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Abstract. Suppose that the vertex set of a graph G is
V(G) = {v1,-+- ,vn}. Then we denote by T'rg(v;) the sum of
distances between v; and all other vertices of G. Let Tr(G) be
the n x n diagonal matrix with its (,%)-entry equal to Tre(v;)
and D(G) be the distance matrix of G. Then Lp(G) = Tr(G) —
D(G) is the distance Laplacian matrix of G. The largest eigen-
values of D(G) and Lp(G) are called distance spectral and dis-
tance Laplacian spectral radius of G, respectively. In this paper
we describe the unique graph with distance and distance Lapla-
cian spectral radius among all connected graphs of order n with
given cut edges.
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1. Introduction

Let G be a connected simple graph on n vertices with the vertex
set V(G) = {v1,...,v,}. The distance d,., between the vertices
u and v is the length of shortest path between v and v in G. For
u € V(G), the transmission Trg(u) of u is the sum of distances
between u and all other vertices of G. Let Tr(G) be the n x n
diagnonal matrix with its (z, ¢)-entry equal to T'r¢(v;) and D(G)
be the distance matrix of G. Then the distance Laplacian matrix
of Gis Lp = Tr(G) — D(G). The largest eigenvalues pp(G) and
pL(G) of D(G) and Lp(G) are distance and distance Laplacian
spectral radius of G, respectively.

The distance spectral radius of a connected graph has been
studied extensively. S. Bose, M. Nath and S. Paul 3] determined
the unique graph with maximal distance spectral radius in the
class of graphs without a pendent vertex. A. Ilié¢ [5] obtained
the tree with given matching number which minimizes distance
spectral radius. G. Yu et al [13, 14] determined respectively
the extremal graph and unicyclic graph with the maximum and
minimum distance spectral radius.

M. Aouchiche and P. Hansen introduced in [1] the distance
Laplacian and distance signless Laplacian spectra of graphs, re-
spectively, and proved in [2] that the star S, of order n attains
minimum distance Laplacian spectral radius among all trees.
R. Xing and B. Zhou [11] gave the unique graph with minimum
distance and distance signless Laplacian spectral radii among
bicyclic graphs with fixed number of vertices. R. Xing, B. Zhou
and J. Li [12] determined the graphs with minimum distance
signless Laplacian spectral radius among the trees, unicyclic
graphs, bipartite graphs, the connected graphs with fixed pen-
dant vertices and fixed connectivity, respectively. M. Nath and
S. Paul [7] characterized the graphs whose complement is a tree
or unicyclic graph having n + 1 as the second smallest distance
Laplacian eigenvalue.

A cut edge in a connected graph G is an edge whose deletion
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breaks the graph into two components. Denote by g the set of
graphs on n vertices with k& cut edges. H. Liu, M. Lu and F.
Tian [6] obtained the graph with the maximum spectral radius
in gk. R. Wu and Y. Fan [9] gave the graph with the maximum
signless Laplacian spectral radius in g&.

In this paper we determine the graphs with the minimum
distance and distance Laplacian spectral radius in gk.

2. The graph with the minimum dis-
tance spectral radius in g*

Suppose that u and v are two non-adjacent vertices of graph G.
Then we denote by G+uv the graph obtained from G by adding
the edge uv.

Lemma 2.1 [8]. Let G be a connected graph with two non-
adjacent vertices u,v € V(G). Then pp(G + wv) < pp(G).

Lemma 2.2 [10]. Suppose that G is a connected graph and
that wv is a non-pendent cut edge of G. Let G’ be the graph ob-
tained from G by contradicting uv to the vertexr u and attaching
a pendent edge to u. Then pp(G) > pp(G').

Let E(G) denote the edge set of a graph G. A clique of a
graph G is a complete subgraph of G.

Lemma 2.3 [4]. Let G be a graph with a cligue K, such
that G — E(K,) has ezactly s components. Let Gy and Gy be
two nontrivial components of G — E(K,) such that u € V(K)N
V(Gy) andv € V(K,)NV(Gy). IfG' =G — Zwech(v) vw +
Zwech(‘v) uw, then pp(G) > pp(G').

If two graph G and H are isomorphic then we write G & H,
and otherwise G % H. Denote by K* the graph obtained by
attaching k pendant edges to some one vertex of the complete
graph K, .
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Theorem 2.4. If G € gk, then pp(G) > pp(K*) with
equality if and only if G = KF.

Proof. Let G be a graph with the minimum distance spec-
tral radius in gX and E; = {ej, es,... ,ex} be the set of cut edges
of G. Then by Lemma 2.1, we can determine that each compo-
nent of G — E; is a clique since otherwise we add all possible
edges in each component of G— E; to obtain a graph G € g* such
that pp(G) > pp(G), a contradiction with the minimality of G.
Thus we can denote these components by Ky, Kn,,. .., Kn,,
where n; = |V(Ky,)|for0<i<kand } n;=n.

0<i<k

Let Vo, = {v € K, v is an end vertex of a cut edge of G}.
Then we have the following two claims.

Claim 1. |V, ,|=1foreach 0 <i<k.

Suppose that there is some ¢ such that |V,,| > 1. Then
there exist u,v € V,, such that N(u) \ N(v) # 0, where N(u)
is the set of neighbors of u in G. Suppose that N(u) \ N(v) =
{z1,22,...,2}. Thens > 1. Let G* = G—{uz,uzy, ..., uz,} +
{vz1,v2y,...,v2,}. Then G* € gk. By Lemma 2.3, pp(G) >
pp(G*), a contradiction. Therefore, |V,,|=1 (0 <i < k).

Claim 2. G does not contain non-pendent edges.

The claim 2 follows from Lemma 2.2.

Combining the two claims and Lemma 2.1, we know that
G2K: O

3. The graph with minimum distance
Laplacian spectral radius in g*

If £ = (21,22, -+ ,Z,)7 then it can be considered as a function
defined on V(G) = {vy,--- ,v,} which maps vertex v; to x;, i.e.
z(v;) = z;, and so

L@z = Y du(zw) - 2(v))?
{u0}TV(6)
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which shows that Lp(G) is positive semidefinite.

Assume that z is an eigenvector of Lp(G) corresponding to
eigenvalue A. Then for v; € V(G), Azi = 3  dow, (T — z5).
v;€V(G)
Lemma 3.1 [1]. Ifu and v are two non-adjacent vertices of
graph G, then pr(G + w) < pr(G).

Let TTmez(G) be the maximum transmission of vertices of
G. Then we have the following

Lemma 3.2. Let G be a connected graph. Then pr(G) >
TTmaz(G).

Proof. By Rayleigh's inequalities we know that for any
unitary vector z € R*, p1(G) > z7 Lp(G)z with equality if and
only if z is an eigenvector of Lp(G) corresponding to p(G). Let
e; be the i-th unitary vector of the standard basis (1 < 7 < n).
Since el Lp(G)e; = Trg(v;), the inequality pr(G) > TTmaz(G)
holds. O

Suppose that v is a vertex of graph G and that u is a vertex
of a tree T. If we regard u and v as the same vertex, then we
call v (or u) the attached vertex of T on G and we write T by
T,. Let Jpxq be p X ¢ matrix whose entries are all 1.

Lemma 3.3. If2 < k <n —3 then pr(K*) =2n — 1.

Proof. Let V(K,.—x) = {v1,v2, -+ ,Un_k}, where v; is an
attached vertex of the star Sx. Let £ = (z1,Z2,-- ,Zs)T be a
unitary eigenvector of Lp(K¥) corresponding to pr(K¥) where
zi=x(v;) (1 <i<n). Forany 2 <i# j<n-—k, we have

n

n—k
PLEN) T =z —21+2 Y, (zi—z) + Z (zi — z1),

t—n—k+l
n—k
PL(K )331 =z;—Z1+2 E (37.1 —x) + Z( i — Tt),
t=n—k+1

from which we obtain that (oL(K%¥) — (n+k))(z; — z;) = 0. By
Lemma 3.2 we know that pr(K¥) > TTmes(KF) = 2n—3 > n+k,
and so z; = z; = T3. Thus we have
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[ oL (KE)2n k41 = 2(Tnkt1 — Tnks2) + 2Tkt — Tnoksa)
+ o+ 2(Tpakt1 — Tn) + (Tn—k+1 — T1)
+2(n — k — 1)(Tn—k+1 — Z2),

PL(EF)En k12 = 2(Tn_ks2 — Tnks1) + 2(Tn—ks2 — Tn_k+a)
+ 0+ 2Tn-kr2 — Tn) + (Ta—k+2 — 71)
+2(n — k — 1)(Tn—k42 — T2),

PL(KR)Tn = 2(Tn — Tnks1) + 2(Tn — Tnks2) + -+
2(Zn — Zn-1) + (Zn — 21) + 2(n — k — 1)(z,, — z2),
pL(KF)Ty = (T) — Tnk1) + (T1 — Tnki2) + -+
(1 —zn)+ (n—k = 1)(z1 — 22),
pL(KE)zs = 2(zg — Tnors1) + 2(T2 — Tngs2) +- -+
\ 2(ze — zp) + (22 — 71).

From the above equations we can obtain the following matrix

(277. - l)Ik - 2kak —kal —2(n — k- 1)ka1
M= — Tk n-1 —(n-k-1)

By direct calculation, we know that det(Alx42 — M) = A(A —
n)(\ — (2n — 1))*. This shows that pr(K¥)=2n—1. O

Let B* be the set of the graphs obtained by attaching k
pendent edges to some vertices of the complete graph K, _.

Lemma 3.4. Suppose that G € BE. Then pr(G) > pr(K¥)
with equality if and only if G = KF.
Proof. When k£ = 0,1 and n—1, G is isomorphic to K,, K}
and Sy, respectively.
If Kk =2 and G % K2, then by a simple computation we can
obtain that pr(G) =3 + 1+ 3vn2+4>2n—1.
Suppose that k = 3. If G % K3 then since G € B3, G is
isomorphic to G; or G shown in Fig. 1.
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Fig. 1.

It is clear that 1 = (1,1,...,1)T is an eigenvector of Lp(G))
corresponding to eigenvalue 0, and so we can choose an eigen-
vector z of Lp(G,) corresponding to p;(G;) which is orthogonal
to 1. Forany 1 <i# j <n—5, we have

pL(Gl)mi = Z (z: — mt) + 2(33,' - .’En_g) + 2(33,- - :r:n_l)

1<t<n-3
+2(z; — ),

p(Gizi = 3 (%5 — %) +2(2j — Tn-2) + 2(Tj — Tn-1)
1<t<n-3

+2(z; — zn).

from which we obtain that (o(G1) — (n + 3))(z; — z;) = 0. By
Lemma 3.2 we know that p1(G1) 2> Trme:(G1) = Tre,(vn) =
2n —1>n+ 3, and so z; = z; = 1. Thus we have

pr(G1)T1 = 8Z1 — Ty — Tn3 — 2Tn—g — 2Tp—1 — 2Tp,
PL(G1)Zn—q = —(n — 5)T) + NTp—g — Tn_3 — Tn_g — Tn_1
—21;",
pL(Gl)xn_;; = —(n - 5)1:1 — ZTp-4+ (n + l)xn_g — 2T, 9
—2ZLp1 — Zn,
4 PL(G1)Tn— = —2(n — 5)T) — Tn—g — 2Tp—3 + (2n — 2)zp—2
"‘2331;—1 - 31"711
pL(Gl)xn—l = ""2(n - 5)171 — ZTn-gq — 2xn—3 —2Zn2
+(2n — 2)zp_1 — 3Zp,
pL(G1)Zn = —2(n — 5)x) — 2Tp—g4 — Tp—3 — 3Tn—2 — 3T
\ +(2n — 1)z,.
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Let o(A) = A(A = (n+ 1))(A — 2n)9()) where ¥()) = A3 —
5A2n +8An? — 4n® — 3)2+ 11\n — 10n? — 2n. Note that ¢(2n) =
—2n < 0. Thus, pr(G;) is the largest root of the equation
¥(A\) = 0, which implies that pr(G;) > 2n — 1.

Similarly, we-can prove that p;(Gs2) > 2n — 1.

Suppose that k = 4. If G $# K} then since G € B2, G is
isomorphic to some one of the four graphs shown in Fig. 2.

Let £ = (z1,%2, - ,Z»)T be a unitary eigenvector of Lp(G?)
corresponding to pL(G?7).
For any 1 < i # j <n — 6, we have

pL(G;)w, = Z (CU,' - :ct) + 2(171' - .’L‘n_s) + 2($i - IEn_g)
1<t<n—4

+2(; = Tn-1) + 2(z; — o),

pr(Gh)zi = 3. (% — %) +2(%5 — Tn-3) + 2(Tj — Tn-2)
1<t<n—4

+2(Zj — Ta—1) + 2(z; — z,),

from which we have (p(G}) — (n+4))(z; —z;) = 0. By Lemma,
3.2 we know that p1(G}) = Trme:(G}) = Tre;(va) =2n—1 >
n +4, and so z; = z; = 7.
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Thus, we have

( pr(GY)zy = 10z; — Tpos — Tng — 2Tp_3 — 2Tpn_2 — 2Tn_1
_2xm

pL(G})Zn—s = —(n — 6)z1 + (N + 1)Tp-s5 — Tn_g4 — 2Tn-3
_‘zxn—2 — Zpn-1 — Tn,

pL(G})Zpn—g = —(n—6)z1 — Tpn-s + (N + 1)Tp—g — Tn_3
—ZTpn-2 — 2$n—1 - 2xm

{ PL(G))Zn—3 = —2(n — 6)T) — 2Tn_s — Tn_a+ (2n — 1)z,_3
_2xn—2 - 3xn—1 - 3$na

PL(G}) T2 = —2(n — 6)T1 — 2Tn_5 — Tn—g4 — 2Tn_3
+(2n — 1)Zp_g — 3Zp—1 — 32,

PL(GD)Zn—1 = —2(n — 6)T1 — Tpn—s — 2Tn—g4 — 3Tpn-3 — 3Tp_2
+(2n — 1)zp_1 — 2%,

pL(G})zn = —2(n — 6)z) — Tn_s — 2Tp—g4 — 3Tn—3 — 3Tpn—2
—2%,1 + (2n — 1)z,.

Let p(A) = A7 — (10n+8)A® — (—41n? — 68n — 22) A5 — (88n3+
228n2 41561 +28) 31— (—104n* —376n3 —410n2—160n— 17)A°—
(64n5 + 304n* + 472n° + 300n2 + 74n + 4)A2 — (—16n° — 96n° —
200n* — 184n3 — 77n? — 12n)X. Then pr(G?) is the largest root
of the equation ¢(A) = 0.

By Lemma 3.3, we have pr(K}) = 2n — 1. Set ¢())
(A — (2n—1))X8. Take h()) = p(\) — ¢(A). Then h(pL(K2))
—64n2 +192n — 80 < 0, from which we know that ¢(pr(K2))
¢(pL(K3)) = 0, and so pr(G}) > pr(K).

We easily compute that Trg:(vs) = 2n (¢ = 2,3,4), and so
by Lemma 3.2, p(G?) > 2n — 1.

A

VWD

A v,

G
Fig. 3.
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Finally, we assume that 5 < k <n - 3.

Let G be shown in Fig. 3, where |Vi| =n; (1 <i<r <k)
with 1 <n; <ny <...<n,-1 <n,. Then we can observe that
TTmez(G) = 2n — ny + k — 3. Note that n; < |.§_| By Lemma
3.2, we have p(G) 2 Trme.(G) >2n—-1. 0

Lemma 3.5. Suppose that uv is a non-pendent cut edge of
G such that G — {uv} consists of two cliques K, and K,. Then
pL(G) > pr(K3).

Proof. Clearly, neither s nor ¢ is less than 1. Without loss
of generality we can assume that s < [Z]. If s < %] then for
v € V(K,), we can obtain Trg(v) = 3t+5—2 > 2n—1, and so
by Lemma 3.2, we have p;(G) > 2n — 1.

Now we assume s = |[%2]. If n is even then s = t =
We consider V(G) partltloned into Uy UUy U {1} U {'023}

where Uy = {v1,v2,++ ,vs—1} and Us = {4, VUsy1," - ,V2s_2}.
Let z = (z1,72, - ,:vgs)T be a unitary eigenvector of Lp(G)
corresponding to pr(G). Thus we have
A B
u=(25)

where
A= ( (45 = 1)Jsm1 — J(s—1)x(s-1) —3J(s-1)x(s-1) )

—3J(s—1)x(s-1) (4s = D) (g—1) = J(s-1)x(s—1)

B= ( =2Js-1x1  —J(s-1)x1 )
—Je-nx1 —2J-1x1 /'’

C= ( —2J1x(s=1) —Jix(s=1) )
—Jix(s-1) —2Jix(s-1) /’

and 3 0 .
s_ —
D=( -1 33—2)'
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By direct calculation, we know that det(Alps — M) = A(X —
(45— 1))%24(A—3s)(A — (35— 2+ }/9s? — 8s)), from which we
have pr(G) = 3s — 2+ 31952 — 85 > 2n — 1. By Lemma 3.3,
we have pr(G) > pr(KF).

If s = 251, Similarly, we can prove that p.(G) > pr(K7). O

Combining Lemma 3.4 with Lemma 3.5 we can easily obtain
the following result

Theorem 3.6. K* attains the minimum distance Laplacian
spectral radius in gk.
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