof. Case 1. m =2k, k > 2.
In this case, d = 2k — 1, and the distance condition of a radio label f is
that
£ (w) = F@)| +d(w,v) > d+1 =2k 6

holds for every pair v and v of distinct vertices of C(2k, ).
If K = 2, define a labelling f of C(2k,t) = C(4,t) (see Figure 1 for
k=2):

f(z1) =2,
f(x2) =2t + 1,
f(ma) =0,
f(z4) =3,

f(z2)=2j+2, 1<j<t-2
flz3j)=2j+3, 1<j<t-2.
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It is easy to see that the vertex z3 = zx has the maximum label f(z2) =

f(zx) = 2t + 1, and (5) holds for every pair u and v of distinct vertices of
C(2k,t) = C(4,t). Thus,

m(C(2k,t)) = mn(C(4,t)) < 2 +1=2k% — 2k + 1 +2(t — 2)(k — 1)2.
If k > 3, define a labelling f of C(2k,t) (see Figure 1 for k > 3):

( f(z1) =k,

flzi)=1+(k=-9)2k+1)+2¢t-2)(k—-1)%, 2<i<k-1,

f(z) = 2k — 2k + 14+ 2(t — 2)(k — 1)2,

f(xk'!-l):o:

F@esi) =k+2+(k—i—-1)(2k+1)+2(t —2)(k—1)%, 2<i<k-2,
{ flzak-1)=k+2,
f(zak) = 2k — 3k + 1+ 2(¢ — 2)(k — 1)2,
fziz) =2k +2+ (k—i)(2k —3) +2(j — 1)(k — 1)2,

2<i<k1<j<t-2,

flzryig) =k+4+ (k—1i)(2k —3) +2(5 — 1)(k—1)?,
{ 1<i<k-11<j<t-2

It is easy to see that the vertex z, has the maximum label
f(zi) = 2k — 2k + 14 2(t — 2)(k — 1)2.

It suffices to show that (5) holds for every pair « and v of distinct vertices
of C(2k, ).

For convenience, we denote Xo = {z1, Tk, Zk+1,T2k—1, T2k }, X = {z:|2 <
1 < k—l}U{.’Bk+i|2 i1 <L k—2}, Y = {:c,-,,-|2 <i<kl<j St—2}
and Z = {zp4i ]l <1< k-11<j <t-2} Then V(C(2k,t)) =
XoUXUYUZ.

In order to show that (5) holds for every pair u and v of distinct vertices
of C(2k, t), we consider seven subcases as follows.

Subcase 1.1. |{u,v} N Xp| 2 1.

If u,v € Xo, (5) can be verified easily. Let u € Xy, v ¢ Xo. Here we
verify (5) for case u = x; only. For the cases u = zk, Tk+1, Tok—1, Tok, (5)
can be verified similarly.

Subcase 1.1.1. u=z;,v=2;(2<i < k~-1).

|f(z1) — fz:)] + d(z1,2:) = f(z:) = fz1) + (i - 1)
=14 (k—9)2k+1)+2(t—2)(k—1)2 =k +i—1> (k—1i)(2k) > 2k.

Subcase 1.1.2. u =z, v=x44+:(2 <1< k - 2).
|f(z1) = f(@ie4i)| + d(z1, Tiets) = f(@h4s) = f(1) + (K +i-1)

=k4+2+(k-i-1)(2k+1)+20t—2)(k—1)2—k+k+i—1
> (k — i)(2k) > 2k.
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Subcase 1.1.3. u = I, v= .'B.',j(2 <1< ’C,]. <j<Lt- 2)

|f(z1) — f(zi )| + d(z1, Zi5) = fziz) — fz1) +4
— 9k +2+ (k- i)(2k—3) +2( — 1) (k= 1)2— k +3
> 2k + 2+ (k — i)(2k — 4) > 2k.

Subcase 1.1.4. u =21, v = 2544,;(1 i <k-1,1Lj <t - 2).

|f(z1) = f(Tktig)| + AT1, Thei 5) = F(Trpi5) — flz1) + (K +4)
=k+4+(k—9)2k—-3)+2(j —1)(k—1)%2 —k + (k+1)
> 2k + 4+ (k — i)(2k — 4) > 2k,

Subcase 1.2. u,v € X.
We only need to verify that (5) holds for u = z;(2 € i £ k- 1),
v = Zk45(2 < j < k —2) (the other cases can be checked easily). In fact,

|f(z:) = f(zras)| + d(zi, Thy ;)
=|(j-)Rk+1)+k|+(k+7—19)
[ -2k +2)+2k>2k, i<j;
Tl (GE—5)(2k) > 2k, i>j.

Subcase 1.3. v,v €Y.
Letu=12;;(2<i<k1<j<t-2),v=12,02<p<k,1<qg<t-2),

{i,5} # {p. q}.

[f(xi,5) — f(Zp,g)| + d(zi,5,Tp,q)
= |(i — p)(2k — 3) + 2(j — q)(k — 1)?| + d(z: j, Tp,q)
2k —1)2+2=2k(k—2)+4>2k, p=iq#j;
>9q (2k-3)+3=2k, p#iqg=7;
2k—1)2—(k—202k —3)+3=3k—-1>2k, p#iq#j

Subcase 1.4. u,v€ Z.

(5) can be verified by an argument similar to that used in Subcase 1.3.

Subcase 1.5. ue X,veY.

Subcase 1.5.1. u=z,2<p<k-1),v=12;;(2<i<k1<j<
t—2).

|f(zp) = f(zi3) + d(zp, i 5)
> f(zp) — flxs,5) + 12 f(zr—1) — fz2,0-2) +1
=1+4+(2k+1)+2(k—-1)2 -2k +2+ (k—2)(2k —3)]+1 =3k -3 > 2k.

Subcase 1.5.2. u=2x4,(2<p<k-2),v=12,;(2<i<k1<j<
t—2).
|f (@k+p) — f(@i5)| + &(Th4p) Zi,5)

2 f(Tk+p) = f(2i5) +3 2 f(Trrr—2) — f(22,0-2) +3
=k+2+ 2k +1)+2(k—1)2 -2k + 2+ (k — 2)(2k — 3)] + 3 = 4k > 2k.
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Subcase 1.6. u € X,v € Z.
Subcase 1.6.1. u=2,(2<p<k-1),v=1244;;(1<i<k-1,1%<
j<t—2).

|f(zp) = f(@ktig)| + A(Tp, Ths,5)
2> f(zp) — f(Trti ) +3 2 f(Tr—1) — f(Tht1,e-2) + 3
=14+ (2k+1)+2(k—1)2 = [k+ 4+ (k— 1)(2k — 3)] +3 = 2k.

Subcase 1.6.2. u =234 p,(2<p<k—2),v=244:;(1 <i<k—-1,1<
j<t=2).

|f(Trtp) = F(@hti5)| + AThp) Thtei )
2 f(@k4p) — F(@r4ii) +1 2 [(@rai—2) — [(Trpr,e—2) +1
=k+2+(2k+1)+2(k-1)2-[k+4+(k—1)2k-3)]+1=3k -1
> 2k.

Subcase 1.7. v € Y,v € Z.
Let u=2;;(2<i<k1<j<t-2),v=ar4p(1<p<k-11%<
g<t-—2).

|f(%i,5) — F(Trtp,g)| + AZi5, Thotp,g)
=lk—2+(p-i)2k-3)+2( —q)(k -1+ (k+p—i+2).

We now consider the following cases, depending on how j and p are
related.
Subcase 1.7.1. j = q.

lf(xi,j) - f(xk+p.q)| + d(z; 5, $k+p,q)
=lk—2+(p-9)2k-3)|+(k+p—-i+2)
2k+(p—i)(2k—2) 22k, p2>4;
=1 GE-p(2k—4)+4>22k~-4+4=2k, p<i.

Subcase 1.7.2. j > q.

|f(2:,5) = F(Trp,g)| + d(Ti 55 Thip,g)
220 -)k—1)°+k-2]—|p—i|(2k—-3) +3
>2(k—1)2+k—2— (k—1)(2k — 3) + 3 = 2k.

Subcase 1.7.3. 7 < gq.
|f(2:,5) — f(Zhap,g)| + AZi 52 Thip,g)
=12(g =)k =1)°] = (k—2) = (p—4)(2k = 3)| + (k +p— i+ 2)

S { 2k—12+(i—p)(2k—4)+4>2k(k—2)+6>2k p<i
-{ 2k—1)2 —(k—2)—(k—3)(2k—3)+3=4k—-2>2k, p>i.
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Combine all discussions above, (5) holds for every pair u and v of distinct
vertices of C(2k,t) for k > 3. Thus, for k£ > 2, we have

n(C(2k,t)) < 2k? — 2k +1+2(t — 2)(k — 1)%.

Case 2. m=2k+1,k> 2.
In this case, d = 2k, and the distance condition of a radio label f is that

£ (u) = F(0)| +d(w,v) 2 d+1=2k+1 (6)

holds for every pair u and v of distinct vertices of C(2k + 1,t). Define a
labelling g of C(2k + 1,t) (see Figure 2):

[ g(z1) =k +1,

gz:) =2+ (k+1-9)(2k+1)+ (t—2)(2k2 -2k +1), 2< i<k,

g(zk+1)=03

9(Zksi) =k +3+(k+1—9)(2k+ 1)+ (¢ —2)(2k2 -2k + 1), 2L i < k,

3 9(z2k41) =k +2,

9(zij) =k+3+(i—1)(2k-1)+ (G —1)(2k* — 2k + 1),
2<i<kl1<j<t-2

9(Zktij) = 3 +i(2k — 1) + (j — 1)(2k* — 2k + 1),
1<i<kl<j<t—2

\

It is easy to see that the vertex xr4+2 has the maximum label
9(Trya) = 2k% + 24+ (t — 2)(2k% — 2k + 1).

And (6) can be verified by an argument similar to that used in Case 1, we
omit it. Thus,

m(C(2k + 1,t)) < 2k 4+ 2 + (t — 2)(2k% — 2k + 1).

Theorem 3. For all integersm > 4 and t > 2,

_f 2k2 -2k +142(t—2)(k—1)? if m =2k, k > 2;
m(C(m,1)) —{ %242+ (t—2) (k2 — 2k +1), f m=2k+1,k>2

Proof. This follows from Theorem 1 and Theorem 2 immediately. a

5 Some discussions and examples

As the radio labellings f of C(2k,t) and g of C(2k + 1,t) constructed in
the proof of Theorem 2 all attain the lower bounds in Theorem 1, f and ¢
are optimal radio labellings of C(2k,t) and C(2k + 1,t) respectively.

For clarity, as examples we give the optimal radio labellings of C(8,4)
and C(7,5) as follows.
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Example 1. An optimal radio labelling f of C(8,4).

Here m = 2k = 8, k = 4 and t = 4, then m(f) = m(C(8,4)) =
[2k% — 2k + 1 + 2(t — 2)(k — 1)?]k=4,¢=4 = 61 (see Figure 3).

20 38 15 36 13 31

" l\x7 " ‘\337 B 1\17 B 1\T7 " 1\17 ~ ‘\x7
g

Figure 3: An optimal radio labelling f of C(8,4).

Example 2. An optimal radio labelling g of C(7,5).

Here m =2k +1 =7, k = 3 and t = 5, then rn(g9) = m(C(7,5)) =
[2k2 + 2 + (t — 2)(2k? — 2k + 1)}k=3,¢=5 = 59 (see Figure 4).

11 24 37 16 29 42 8 21 34 13 26 39 18 31 44
Z2,18 2,2 L2,3p I3,14 3,22 T3,3p L4, T4, 2T4,3p T5,14 T5,2 T53p 6,18 T6,2 T6,3,
4 55 48 0 52

Figure 4: An optimal radio labelling g of C(7,5).

Moreover, in [16], Liu and Zhu have determined the radio number of
paths. They showed that

Theorem 4. For all integers m > 4, denote a path with order m by P,,,

then
2k%2 — 2k +1, if m=2k,k>2;

rn(Pm)={ 2k24+2, if m=2k+1,k>2.

Note that if let ¢ = 2, then C(m,t) = P,,, thus Theorem 4 is a direct
corollary of Theorem 3, and the radio labellings f and g constructed in the
proof of Theorem 2 with ¢ = 2 are optimal radio labellings of Pyt and Poryy

respectively.
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