RELATIONSHIP AMONG BINOMIAL COEFFICIENTS, BERNOULLI
NUMBERS AND STIRLING NUMBERS
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ABSTRACT. We give relationships among the binomial coefficients, the Bernoulli
numbers and the Stirling numbers. These relations are derived from the translation
formulae in the linear discrete systems in Shin-Naito [8).

1. INTRODUCTION

In [S5, 8] the solutions of periodic inhomogeneous linear differential equations have
been represented as the form of the sum of exponential-like functions and periodic
functions. Its proof is related to the translation formulae named in [8] (refer to Lemma
3.1). In particular, the translation formulae were obtained by comparing two repre-
sentations of solutions corresponding to the matrices B and A in the linear discrete
systems

(1.n Tnel =Bz, +bB=¢"4 r>0.

In the present paper, as an application of the translation formulae, we will give
relationships among the binomial coefficients, the Bernoulli numbers and the Stirling
numbers (see [11, [4], [7)).

2. MAIN THEOREM

In order to state our results, we first introduce briefly some notations used in linear
algebra and basic facts on the binomial theorem. For a complex p x p matrix H we
denote by o( H) the set of all eigenvalues of H and by Gy (n) = N((H — nE)*# (™))
the generalized eigenspace corresponding to 7 € o(H), where E is the unit p X p
matrix and hg(n) the geometric multiplicity of n € o(H). Q,(H) : C* = Gu(n)
stands for the projection corresponding to the direct sum decomposition

= P Guln).

neo(H)
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LetN = {1,2,3,---}, No=NU{0}and Z = {0,+1,+2,43,---}. Ifz € R
and k € Np, then we define the well-known factorial function (z) as
() = 1, (k=0)
k zz-1)(z-2)---(z-k+1) (keN).
In particular, if z = n is a positive integer, then

n!

% = (Z) = m (R)k =0 (k> n).

The Stirling numbers i: of the first kind and the Stirling numbers { f }

of the second kind are introduced as the coefficients of the transform of bases of
polynomials as follows:

(z),-=zj:[”xk, j€No, z _Z{ }(z),, k € No,

k=0

(cf.[7]). Note that the definition of the above Stirling number of the first kind is
slightly different from the one in [2].

Let By = 1, Bg, £ =1,2,:--, be Bernoulli’s numbers (refer to [7]). Now, we
are in a position to state the main theorem in the present paper.

Theorem 2.1. Letk > j, k, j € Np.

1
{(51-Saa®){ i e
1+1 —i+1 j+1
2
k .
w1l = ()]
3

SlBRIEESBIHE =

Combining (2) with (3) in Theorem 2.1, we easily obtain the following result.

Corollary 2.2,

£ £0)[] mre

i=j i=j
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3. THE PROOF OF THE MAIN THEOREM

First, we state the translation formulae given in [8). Now, we assume that B is
nonsingular, that is, B = "4, 7 > 0 for some a complex p X p matrix A. By the
spectral mapping theorem it is easy to see that o(B) = e77(4) and

ouA) == {Aeo(d) n=e>} #0
for u € o(B). Set
Tk 1
A= g7(A- AE)* (X € 0(A)) and By, = W(B - pE)* (u € a(B)).
The following matrix Y5(A) has been introduced to study of the representations of
solutions to the linear discrete system (1.1) (see [8]) :
ha(d)-1
Ya(A)= D BiAry (A€iwZno(A)),
k=0
where w = 27 /7. Set P, = Q(A). Then BP, = P,\B.
The following result is a part of the translation formulae in [8].
Lemma 3.1. (8] Let B=¢"", 7 > 0and ) € g,(A).
(1) If0< k< hp(p) — 1, then

hp(p)-1 » .
@3.n Bk, Pr = Z { i }Aj,AP)\,

i=k
or equivalently, if0 < j < hg(u) — 1, then

hp(p)-1

(3.2) AjaPr= Z [ j ] e, ) P

k=j
() Letp=1. If0< k < hg(1) - 1, then
hp(l)-1 .
1 1 1

(3.3) w g BieaPr = 3 J’IT{ ii1 }A,-,AYA(A)PA,

i=k

or equivalently, if 0 < j < hg(l) — 1, then

hp(l)-1

1 k+1

anbB= 5, o | 5T
=j

1

(34 m ] Bir1)Px.

The following result is also needed for the proof of main theorem.

Lemma 3.2. (8] Let A € iwZ N o(A). Then the following relations hold :
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N

hp(1)-1 i
A;\YA(A)P) = Z (j)Bi-in,APA-

i=j
@
(B — E)Y\(A)Py = Ay \Ps.
®3)
e (-1 ‘
(3.5) Ya(A)Py = ,;, T B~ E)P.

As an application of the translation formulae, we can give another proof of the
well-known relation

(3.6) ZBk()=0,i>l.
k=0

Indeed, using (3.1) and Lemma 3.2, we have

ha(d)-1
AipPy = (B-EYi(A)Pr= Y A;aYa(A)P
i=1
ha(A)-1ha(M)-1
= Z Z: Bl—]() :APA

i=j

S ol LT P

i=1

hA(zA): 1(2&()) AixP.

=1 k=0

Comparing these coefficients, we can derive the equality (3.6).

The proof of Theorem 2.1 (1) Substituting (3.1) into the left side of the equality
(3.3), we have

| hem-l hp)-1 i1
— - = . Ai Yo (A)P.
o kZ:J {J}AmPA '2:; i+1{]+1} AYA(A) Py
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On the other hand, it follows from Lemma 3.2 that

hp(1)-1 .
1 i+1
i P
;1 it1 { j+1 }AAYA(A) A
"B(l)—l . h.B(l)—l
1 i+1 k
= j - P;
; i+1{ i+l } g (i)Bk AP
hg(l)-1 k
{0 ()
= Z Bk_, Ak,API\
k=0 (; +1] j+1
hp(l)-1 k .
() {5t
= Z Z : By—i | Ak aPa.
k=j ('=Jz+l i+l
Therefore, we obtain
hp(1)-1
o ()
; Z ;¢ Ak aPa
j+1 k=j J
hp(l)-1 k .
1 (k[ i+1
B Z (zﬂl(z){ i+l }B"-") Ae Py,
’C=J =3

from which the coefficients in both sides coincide with each other.
(2) It follows from (3.4) and Lemma 3.2 that
hp(l)-1
k+1 1
> [ ; ] ——B.1 P

= J+1 jk+1

1 1 hp(1)-1
= .——Aj.,\Y)‘(A)PA = - (J)Bz—JAa APz\
i+1 i+l ,_J

Using (3.1) we have

hp(1)-1 i hp(1)-1 i hp(1)-1 k
Z ( ) B,'_jA,',,\PA = Z ( ) Bi--j Z [ ] B[k 1]PA
= N = M = L

]
>
b
E
»-
. >
I a-
C Lo
N———”’
—
T LT
e J | I
o
<
v
s
x
=
o
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Therefore,
ha(l)-1

1 k+1
E E+1 [j+1 ]B["-”P"

- A (O[] e

k=j i=j
Comparing these coefficients, we obtain the assertion (2).
(3) By (3.2) and (3.5) we have that for A € iwZ No(A),

hp(l)-1 i hp(1)- 1( l)m
A; Y (A = . | B ~——Bim P
A Ya(A)Py g [J] 5.1 mz= m+1 oA
hp(1)-1hp(l)-1 . .
+4)\ (—1)"m!
()
s J i m+1
=3 m=0
hp(1)-1hp(1)-1 i k (—1)(k‘i)(k—i)!
- > 2 [0
i=j k=i
hp{1)-1 &k ( 1)(k t)( _1)!
- 2 ()] T an.
k=j i=j
Thus, together with (3.4) we obtain
hp(1)-1

1 k+1
2 m[jH]B"‘"‘P*
=3

hp(1)-1 k—i)

- (=D& (k — 4!

=Y ([ ] e e,
k=j i=j

Comparing these coefficients, we obtain the assertion (3). This completes the proof.
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