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Abstract.

There are 267 nonisomorphic groups of order 64. It was known that
259 of these groups admit (64,28,12) difference sets. In [4], the author
found ali (64,28,12) difference sets in 111 groups. In this paper we find
all (64,28,12) difference sets in all the remaining groups of order 64 that
admit (64,28, 12) difference sets. Also, we find all nonisomorphic symmet-
ric (64, 28,12) designs that rise from these difference sets. We use these
(64,28,12) difference sets to construct all (64,27,10,12) and (64,28,12,12)
partial difference sets. Finally, we look at the corresponding strongly reg-
ular graphs with parameters (64,27,10,12) and (64,28,12,12).
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1 Introduction

A (v,k, ) difference set is a subset D of size k in a group G of order
v with the property that for every nonidentity g in G, there are exactly A
ordered pairs (z,y) € D x D such that

:z:y"‘1 =g.

One may identify the set D with an element D in the group ring Z(G).
In this case write .
D=

geD

L

geD

and
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We also write G for Z g- D is a difference set if the group ring element
) g€C
D satisfies the equation

DDEY = (k= M1 + AG. (1)

If a group G has a difference set D then {gD : g € G} is the set of blocks
of a symmetric (v, k, A) design with point set G. On this design G acts by
left multiplication as a sharply transitive automorphism group. Conversely,
any symmetric design with a sharply transitive automorphism group acting
on points may be constructed as the set of left translates of a difference set.
A difference set is called cyclic (abelian, nonabelian) if the group G is cyclic
(abelian, nonabelian). Difference sets were first introduced in cyclic groups
in the study of projective plans, see [9] and [16]. Most of the progress in
the study of difference sets has occurred in abelian groups; indeed the term
“difference” comes from the abelian (additive) version of the formula in the
definition.

For a basic introduction on difference sets and more details, the reader
may consult [8], [18], [21].

Difference sets with parameters (qd“(gi;_l—l—l- + 1),q”15’d—;_1—1_1-,q‘“':—__l—l ,
where g = pf is a prime power, are known as McFarland difference sets.
For further discussion on McFarland difference sets, see [11] and [23].

Difference sets with parameters (4N2,2N2 — N, N2 — N) are known as
Menon-Hadamard difference sets. More details on these difference sets can
be found in [10] and [17].

The intersection between McFarland and Menon-Hadamard difference
sets happens when g = 2. In that case we get the parameters (22¢+2, 22d+1 _
24,224 _29), When d = 1 we have the (16, 6, 2) difference sets. There are 14
groups of order 16. Among them there are 12 groups that admit (16, 6,2)
difference sets. Kibler found all the (16, 6,2) difference sets in these groups
and there are three nonisomorphic symmetric (16,6,2) designs that rise
from these difference sets, see [20]. When d = 2 we have the (64, 28,12)
difference sets. There are 267 nonisomorphic groups of order 64. These
groups are listed in GAP (Groups, Algorithms and Programming), see [15],
SmallGroups library as [64,1],...,[64,267]. In [4], the author found all
(64,28,12) difference sets in 111 groups. In this paper we find all (64, 28,12)
difference sets in all groups of order 64 that admit (64, 28, 12) difference sets.
Note that, similar work have been done for the (96, 20, 4) difference sets and
all (96, 20, 4) difference sets have been found, see [1, 2, 3, 5, 12, 13, 14].

Next, we present previous results on (64,20, 4) difference sets.
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2 Summary of previous results on (64,28, 12) difference sets.

Turyn showed that an abelian group of order 22¢+2 and exponent greater
than 29+2 does not admit a difference set, see [26]. Turyn’s exponent bound
rules out the existence of (64,28,12) difference sets in [64,1] & Zgq and
(64,50] = Zga x Zo.

Dillon showed that the existence of difference sets in dihedral groups
gives difference sets in cyclic groups, see [11]. This is sometimes called
“Dillon’s dihedral trick”. Dillon’s dihedral trick rules out the existence of
(64,28, 12) difference sets in every group of order 64 that has D35 as a factor
group, where D35 is the dihedral group of order 32. Groups that have D33 as
a factor group are [64,i], where i € {38,47,52,53,54,186}. Indeed groups
that ruled out using Turyn’s exponent bound and Dillon’s dihedral trick
are the only groups that do not admit (64,28,12) difference sets. Next we
will present the existence results of (64,28,12) difference sets in all other
groups.

McFarland constructed (q‘“‘l(ﬂ-—;1 + 1),qd3——-,qd9—) difference
sets in abelian groups which have an elementary aj)ehan norma,l subgroup
of order q**1, where ¢ = p’, p is a prime and d is a positive integer, see
[23]. McFarland’s construction gives (64,28,12) difference sets in [64,55]
& 73, [64,83]= Zs x Z4 x Zo, and [64,183] Zy6 x Z3, [64,192)= Z% x Z2,
64,246 Zs x Z3, [64,260) Z4 x Z3, and [64,267]= Z8.

Dillon generalized McFarland’s construction to work for a larger set of
groups. He constructed McFarland difference sets in groups that have an
elementary abelian normal subgroup of order g**! in its center, see [11].
Dillon’s construction gives (64,28, 12) difference sets in [64,i], where 7 € {
17, 21, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 95, 96, 103, 106, 107, 193, 194, 195,
196, 197, 202, 203, 204, 205, 207, 208, 209, 211, 212, 247, 250, 251, 252,
261, 262, 263 }. Note that all of these groups are nonabelian and have Z3
in their center.

Arasu constructed (64,28,12) difference sets in the last two abelian
groups [64,26] & Z,6 x Z4 and [64,2] = Zg x Zg , see (7).

In an unpublished work by Dillon, he was able to construct (64,28,12)
difference sets in 258 groups. This left the existence of (64, 28, 12) difference
sets undecided in the single group [64,51] = (z,y: %2 = y®> =1, yzy =
z!7). This group is called the Modular group. The exponent of the Modular
group is 32.

Liebler and Smith constructed (64,28, 12) difference set in the Modular
group, see [19]. This was the first example which demonstrated that Turyn’s
exponent bound for abelian groups can be violated in the nonabelian case.

All of this work can be summarize as follows. Among the 267 groups
of order 64, there are 259 groups that admit (64, 28, 12) difference sets and
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there are 8 groups that do not admit (64,28,12) difference sets. As we
mention before the groups that do not admit (64, 28, 12) difference sets are
the ones that have Z3; or D3y as a factor group. In all of the previous
results, no research have been done to find all (64,28, 12) difference sets in
a certain group of order 64. In [4], the author used the software GAP to
find all (64,28,12) difference sets in 111 groups. In this paper, we use the
software GAP to find all (64, 28, 12) difference sets in the remaining groups
that admit (64,28, 12) difference sets.

3 All (64,28,12) difference sets and related structures

We will describe how we find all (64, 28, 12) difference sets in all groups
that admit (64,28, 12) difference sets.

A homomorphism f from G onto G’ induces, by linearity, a homomor-
phism from Z{G] onto Z[G’]. If the kernel of f is the subgroup U, let T be
a complete set of distinct representatives of cosets of U and, for g € T, set
tg := |gU N D|. The multiset {t, : g € T} is the collection of “intersection
numbers” of D with respect to U. The image of D under the function f is
f(D)= deT tef(9)-

This group ring element satisfies the equation
FDYFD)YD = (k- Mle + UG (2)

in the group ring Z|(G').

The contraction of D to a smaller homomorphic image often provides
useful conditions on the existence of a difference set in the original group.
Usually, we use the software GAP to construct the images of difference
sets (find the intersection numbers) recursively. In the (64, 28,12) case, we
use the intersection numbers of the group of order two to find them for
groups of order four then we use intersection numbers of groups of order
four to find them for groups of order eight. We proceed up till we find all
the intersection numbers in groups of order 32. So, we get the 32-images
of putative (64,28,12) difference sets in all groups of order 32. In each
one of the groups of order 64, we write programs in GAP that use the
32-images to construct all possible (64,28,12) difference sets. So, we are
able to construct all (64,28,12) difference sets in the 2569 groups of order
64 that admit (64,28, 12) difference sets.

We say D; € Z(G), Dy € Z(G) are equivalent if there is an element
g € G and an automorphism ¢ of G such that D, = gp(D;). We say
that two difference sets are inequivalent if either they are subsets of noni-
somorphic groups or if they are subsets in a common group G but are not
equivalent in G (as defined above.) Inequivalent difference sets may give
rise to isomorphic designs. In 245 of the groups of order 64 that admit
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(64, 28,12) difference sets, we were able to check equivalence. In Table 1,
we provide the number of all inequivalent (64, 28, 12) difference sets in each
one of these groups. In the other 14 groups we could not check equivalence
and this is because the size of the automorphism groups of these groups are
large. We provide the number of (64, 28, 12) difference sets (not necessarily
inequivalent) in these groups in Table 2. In each one of the 259 groups of
order 64 that admit (64, 28, 12) difference sets, we construct the symmetric
(64,28, 12) designs that rise from these difference sets. In Tables 1 and 2,
we provide the number of nonisomorphic symmetric (64,28, 12) designs in
each one of the 259 groups. Note that we used the “DESIGN” package
for GAP, see [24], to determine the nonisomorphic symmetric (64,28,12)
designs that rise from (64,28,12) difference sets. A difference set D is
reversible if D = D{~1), There are 184 groups of order 64 that admit re-
versible (64, 28, 12) difference sets. In each one of these groups we find all
reversible (64,28,12) difference sets. In Tables 1 and 2, we provide the
number of reversible (64, 28,12) difference sets.

We have a list of all (64,28, 12) difference sets in each one of the groups
of order 64 that admit (64, 28, 12) difference sets in the webpage in [6]. We
provide the (64,28,12) difference sets that give nonisomorphic symmetric
(64, 28,12) designs in this webpage. Also, we list all reversible (64, 28,12)
difference sets in this webpage.

A (v,k, A, p) partial difference set is a subset T of size k in a group G of
order v such that the multiset {zy~! : z,y € T and z # y} contains each
nonidentity element of T' exactly A times and each nonidentity element of
G\T exactly u times. It is clear that a (v, k, A) difference set is a (v, k, A, A)
partial difference set.

A partial difference set T is called reversible if T = T(~1). A reversible
partial difference set is called regular if it does not contain the identity
element. Two partial difference sets T and T3 in a group G are equivalent
if there is an automorphism ¢ of G such that ¢(T}) = T». The following
results can be found in [22].

Proposition 1. Suppose that T is a reversible (v, k, A, 1) partial difference
set that contains the identity element. Then T\{e} is a regular (v,k—1, A —
2, u) partial difference set.

Proposition 2. Suppose that D is a (v,k, X) difference set in a group G
and g € G. Then gD is a regular (v,k, A, )) partial difference set if and
only if g7' ¢ D and gD is a reversible set. Also gD\{e} is a regular
(v,k —1,A—2, ) partial difference set if and only if g~ € D and gD is a
reversible set.

Regular partial difference sets are closely related to strongly regular
graphs. We give the definition of strongly regular graphs and Cayley graphs.
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Definition 1. A (v, k, A, p) strongly reqular graph is a graph with v vertices
which is regular with valency k such that any pair of adjacent vertices have
ezactly A common neighbours and any pair of nonadjacent vertices have
exactly . common neighbours.

Definition 2. For a group G and a subset T of G withe ¢ T and T =T,
the Cayley graph I' = Cay(G,T) is a graph whose vertex set G and two
vertices x and y are adjacent if xzy~' € T.

‘We have the following known theorem that relate strongly regular graphs
and partial difference sets, see [8].

Theorem 1. A Cayley graph Cay(G,T) is a (v,k, A, p) strongly regular
graph if and only if T is a (v, k, A, ) regular partial difference set in G.

There are 184 groups of order 64 that admit regular (64,27, 10,12) and
(64, 28,12, 12) partial difference sets. In Tables 1 and 2, we state the num-
ber of regular (64,27,10,12) and (64,28,12,12) partial difference sets in
each one of these groups. We list all of these regular (64,27,10,12) and
(64, 28,12,12) partial difference sets in the webpage in [6]. We find all non-
isomorphic strongly regular graphs provided by the regular (64,27,10,12)
and (64,28, 12,12) partial difference sets. The regular (64,27,10,12) par-
tial difference sets give 596 nonisomorphic (64,27,10,12) strongly regular
graphs. The regular (64,28,12,12) partial difference sets give 904 noni-
somorphic (64,28,12,12) strongly regular graphs. More details on these
strongly regular graphs can be found in the webpage in [6]. Note that,
we have used the “GRAPE” package for GAP, [25], to construct strongly
regular graphs and to check which ones are nonisomorphic.

Table 1: In the first column we have the group number. In the sec-
ond column we have the number of inequivalent (64, 28, 12) difference sets
in this group. In the third column we have the number of nonisomorphic
symmetric (64,28, 12) designs in this group. In the fourth column we have
the number of reversible (64, 28, 12) difference sets in this group. In the fifth
column we have the number of regular (64, 28,12, 12) partial difference sets
and in the sixth column we have the number of regular (64,27,10,12) partial
difference sets.

Table 1:

Group | # DSs | # SDs | # RDSs | # (64,28,12, | # (64,27, 10,
12) PDSs 12) PDSs

64,2] | 31 13 6 3 3
64,3) | 71 15 12 7 5
64,4) | 468 204 | 32 16 16
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Table 1 : (continue)

64,5 708 | 318 |32 |16 |16
64,6 584 [166 | O 0 0
64,7 1320 1 394 | O 0 0
64,8 616 | 169 | 296 | 158 | 138
64,9 2200 | 1161 | 8 4 4
64,10] | 300 | 101 |80 |43 |37
64,11] [ 522 [ 195 |10 |7 3
64,12] | 67 16 8 4 4
64,13] | 688 | 209 | 8 4 4
64,14] [ 319 | 120 | O 0 0
64,15] | 104 | 17 8 4 4
64,16] | 104 | 17 8 4 4
64,17] |1 1012 | 227 | 0 0 0
64,18| [ 652 | 464 |32 |16 | 16
64,19] | 176 | 147 | 0 0 0
64,20] | 1944 | 1124 | 112 | 56 | 56
64,21 | 968 {193 |0 0 0
64,22) | 600 396 |36 |19 |17
64,23) [ 882 | 523 | 112156 | 56
64,24] | 1026 | 711 |72 |38 | 34
64,25] [ 1180 [ 844 |32 |16 | 16
64,26] | 32 24 0 0 0
64,27 | 24 16 0 0 0
64,28] | 148 | 92 2 (15 |7
64,29] [ 284 | 143 | O 0 0
64,30] [ 388 | 185 |28 |17 |11
64,31) [ 448 [ 249 |32 |16 | 16
64,32] | 642 | 410 | 266 | 141 | 125
64,33] | 962 | 586 |38 [21 |17
64,34] | 228 | 124 | 159 |85 | 74
64,35] | 684 [ 451 |73 |43 | 30
64,36) [ 306 | 170 | 61 |34 | 27
64,37 | 706 | 387 |59 |33 |26
64,39] | 440 [ 273 | O 0 0
64,40] { 168 | 90 64 | 36 | 28
64,41) [ 204 [ 119 [64 |36 |28
64,42] | 60 43 12 |6 6
64,43] | 340 | 156 |64 |36 | 28
64,44| | 52 34 0 0 0
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Table 1 : (continue)

64,45] [ 136 |88 [20 |12 [¢8
64,46) [ 152 |75 |12 |6 |6
64,48] | 56 56 |0 0 |0
64,49] | 52 3% |0 0 |0
64,51 [112 |9 |0 0 |0
64,56] | 624 |57 |38 [20 |18
64,57] | 590 | 338 |39 |20 |19
64,58 | 2438 | 799 | 389 | 208 | 181
64,50] | 3776 | 2135 | 147 | 76 | 71
64,60) | 376 | 76 | 324 | 171 | 153
64,61 | 2156 | 577 | 197 | 101 | 96
64,62) | 1006 | 320 | 204 | 110 | 94
64,63) | 1321 | 501 | 78 | 40 | 38
64,64 | 868 | 395 |69 |36 |33
64,65 | 645 | 368 |18 |9 |9
64,66) | 4136 | 936 | 331 | 169 | 162
64,67 | 3432 | 424 | 1387 | 742 | 645
64,68] | 10380 | 4128 | 551 | 286 | 265
64,60] | 7164 | 1339 | 1289 | 672 | 617
64,70] | 6236 | 2949 | 191 |99 |92
64,71] | 1678 | 206 | 649 | 344 | 305
64,72] | 3534 | 1753 | 156 | 87 | 69
64,73] | 979 | 46 | 874 | 460 | 414
64,74) | 1401 | 339 | 132 |71 |61
64,75] | 3042 | 223 | 1170 | 611 | 559
64,76] | 2273 | 1069 |42 (21 |21
64,77) | 2482 | 507 | 261 | 136 | 125
64,78) | 3250 | 435 | 642 | 335 | 307
64,70] | 5146 | 2039 | 195 | 101 | 94
64,80] | 1271 | 283 | 121 |63 |58
64,81 | 4678 | 1763 | 282 | 146 | 136
64,82) | 470 | 200 |41 |22 |19
64,83) | 463 | 306 |0 0 |0
64,84 583 | 411 |12 |6 |6
64,85) | 770 | 578 |28 |14 |14
64,86] | 1122 | 805 |0 0 |0
64,87] | 944 [ 365 |16 |8 |8
64,88] | 760 | 465 | 152 |92 | 60
64,80] | 1162 | 743 | 240 | 148 | 92
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Table 1 : (continue)

64,90 964 | 549 | 484 | 277 | 207
64,91 948 | 649 | 316 [ 193 | 123
64,92 422 | 280 | 184 | 107 | 77
64,93 1622 | 1100 | 212 | 128 | 84
64,94 900 | 638 | 240 | 148 | 92
64, 95 480 | 173 | 72 |39 | 33
64,96 1900 [ 884 | O 0 0
64,97 1196 | 693 | 364 | 220 | 144
64,98 1232 | 742 | 392 | 229 | 163
64,99 398 (276 |88 |44 | 44
64,100] | 1942 | 1265 | 324 | 198 | 126
64,101] | 2024 { 1134 | 560 [ 336 | 224
64,102] | 1604 | 1006 | 448 | 280 | 168
64,103] | 674 | 286 |0 0 0
64,104] | 616 | 435 [ 16 |8 8
64,105) | 1062 | 711 |24 |12 | 12
64,106] [ 442 [ 335 |52 [27 |25
64,107) | 314 | 209 | O 0 0
64,108] | 602 | 461 | O 0 0
64,109] [ 1348 | 929 |68 |35 | 33
64,110} | 656 | 450 | 16 | 8 8
64,111] [ 616 | 458 |16 |8 8
64,112] | 1186 { 793 | 16 | 8 8
64,113) [ 990 615 {40 |20 | 20
64,114] | 1244 | 707 |52 |29 | 23
64,115) | 1624 | 1018 | 6 3 3
64,116] | 2364 | 1142 | 120 | 66 | 54
64,117] | 1348 ) 728 | 86 | 47 | 39
64,118) | 320 | 192 | 8 4 4
64,119 | 2024 | 1010 { 152 | 80 [ 72
64,120] | 2672 | 1743 | 0 0 0
64,121) [ 1808 | 804 |64 |32 | 32
64,122] | 2450 | 1466 | 40 | 22 | 18
64,123) { 306 | 192 | 114160 | 54
64,124} | 1184 [ 890 | O 0 0
64,125) | 1164 | 874 | 0 0 0
64,126) [ 572 | 335 | 6 3 3
64,127] | 1728 | 982 | 6 3 3
64,128] | 234 | 100 | 416 | 233 | 183
64,129] | 1466 | 599 | 560 | 338 | 222
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Table 1 : (continue)

64,130] | 1024 | 364 | 520 | 313 | 207
64,131) | 738 | 366 | 216 | 122 | 94
64,132] | 3786 | 2001 |0 |0 |0
64,133] | 2512 | 992 | 80 | 48 | 32
64,134] | 342 | 128 | 592 | 356 | 236
64,135 | 540 | 236 | 448 | 280 | 168
64,136] | 1050 | 615 |0 |0 |0
64,137) | 1608 | 1037 |0 |0 |0
64,138] | 450 | 210 | 494 | 298 | 196
64,139 | 751 | 405 |0 |0 |0
64,140] | 174 | 110 |92 |49 | 43
64,141] | 554 | 255 | 60 | 30 | 30
64,142 | 1178 | 595 | 132 | 73 | 59
64,143] | 3134 [ 1801 |0 |0 |0
64,144) | 904 | 384 | 192 | 106 | 86
64,145] | 2400 | 885 | 176 | 100 | 76
64,146] | 1492 | 640 | 296 | 169 | 127
64,147) | 236 | 124 |20 |11 |9
64,148) [ 1900 | 1062 |0 |0 |0
64,149] | 1416 | 628 | 168 |94 | 74
64,150] | 288 | 175 | 212 | 118 | o4
64,151) | 1888 | 972 | 80 | 48 | 32
64,152) | 880 | 480 | 64 | 36 | 28
64,153] | 180 | 111 |32 | 16 | 16
64,154) | 1588 | 1067 [0 |0 |0
64,155] | 578 | 376 | 20 |10 | 10
64,156] | 1758 | 1202 | 92 | 48 | 44
64,157 | 670 | 475 | 84 | 44 | 40
64,158 | 1778 | 1305 |0 |0 |0
64,150 | 1200 | 726 |8 |4 |4
64,160] | 3192 | 1786 | 64 | 32 | 32
64,161) | 308 | 204 | 84 |45 | 39
64,162] | 542 | 343 | 256 | 139 | 117
64,163) | 920 | 508 |36 |19 |17
64,164] | 1558 | 955 | 184 | 103 | 81
64,165) | 1358 | 919 |0 [0 |0
64,166] | 2312 | 1121 | 144 | 80 | 64
64,167) | 214 | 154 | 72 | 40 | 32
64,168) | 1090 | 757 |0 |0 | O
64,160) | 796 | 445 |96 | 54 | 42
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Table 1 : (continue)

64,170] | 788 [ 463 |92 |49 | 43
64,171] | 156 | 95 0 0 0
64,172) [ 1092 | 767 |52 |29 | 23
64,173) | 192 | 100 |52 |29 | 23
64,174] | 13 8 14 |8 6
64,175 | 623 | 475 | O 0 0
64,176) [ 379 | 184 |0 0 0
64,177] | 136 | 64 80 |44 | 36
64,178] | 952 | 457 [ 64 |40 [ 24
64,179] | 388 [353 [22 |12 |10
64,180] | 647 | 484 |0 0 0
64,181) [ 256 | 225 | O 0 0
64,182] | 1220 | 841 | 8 4 4
64,183] | 160 | 120 | O 0 0
64,184] | 444 [ 263 |32 |16 | 16
64,185] [ 436 | 408 | 0 0 0
64,187) | 188 | 141 |64 | 36 | 28
64,188] [ 300 | 253 | O 0 0
64,189] | 104 | 70 0 0 0
64,190] | 88 54 128 | 72 | 56
64,191] | 424 238 | O 0 0
64,195] [ 1179 | 632 | 150 | 85 | 65
64,196) | 1620 | 539 | 227 | 117 | 110
64,197) | 1889 | 1396 | 16 | 8 8
64,198] [ 1422 | 686 | O 0 0
64,199] | 608 | 356 |16 | 8 8
64,200] [ 711 | 459 |32 |18 | 14
64,201] | 1276 | 637 | O 0 0
64,202} [ 374 | 76 820 | 448 | 372
64,203) | 1054 | 217 | 530 | 281 | 249
64,204] | 2446 | 1110 | 28 |14 | 14
64,205] [ 1316 | 375 | 235 | 121 | 114
64,206] | 2282 | 837 | 8 4 4
64,207) | 781 | 285 [172 |95 | 77
64,208] | 1774 [ 1145 | 22 [ 11 | 11
64,209] | 1186 | 531 | 111 | 59 | 52
64,210] [ 5912 | 2101 [ 32 |16 | 16
64,212] | 1477 | 1069 | 0 0 0
64,213 | 1170 | 489 | 8 4 4
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Table 1 : (continue)

64,214] [ 3170 | 1546 | 4 2 |2
64,215] | 575 | 2904 | 184 [ 96 | 88
64,216] | 659 | 365 | 360 | 210 | 150
64,217] | 2117 [ 876 [0 |0 [0
64,218 | 1054 449 [0 O [0
64,219] | 3272 | 1388 | 144 | 76 | 68
64,220] [ 5312 | 1981 | 0 0 |0
64,221) | 1656 | 756 | 88 | 44 | 44
64,2292 | 4464 | 1737 | 64 | 40 | 24
64,223] | 5632 | 1979 | 0 0 |0
64,224] | 639 [417 |0 |0 |0
64,225] | 2682 | 1215 | 0 0 |0
64,226] | 526 | 276 | 329 | 173 | 156
64,227] | 3060 | 1131 | 144 [ 74 | 70
64,228] | 2789 | 1069 | 0 0 |0
64,220] | 2000 | 767 [0 O |0
64,230] [ 2059 [ 891 [0 |0 [O
64,231] | 597 | 291 |32 |16 | 16
64,232] | 4290 | 1728 | 88 | 46 | 42
64,233] | 7252 | 2745 | 0 0 0
64,234] | 4372 | 1646 | 96 | 52 | 44
64,235] | 4317 [ 1839 [0 [0 [0
64,236] | 1200 | 576 | 27 | 14 | 13
64,237] | 3829 | 1439 [0 |0 |0
64,238) [ 2507 | 12950 [0 [0
64,239] [569 [401 [0 |0 |0
64,240] | 1186 | 574 |24 |12 | 12
64,241] | 844 | 456 | 158 | 83 | 75
64,242] [ 218 [ 166 |37 |19 | 18
64,243] [ 2058 [ 888 |0 [0 |0
64,244 | 3469 | 1320 [ 0 0 |0
64,245] | 325 | 180 | 9 6 |3
64,247) | 603 | 503 |92 | 55 | 37
64,248/ [995 [ 834 |0 |0 |0
64,249] | 834 | 708 |32 [18 | 14
64,250] | 41 390 [8 |4 |4
64,251] | 346 | 230 | 176 | 105 | 71
64,252] | 825 | 716 [0 |0 |O
64,253] [ 750 | 449 [0 [0 [0
64,254] | 474 | 261 | 644 | 386 | 258
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Table 1 : (continue)

64,255] | 2294 | 1457
64,256] | 1048 | 691
64,257] | 256 | 162
64,258 | 1072 | 706
64,259] | 1396 | 1058

Q|Ojo|o|o
Qolo|ojolo
(=] K] Hen] N} N

Table 2: In the first column we have the group number. In the second
column we have the number of (64,28,12) difference sets (not necessarily
inequivalent) in this group. In the third column we have the number of
nonisomorphic symmetric (64, 28,12) designs in this group. In the fourth
column we have the number of reversible (64,28, 12) difference sets in this
group. In the fifth column we have the number of regular (64,28,12,12)
partial difference sets and in the sixth column we have the number of reg-
ular (64,27,10,12) partial difference sets.

Table 2:
Group | # DSs | # SDs | # RDSs | # (64,28,12, | # (64,27, 10,
12) RDSs 12) RDSs

64,55] | 1121 | 169 11 6 5

64,192 | 1400 131 32 18 14

64,193] | 1231 67 141 75 66

64,194] | 1790 229 8 4 4

64,211] | 301 34 202 112 90

64,246] | 743 113 0 0 0

64,260] | 2574 18 6 3 3

64,261| | 264 21 121 65 56
64,262| | 5834 139 0 0 0

64,263] | 1064 155 14 7 7

64,264] | 209 105 0 0 0

64,265| | 481 210 0 0 0

64,266] | 157 137 0 0 0

64,267] | 132 3 1607 801 716
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