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Abstract

In this paper, we give the continued fraction expansions of the or-
dinary generating functions of the derangement polynomials of types
A and B in a unified manner. Our proof is based on their exponential
generating functions and the theory of exponential Riordan arrays.
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1 Introduction

Let S, denote the symmetric group on the set [n] = {1,2,3,...,n}.
If 0 € S,, then we write 0 = 0102 :-0n, to mean that o(i) = o; for
i =1,2,...,n. The permutation o € S, is called a derangement if o; # i
for i = 1,2,...,n (i.e.,, o has no fixed points). We denote the set of all
derangements of S, by D,,. An element ¢ € [n] is called an ezcedance of the
permutation ¢ € S, if 0; > 7. Denote e(o) by the number of excedances of
o. Brenti [3] defined the derangement polynomials of type A by

dn(g) = Y ¢,
oc€D,

for n > 1 and do(g) = 1. Brenti [3] obtained that d,(g) is symmetric and
unimodal. And he further proposed the conjecture that the derangement
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polynomials of type A d,(g) has only real zeros for n > 1. This conjecture
has been settled by Zhang [14], Canfield as mentioned in [4] and Liu and
Wang [11] independently, based on the following recurrence relation

dn(q) = (n = 1)gdn-1(q) +9(1 - g)d;,_,(g) + (n — 1)gdn_2(q),

for n > 2 (see [14] for instance). In 2011, Chen and Xia (7] presented that
for n > 6, the derangement polynomials of type A d,.(g) are strictly ratio
monotone, which implies the spiral property and the log-concavity, except
for the last term when = is even.

Following Bjorner and Brenti 2], we regard B, as the group of all signed
permutations on the set [n], i.e., the group of all bijections o of the set [+n)]
in itself such that o(—i) = —o(3), for all i € [£n], with composition as
group operation. If 0 € B,, then we also write 0 = 0,03 .-0,, to mean
that (i) = o; for ¢ = 1,2,...,n. A derangement of type B on [n] is a
signed permutation ¢ = 0103 - -0, such that o; # 4, for all i € [n]. Let
DE denote the set of all derangements in B,. Brenti [5] introduced the
definition of excedances of type B. Given o € B, and i € [n], we say that
i is a type B excedance of o if o; = —i or 0};,| > 0. We denote ep(0)
by the number of type B excedances of 0. Following Brenti’s definition of
excedances of type B, Chen, Tang and Zhao [6] gave a type B analogue of
the derangement polynomials defined by

n
dB(g)= D_ ¢*2 = dnudt,

geDB =0

for n > 1, where d,, i is the number of derangements in Df with exactly &
excedances of type B. For n =0, set d¥(q) = 1. Chen, Tang and Zhao [6]
derived some basic properties of the derangement polynomials of type B,
such as the generating function formular, the Sturm sequence property, the
asymptotic normal distribution, and the spiral property. In this paper, we
get the continued fraction expressions of the ordinary generating functions
of the derangement polynomials of types A and B in a unified manner.
This paper is organized as follows. In section 2, using the theory of expo-
nential Riordan arrays and orthogonal polynomials, we give the continued
fraction of the ordinary generating function of the polynomial sequence,
whose exponential generating function generalizes the exponential generat-
ing function of the derangement polynomials of types A and B. As appli-
cations, we obtain the continued fraction expressions of the derangement
polynomials of types A and B in a unified manner in section 3. Finally,
in the Appendix, we can obtain a quick introduction to the exponential
Riordan arrays and the orthogonal polynomials used in this paper.
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where f(z) is the compositional inverse of f(z).
By the direct calculation, we have

1- 2ed(1—q):
fl( Z) = ( Q)d = .
(1 - gedli=9)=)2
Note that the compositional inverse of f(z) satisfies

_ ed(l‘Q)f -1
f(f(x)) = d(l _ qed(l—q)f) =

.

Then we have

- 1 1+dz
@)= d(l1-gq) In (1 +dqx) )
Hence
r(z) = f'(f(z)) = (1 + dz)(1 + dgz) = 1 + d(1 + q)z + d?gz>.

On the other hand, set

b
_ (1= g)eti-9=
G(z) = ( 1= gz .

Then we have

b—
GI(I) - b (1 - q)ea(l—q)r 1 (1 —- q)zea(l—q)x(a + (d _ a)qed(l_q)m)
1- qad(l—q)x (1 _ qed(l—q)=)2 .

S
) G'(z) _ b(1 - q)(a+ (d — a)ge?1-97)
G(z) 1 — ged(1-9)z :
G'(f(x)) _ b(1—g)(a+(d—a)gell-9)
G(f(z)) 1 — ged-a)f
= ab(1+dgz) +b(d — a)g(1 +dz)
= b(a+(d - a)g) + bd’qz.
Note that

G(z) = e***g(z).

Hence we can get that

G'(z) = abe®®*g(z) + e2b=g’ (2)-
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2 Main results

In this section, we give the continued fraction expression of the ordinary
generating function of the polynomial sequence {T.(g)}n>0, whose expo-
nential generating function generalizes the exponential generating functions
of the derangement polynomials of types A and B.

Theorem 2.1. Suppose that the exponential generating function of the
polynomial sequence {T,(q)}n>0 has the following simple expression

Ta(@) o _ ((L=ge )’
ste) = S0 - (=05 21)

for a,b,d € R. Then the ordinary generating function of {Tn(q)}nz0 can
be given by the continued fraction

1
= 3 Ta(@)" = . (22)
ns0 1 - so(q)z — tl(q)a:2 i
ta(q)z

T=slgz—

1-s1(q)z -

where
si(g) =di+(di+bd —ab)g and t;41(q) =d’G+1)(i+b)g  (2.3)
foriz 0.

In order to prove this theorem, we need three lemmas. Using the theory
of the exponential Riordan arrays, the first lemma presents that the pro-
duction matrix P of the exponential Riordan array L = [g(z), f(z)], where
g(z) is the exponential generating function of {T},(¢) }n>0 given by (2.1), is
tri-diagonal.

Lemma 2.1. The production matriz P of the ezponential Riordan array

1- —agz \ b d(1-q)z _ 1
= [g(z), f(z)] = [(1( — q:zl(el—q)x) ! d{‘l3 - qed(l-q)zl]

fora,b,d € R, is tri-diagonal.

Proof. In order to get the production matrix P, it suffices to calculate r(zx)
and ¢(z). Recall that

9'(f(z))

r(@) = f(f@), ol=) = Tz
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Thus
G'(z) _

G(z)

g(@)
ab+ 9@) "

Now we can get that

_ gU@) _CF@) sy
e(z) = @) - GU@) ab = b(d — a)g + bd*qz.

Thus the production matrix P of L is tri-diagonal, where

(so(q) 1 0 0 0 0.-- \
ti(g) si(e) 1 0 0 0.
0 taq) s2(g) 1 0 0.
0 0 t3(g) ss(g) 1 0. (2.4)
0 0 0 ta(q) sa(q) -
0 0 0 0 ts(q) ss(q)---

\ : : : : e )

with s;(g) and t;4+1(q) given by (2.3).

-

O

The second lemma constructs a family of orthogonal polynomials re-
lated to the production matrix P of the exponential Riordan array L =

l9(z), f(z)).

Lemma 2.2. Suppose that the production matriz P of an exponential Rior-
dan array L is tri-diagonal as above (2.4). Then we can construct a family
of orthogonal polynomials Q,(z) defined by

Qn(z) = (= = $2-1(9))@n-1(2) — ta—1(¢)Qn-2(2), (2.5)

with Qo(z) = 1 and @Qi(z) = x — so(q), where coefficients s,_1(q) and
tn—1(q) are given by the expression (2.3) forn 2 1.

Proof. In order to construct the family of orthogonal polynomials Qn(z),
it suffices to get the coefficient matrix A of @,(z) such that

Qo(z) 1
Q1 (z) z
Qa(z) [ = 4 ::z . (2.6)

Qs(z)
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So by the condition and the Favard’s Theorem 4.1 in Appendix, we need
to get that the orthogonal polynomials Q. (z) satisfies the following

Qo(z) (so(q) 1 0 0 0 0---\ /Qo(z)
Qi(z) ti(g) si(g) 1 0 0 0---)[Qi(x)
plQxAz) | = 0 t2(q) s20g) 1 O O---| | Q2x)
Qs(x) 0 0 ts(g) s3g) 1 0---||Qs(2)
: \ : : : : : :
[2Qo(z)
zQ1(z)
= xQ2(x)
zQ3(zx)

\

After arrangement, we want to prove that the coefficient matrix A satisfies

1 T 1
T z? T

palz®| =a|=®| =ar|2® 2.7
L 4] 2’ (2.7)

where I = (8i41,5)i,530-

Since the polynomials sequence {z*}x>o is linearly independence. So
the coefficient matrices of the first and last polynomials in (2.7) are equal,
i.e., PA = Al. Since o

P=L"'L, I=LL.
So we need to prove that the coefficient matrix A will satisfy
L7'LA=ALL™.

Obviously we can get that A = L~! is a coefficient matrix of the orthogonal
polynomials Qn(z) satisfying (2.5). The proof of the lemma is complete. O

Remark 2.1. Lemma 2.2 has been proved by Barry [1]. However our proof
is more natural and based on the algebraic method.

The last lemma, obtained by Barry (1], gave the connection between the
production matrix and the moments sequence of orthogonal polynomials.

Lemma 2.3 ([1]). Let L, Tn(q) and Qn(z) be as above. Then we have
{Tn(g)}n3o0 is the moments sequence of the associated family of orthogonal
polynomials Qn(z).
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Now we can obtain that the ordinary generating function of {T5.(g)}n>0
is given by the continued fraction (2.2) from Theorem 4.2, which proves
Theorem 2.1.

3 The derangement polynomials of types A
and B

In this section, we can give the continued fraction expressions of the
derangement polynomials of types A and B in a unified manner.

For the derangement polynomials of type A, it is known that the expo-
nential generating function is

(1—g)e ™
) n(q) R g e f (3.1)
n20

(see Brenti [3] and Chow and Gessel (8]). So whena =b =d =1, we
have T, (q) = dn(q). From Theorem 2.1, the ordinary generating function
of d,.(g) can be given by the continued fraction

1
> dalg)a" = pre :

n20 1-— 5

4dqz

1-(1 -
(1+49)z 9922

1-3(1+q)z— -

1-2(14+q)x -

with s;(¢) =i(1 +q) and t;41(q) = (i +1)%2gfor i > 0

For the derangement polynomials of type B, Chen, Tang and Zhao [6]
obtained that the exponential generating function has the following expres-
sion

1 - qle9=
;da“ - e (3:2)

Hence when a = b = 1,d = 2, we have T,(q) = dZ(¢q). Now from Theo-
rem 2.1, we get the ordinary generating function of the derangement poly-
nomials of type B is given by

> dB(g)s" = 1o
n30 1-(1+q)z~

16qz2

—(2
1= @439 - e =

Here s;(q) = 2i + (2i + 1)q and t;11(q) = 4(i + 1)2q for i >
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4 Appendix

The exponential Riordan array (1, 9, 10] denoted by L = [g(z), f(z)], is
an infinite lower triangular matrix whose exponential generating function
of the kth column is g(z)(zf(z))*/k! for k = 0,1,2,..., where g(0) # 0 #
f(0). An exponential Riordan array L = (I; ;)i j>0 can also be characterized
by two sequences {¢n}n30 and {rn}n30 such that

o=1, liyo= slejlijy liyr;= % > Klek—j + dre—jsn)lig,
i20 Tk2i-1
for i,j > 0 (see (9] for instance). Call {¢,}n>0 and {rn}n30 the c— and r—
sequences of L respectively. Associated to each exponential Riordan array
L = [g(z), f(z))], there is a matrix P = (p; ;)i >0, called the production
matriz, whose bivariate generating function is given by

e*¥[c(z) + r(z)y),
where
0G0 B
@) = 7= .—nzz;)cn ,r(z) = f(F(=) : f;f"x'

Deutsch et al. [9] obtained that elements of the production matrix P =
(Pij)i,520 is given by

il .
pij = ﬁ(Ci—j + JTimj+1)-
Assume that ¢_; = 0. Note that
P=L"LI=LL},

where L is obtained from L with the first row removed and I = (6;4+1,5):,5>0,
where §; ; is the usual Kronecker symbol.

The following well-known results establish the relationship among the
orthogonal polynomials, three-term recurrences, recurrence coefficients and
the continued fraction of the generating function of the moments sequence.
The first result is the well-known ”Favard’s Theorem”.

Theorem 4.1 ([12, Théoréme 9 on p. I-4], or [13, Theorem 50.1)). Let
{Pn(z)}nz0 be a sequence of monic polynomials with degree n = 0,1,2,...
respectively. Then the sequence {pn(z)}nz0 is (formally) orthogonal if and
only if there erist sequences {an}nzo and {Bn}nz1 with B, # 0 such that
the three-term recurrence

Pry1(z) = (z — o )pn(z) — Brpn-1(zx)
holds, for n > 1, with initial conditions po(z) =1 end p1(z) = = — op.
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Theorem 4.2 ([12, Proposition 1 (7) on p. V-5, or (13, Theorem 51.1]).
Let {pa(z)}nzo be a sequence of monic polynomials, which is orthogonal
with respect to some linear functional L. Forn 2 1, let

Pnt+1(z) = (T = an)pn(z) — Brpn-1(2),

be the corresponding three-term recurrence which is guaranted by Favard’s
theorern. Then the generating function

[ ]
h(z) = z szt

k=0

for the moments py = L(z*) satisfies

Ho

prz?
Baz?
Baz?

l—-azz—---

h(z) =

l—aox—

l—alx—
1—asx —
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