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Abstract: A graph is called End-regular if its endomorphism monoid is
regular. Which graphs are End-regular? It is an open question and difficult
to obtain a general answer. In the present paper, we investigate the End-
regularity of graphs which are obtained by adding or deleting vertices from
End-regular graphs. As an application, we show that the non-commuting
graphs of AC-groups are End-regular.
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1 Introduction

All graphs considered in this paper are finite undirected graphs without
loops and multiple edges. For a graph I', we denote the vertex set and the
edge set of I" by V(I") and E(T"), respectively. For two vertices z and y
in T, by z ~ y we mean that = and y are adjacent. The neighbour of =
in T, denoted by Np(z) or simply N(z) if no ambiguity caused, is the set
of all vertices adjacent to x in I'. Two vertices are called twin vertices if
they share the same neighbour. Recall that a subgraph A of ' is called an
induced subgraph if it satisfies that z ~ yin A ifand only if z ~ yin T
forany z,y € V(A). Let S be a subset of V(I'), we denote by I' — S the
induced subgraph of I" by deleting all vertices in S together with all edges
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that contain a deleted vertex. In particular, if S = {z}, then we simply
write I' — z.

Let ' and A be two graphs. A (graph) homomorphism from I" to A
is mapping from V(I") to V(A) which preserves adjacency. Moreover,
if a graph homomorphism is a bijection and its inverse is also a graph
homomorphism, then we say that it is an isomorphism. A homomorphism
(resp. an isomorphism) from I to itself is called an endomorphism (resp.
automorphism) of I'. The set of all endomorphisms (resp. automorphisms)
of I, denoted by End(I") (resp. Aut(I')) forms a monoid (resp. group)
with composition as its multiplicity. A subgraph K of I' is called a
core of I if End(K) = Aut(K) and there is a homomorphism from
['to K. A core of a graph is an induced subgraph and unique up to
isomorphism. In particular, if I is a core of itself, then we say that I is
unretractive. Between endomorphisms and automorphisms, there are some
special endomorphisms. Here we lists two of them needed in this paper,
and for other endomorphisms such as locally strong endomorphism, quasi-
strong endomorphism, see [2]. Let f € End(T") and z € V/(T'), denote
by f~1(f(x)) the set of all pre-images of z in I". We say that f is half-
strong if, for each f(z) ~ f(y) in T, there exist some u € f~1(f(z)) and
v € f~Y(f(y)) with u ~ v, and that f is strong if f(z) ~ f(y) in T implies
u~vforanyu € f~1(f(z)) andany v € f~1(f(y)). The set of all strong
endomorphisms of I, denoted by SEnd(T"), is a submonoid of End(T"), but
the set of all half-strong endomorphisms of I is not in general. It has been
shown in [2] that SEnd(T") is trivial if and only if Aut(T') is trivial.

Let f € End(T"). The endomorphism image of I under f, denoted
by Iy, is a subgraph of I' whose vertex set is f(V(T')) and two vertices
f(z) and f(y) are adjacent if and only if there exist u € f~1(f(z)) and
v € f~1(f(y)) such that u ~ v. By p; we denote the equivalence relation
on V(T') induced by f, thatis, (z,y) € py if and only if f(z) = f(y) for
z,y € V(I'). The factor graph of I under py, denoted by I'/ py, is a graph
whose vertex set is the set of equivalence classes of py and two vertices
[z] and [y] are adjacent if and only if there exist u € [z] and v € [y] such
that u ~ v. It is shown in [5] that the graph homomorphism f induced by
f which is defined by f([z]) = f(z) is an isomorphism from the factor
graph I/ p¢ to the endomorphism image ;.

Let S be a semigroup. An element @ € S is called regular if there
exists some x € S such that axzea = a, here, z is called a pseudo-
inverse of a in S. The semigroup S is called regular if all of its
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elements are regular. In this sense, a graph I is called End-regular if its
endomorphism monoid End(I") is regular. On one hand, the structure
of the endomorphism monoid of a graph has a close connection with
the structure of the graph, especially the vertex chromatic number of
the graph. On the other hand, regular semigroups play a central role in
the structural regularity of semigroups. So it is meaningful to study the
structural regularity of a graph’s endomorphism monoid and to find various
kinds of graphs who possess regular endomorphism monoids. Along the
second line, some useful results are obtained. In [5), a necessary and
sufficient condition for an endomorphism of a graph being regular was
given by means of idempotents. In [10], the author classified connected
bipartite End-regular graphs precisely. The complements of cycles Cy,
and of paths P, are proved to be End-regular and end-orthodox in [6]
and [4], respectively. Recall that a semigroup is called orthodox if it is
regular and the set of all idempotent elements in it forms a semigroup
under the same operation, and that a graph is called end-orthodox if its
endomorphism monoid is orthodox. Meanwhile, some mathematicians
paid attention to the regularity of some new graphs which are generated
from old ones via binary graph operations. In [7], End-regular split graphs
are considered. The join of two trees, of two connected bipartite graphs
and of two unicyclic graphs with a regular endomorphism monoid are
characterized explicitly in [3], [6] and [9], respectively.

The present paper is a continuation of the discussion of the End-
regularity of graphs. It is shown in Proposition 2.5 below that End-
regularity is retained when deleting a twin vertex together with edges
adjacent to it from an End-regular graph. However, this statement is no
longer true if we add a vertex as a twin vertex to an End-regular graph,
it is not enough to require the original graph to be End-regular. Now,
which graphs would retain their End-regularity after adding a vertex as
a twin vertex? Part of the answer is provided in Theorem 2.7. As an
application, we will prove in Theorem 3.3 that the non-commuting graphs
of AC-groups are End-regular.

2 Endomorphism-regularity of graphs

Lemma 2.1. [5] Let I be a graph, and let f be a graph endomorphism
of I'. Then f is regular if and only if there exist some idempotents T, of
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End(T") such that Iy = I, and py = p.

Lemma 2.2. [7] Let I be a graph, and let f be a graph endomorphism of
I'. Then

(1) f is half-strong if and only if the endomorphic image Iy is an induced
subgraph of T".

(2) If f is regular, then f is half-strong.

Lemma 2.3. LetI' be a graph, and let f be a half-strong graph endomor-
phism of T. If f(If) = Iy, then f is regular.

Proof. Since f is half-strong, it follows that I is an induced subgraph of
' by Lemma 2.2. If f(If) = Iy, then the restriction f|;, of f on If is
an isomorphism. Let c be the inverse of f|;,. For each z € V/(I'), there
exists a unique y € V(1) such that f(z) = f(y), it follows that a f(z) =
"af(y) = yand afaf(z) = af(y) = y, hence af is an idempotent of
End(T). Itis clear that Iy = Is. If f(z) = f(y), then af(z) = af(y).
Conversely, if af(z) = af(y), then f(z) = f(y) for a is an isomorphism
of Iy. Hence we have py = pos. Therefore, f is regular by Lemma
2.1. O

Lemma 2.4. [10] Let I be a connected bipartite graph. Then T is End-
regular if and only if U is one of the following graphs:

(1) Complete bipartite graphs;

(2) Trees of diameter 3;

(3) Cycles Cg and Csg;

(4) Path of length 4.

Proposition 2.5. Let I' be a graph, and let x,y be two vertices of T such
that N(z) = N(y). If T is End-regular, then T — z is End-regular.

Proof. Let f be an arbitrary endomorphism of I' — . Define a mapping
F:V(T) > V(T) by fu) = f(u) if u # 7, and Flw) = f(y) if u =z,
thatis, f(z) = f(y) = f(y). Itis easy to check that f € End(T'). Since f
is regular, there exists some & € End(T") such that faf=7F1f a(u) # z
for any u € V(I' — z), then the restriction &|r—; of @ on I" — z is an
endomorphism of I' — z. Hence fa|r_.f = f.
Now assume that there exists some z € V(I" — z) such that &(z) = z.
Define a mapping B : V() = V() by B(u) = a(u) if a(u) # z and
(u) y if a(u) = z. For each u ~ v, we have &(u) ~ a(v). If
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&(u) # z and &(v) # z, then B(u) = &(u) ~ &(v) = B(v). If &(u) = z,
then &(v) # z and z ~ &(v), so y ~ &(v) for N(z) = N(y), it follows
that B(u) ~ B(v). Similarly, we have B(u) ~ B(v) if &(v) = z. Hence
B € End(T). _

Next, we show that fﬂ f f. Indeed, we may distinguish the
following four cases. If u # z and af(u) # =z, then fBf(u) =
faf(u) = f(u). fu # z and &f(u) = =, then FAf(u) = f(y) =
]:Ll = fai(u) = f(q) Ifu = z and af(u) # =, then FBf(u) =
fBf(y) = faf(y) = f(y) = f(u). ¥u = z and af(u) = , then
fBf(u) = = f 7(y) = f(u). Hence, B is a pseudo-inverse of f. Furthermore,
note that ﬁ(u) # z for any u € T’ — z, then the restriction B |r—z of B on
I" — z is an endomorphism of I' — z. Hence fﬁlr‘_z f=f O

The proposition above shows that End-regularity will be retained when
deleting a twin vertex from an End-regular graph. However, we should
note that the inverse of Proposition 2.5 is not true. That is, let I" be a graph,
and let z, y be two vertices of I" such that N(z) = N(y). In general, we
can not deduce I is End-regular if ' — z is End-regular. As an example,
we consider the path P; and the graph I' by adding a pendent vertex z
to Ps such that one of pendent vertex in P5 and x are twin points. Then
Ps =T — z. Itis clear that both I" and Ps are bipartite graphs. By Lemma
2.4, we known that P; is End-regular but I' is not. Neverthless, if we
strengthen the condition, say, I' — z is a core of I rather than End-regular,
then I is End-regular. In fact, we have a more general result.

Lemma 2.6. Let I" be a graph, and let f be a graph endomorphism of T
If f is strong, then f is regular.

Proof. Let [z1], [z2],- -, [m] be all the equivalence classes of py, and
let z3, %9, - - , T be representatives of [z1], [z2), - - , [zm], respectively.
For each z € V/(T'), there exists a unique z; such that z € [z;]. Define
a mapping 7 : V(I') — V(I') by assigning to each vertex in I" the
representative of its equivalence class. Since f is strong, vertices in the
same equivalence class have the same neighbour, so it is clear that 7 is an
endomorphism of I'. Moreover, from the definition we can see that 7 is an
idempotent of End(I") with pf = py.

Next, in order to prove f being regular by using Lemma 2.1, we will
construct an idempotent 7 of End(I") such that Iy = I.. To do this, we need
to re-choose special representatives for some equivalence classes of py as
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follows. For each equivalence class [z;], if it contains at least one image
of f, then, in stead of z;, we choose one of images in it arbitrarily as its
representative, otherwise, we keep z; as its representative. Thus, without
lose of generality, we can assume that f(u1), f(u2), -+, f(us), Ts41,
-+« , Tpy are representatives of [zi], [z2],- - , [Tm], respectively, and that
fuss1), f(usy2),: -, f(um) are other images which are not chosen
as representatives. If s = m, then every equivalence class contains a
unique image of f and V'(I;) is just the set of all representatives for
I'/pys is isomorphic to I;. In this case, we define 7 : V(I') — V(I
by assigning to each vertex in I' the representative of its equivalence
class. Like 7, we can also deduce that 7 is an idempotent of End(I") with
I; = Ir. Now we assume that s < m. Since f is strong, the induced
subgraph, denoted by A, whose vertex set consists of all representatives
as mentioned above is isomorphic to I'/p¢, so A and Iy are isomorphic
with f(u1), f(ug),- -, f(us) as their common vertices. For each f(u;),
s+ 1 < i < m, there exists a unique f(u;) with 1 < j < s such that
f(u;) € [f(uj)], thus we have N(f(u;)) = N(f(u;)). Hence, for each
z;, s + 1 < i < m, there exists some f(ux) with 1 < k& < s such that
N(z;) = N(f(uk)). In this case, we define 7 : V(I') — V(T') as follows.
Forany vertex z in I, if z € [z;] with s + 1 < i < m, then 7(z) = f(uy),
where N(f(ux)) = N(z;); if z € [f(u;)] with1 <4 < s and z is not an
image, then 7(z) = f(wi); if z = f(w;) with 1 < i < m, then 7(z) = .
Finally, it is a routine to check that 7 is an idempotent of End(T") such that
It = I. This complete the proof. a

Theorem 2.7. Let I" be a graph, and let K be a core of . If for each
z € V(I') \ V(K) there exists some y € V(K) such that N(z) = N(y),
then T is end-regular.

Proof. Let f be an arbitrary endomorphism of I, we need to show that f
is strong. Let f(x) and f(y) are adjacent in I" and let a, b be any pre-image
of f(z), f(y), respectively. Assume « is a graph homomorphism from I" to
K. Then af is a surjective homomorphism from I to K satisfying c.f(a)
and a f(b) are adjacent. Since K is an induced subgraph of I, by Lemma
2.2, oof is half-strong. Then, it follows that there exist u,v € V(I') such
that af(u) = af(a), af(v) = af(b) and u ~ v. Next, we show that
N(u) = N(a) and N(v) = N(b). Without loss of generality, suppose,
to the contrary, that N(u) # N(a). Then there exists some core K of I
such that u,a € V(K'). Let 8 be a graph isomorphism from K to K,
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then Baf(u) = Baf(a). Note that Bof|g is an automorphism of K ', 50
u = a. This is a contradiction. Recall that u ~ v, we have a ~ b, hence
f is strong. It follows from Lemma 2.6 that f is regular. Therefore, I is
end-regular. O

Corollary 2.8. Let I be a graph, and let =,y be two vertices of I such that
N(z) = N(y). If T — z is a core, then T is end-regular.

3 Non-commuting graphs of AC-groups

Definition 3.1. /1] Let G be a non-abelian group, and let Z(G) be the
center of G. The non-commuting graph I g associated with G is a graph
whose vertex set is G\Z(G) and two distinct vertices x,y are adjacent if

Ty # yz.

The non-commuting graph I'¢ associated with G was first considered
by Paul Erdos in 1975. Recently, researches on I'¢ mainly focused on
the effect of graph theoretical properties of I'¢ on the group theoretical
properties of G, see [1] for example. So far, no result can be found on
the study of end-regularity of non-commuting graphs. In this section, as
an application of Theorem 2.7, we show that the non-commuting graph
associated with an AC-group is end-regular. Recall that a group is called
an AC-group if the centralizer of every non-central element is abelian. For
example, dihedral groups are AC-groups.

Lemma 3.2. Let G be a finite non-abelian group, and let I be the non-
commuting graph associated with G. Then G is an AC-group if and only
if, for any vertices x,y in I'g, either x ~ y or N(z) = N(y).

Proof. The result follows from Proposition 3.1 of [8]. O

Theorem 3.3. If G is an AC-group, then the non-commuting graph I'g
associated with G is end-regular.

Proof. We define a relation R on ['¢ x I'¢ by zRy if and only if N(z) =
N(y). Itis clear that R is an equivalence relation on I'c. Take one
representative from each equivalence class, the set consisting of all these
representatives is a subset of V(I'g). Let X be the induced subgraph with
this set as its vertex set. Note that for any two distinct vertices z,y in X, we
have N(z) # N(y) in g for = and y are chosen from distinct equivalence
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classes, hence X is a clique by Corollary 3.2. Furthermore, it is easy to
see that, if each vertex in ' is assigned to the representative of its own
equivalence class, then we obtain a graph homomorphism from I'g to X,
hence X is a core of I'c. Now, for each vertex z in I'g, there exists a
unique vertex y in X such that N (z) = N(y), hence I'¢ is end-regular by
Theorem 2.7. 0O
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