INTERSECTIONS OF SETS EXPRESSIBLE AS UNIONS OF k STARSHAPED SETS #### MARILYN BREEN ABSTRACT. Let $\mathcal K$ be a family of sets in $\mathbb R^d$ and let k be a fixed natural number. Assume that every countable subfamily of $\mathcal K$ has an intersection expressible as a union of k starshaped sets, each having a d-dimensional kernel. Then $S \equiv \cap \{K : K \text{ in } \mathcal K\}$ is nonempty and is expressible as a union of k such starshaped sets. If members of K are compact and every finite subfamily of K has as its intersection a union of k starshaped sets, then S again is a union of k starshaped sets. An analogous result holds for unions of k convex sets. Finally, dual results hold for unions of subfamilies of X. ### 1. Introduction. We begin with some definitions from [2]. Let S be a set in \mathbb{R}^d . For points x and y in S, we say x sees y (x is visible from y) via S if and only if the corresponding segment [x,y] lies in S. Similarly, for subsets A,B of S, we say A sees B via S if and only if a sees b via S for all a in A, b in B. Set S is called starshaped if and only if for some point p of S, p sees each point of S via S, and the collection of all such points p is the (convex) kernel of S. Notice that a starshaped set cannot be empty. A familiar theorem by Victor Klee [7] establishes the following Helly-type result for countable intersections of convex sets: Let \mathcal{C} be a family of convex sets in \mathbb{R}^d . If every countable subfamily of \mathcal{C} has a nonempty intersection, then $\cap \{C: C \text{ in } \mathcal{C}\}$ is nonempty as well. Moreover, a result in [2] yields this starshaped analogue: Let \mathcal{S} be a family of sets in \mathbb{R}^d . If every countable subfamily of \mathcal{S} has a starshaped intersection, then $\cap \{S: S \text{ in } \mathcal{S}\}$ is (nonempty and) starshaped. Here we obtain some related results for unions of k starshaped sets in \mathbb{R}^d . Throughout the paper, int S, ker S, cl S, and conv S will denote the interior, kernel, closure, and convex hull, respectively, for set S. We follow the usual convention that a 0-dimensional neighborhood of point t and a Mathematics Subject Classification (2000):Primary 52A30, 52A35. Keywords and phrases: unions of k starshaped sets. 0-neighborhood of t will be just the singleton set $\{t\}$. The reader may refer to Valentine [11], to Lay [9], to Danzer, Grünbaum, Klee [5], and to Eckhoff [6] for discussions on Helly-type theorems and starshaped sets, and to Nadler [10] for information on the Hausdorff metric. ## 2. The results. The following easy proposition will be useful. Proposition 1. Let \mathcal{C} be a family of sets in any second countable topological space. If every countable intersection of members of \mathcal{C} has a nonempty interior, then $\cap \{C: C \text{ in } \mathcal{C}\}$ has a nonempty interior as well. *Proof.* The argument parallels the proof in [3, Proposition 1], adapted for an arbitrary second countable space. **Theorem 1.** Let \mathcal{K}' be a family of sets in \mathbb{R}^d and let k be a fixed natural number. Assume that every countable subfamily of \mathcal{K}' has an intersection expressible as a union of k starshaped sets, each having a d-dimensional kernel. Then $S \equiv \cap \{K : K \text{ in } \mathcal{K}'\}$ is nonempty and also is expressible as a union of k such starshaped sets. *Proof.* Using Proposition 1, we see that S is nonempty. Let $\mathcal K$ denote the family of all countable intersections of members of $\mathcal K'$. Extending an approach used by Bobylev [1], for each K_{α} in $\mathcal K$, there exist associated k-tuples (t_1,\ldots,t_k) such that each point of S sees via K_{α} a full d-dimensional neighborhood of at least one $t_i, 1 \leq i \leq k$. Let M_{α} denote the set of all such k-tuples (t_1,\ldots,t_k) for K_{α} . Certainly if K_{α} is a union of k starshaped sets T_1,\ldots,T_k satisfying our hypothesis, then $(int\ ker\ T_1)\times\ldots\times(int\ ker\ T_k)$ lies in M_{α} . Hence M_{α} has nonempty interior. Let $\mathcal M$ denote the collection of all the M_{α} sets. A standard argument will show that countable subfamilies of \mathcal{M} have nonempty interior in the product space $\mathbb{R}^d \times \ldots \times \mathbb{R}^d$: For any countable collection $\{M_n: n \geq 1\}$ in \mathcal{M} and corresponding collection $\{K_n: n \geq 1\}$ in \mathcal{K} , let $K_0 = \cap \{K_n: n \geq 1\}$ with M_0 the associated member of \mathcal{M} . It is easy to see that $M_0 \subseteq \cap \{M_n: n \geq 1\}$. Since M_0 has nonempty interior in the product space $\mathbb{R}^d \times \ldots \times \mathbb{R}^d$, $\cap \{M_n: n \geq 1\}$ has this property as well. Hence we may use Proposition 1 to conclude that $\cap \{M_\alpha : M_\alpha \text{ in } \mathcal{M}\}$ has nonempty interior, too. Select a subset $N_1 \times \ldots \times N_k$ of this intersection, where N_i is nonempty, open, and convex in $\mathbb{R}^d, 1 \leq i \leq k$. We assert that S is expressible as a union of k starshaped sets, each of whose kernels contains some $N_i, 1 \leq i \leq k$. That is, for each s in S, s sees via S all points in at least one $N_i, 1 \leq i \leq k$. Suppose on the contrary that the result fails. Then for each $i, 1 \leq i \leq k$, there is some t_i in N_i with $[s, t_i] \not\subseteq S$. That is, for at least one K_i in $\mathcal{K}, [s, t_i] \not\subseteq K_i$. It follows that s cannot see via $K_1 \cap \ldots \cap K_k$ any $t_i, 1 \leq i \leq k$. Of course, $K_0 \equiv K_1 \cap \ldots \cap K_k$ belongs to \mathcal{K} . For M_0 the corresponding member of $\mathcal{M}, (t_1, \ldots, t_k) \notin M_0$, contradicting the fact that (t_1, \ldots, t_k) belongs to $N_1 \times \ldots \times N_k$ and hence to every member of \mathcal{M} . Our supposition must be false, and S is a union of k starshaped sets, say S_1, \ldots, S_k , with $N_i \subseteq \ker S_i, 1 \leq i \leq k$. Since each convex set N_i is fully d-dimensional, this finishes the proof. As in [2], we have an associated dual result, using unions instead of intersections. **Theorem 1'**. Let \mathcal{K}' be a family of sets in \mathbb{R}^d and let k be a fixed natural number. Assume that, for every countable subfamily of \mathcal{K}' , the corresponding union is expressible as a union of k starshaped sets, each having a d-dimensional kernel. Then $T \equiv \bigcup \{K : K \text{ in } \mathcal{K}'\}$ also is expressible as a union of k such starshaped sets. *Proof.* Let $\mathcal K$ denote the family of all countable intersections of members of $\mathcal K'$. Adapting an approach in [2, Theorem 2], for each K_{α} in $\mathcal K$, define $M_{\alpha}=\{(t_1,\ldots,t_k): \text{ each point of } K_{\alpha} \text{ sees via } T \text{ a full } d\text{-dimensional neighborhood of at least one } t_i, 1 \leq i \leq k\}$. Let $\mathcal M$ represent the family of all the M_{α} sets. It is not hard to show that countable intersections of members of \mathcal{M} have nonempty interior in the product space $\mathbb{R}^d \times \ldots \times \mathbb{R}^d$: For any countable collection $\{M_n: n \geq 1\}$ in \mathcal{M} and corresponding $\{K_n: n \geq 1\}$ in $\mathcal{K}, \cup \{K_n: n \geq 1\}$ is a union of k starshaped sets, say S_1, \ldots, S_k , satisfying our hypothesis. Then for every (s_1, \ldots, s_k) in $(int \ker S_1) \times \ldots \times (int \ker S_k)$ and for every $n \geq 1$, each point of K_n sees via $\cup \{K_n: n \geq 1\}$ and hence via T a full d-dimensional neighborhood of at least one $s_i, 1 \leq i \leq k$. Therefore, $(s_1, \ldots, s_k) \in M_n$ for every $n \geq 1$. That is, $(int \ker S_1) \times \ldots \times (int \ker S_k) \subseteq \cap \{M_n: n \geq 1\}$, and $\cap \{M_n: n \geq 1\}$ has nonempty interior, the desired result. We may use Proposition 1 to conclude that $\cap \{M_{\alpha} : M_{\alpha} \text{ in } \mathcal{M}\}$ has nonempty interior as well. As in the proof of Theorem 1, select $N_1 \times \ldots \times N_k$ in this intersection, where N_i is nonempty, open, and convex in \mathbb{R}^d , $1 \leq i \leq k$. We assert that each point of T sees some N_i via $T, 1 \leq i \leq k$. Suppose on the contrary that the result fails for some t in T, where t belongs to K_0 in \mathcal{K} , with M_0 the associated member of \mathcal{M} . Then for each $i, 1 \leq i \leq k$, there is some s_i in N_i with $[t, s_i] \not\subseteq T$. Certainly (s_1, \ldots, s_k) cannot belong to M_0 , contradicting our choice of (s_1, \ldots, s_k) in $N_1 \times \ldots \times N_k \subseteq \cap \{M_{\alpha} : M_{\alpha} \text{ in } \mathcal{M}\}$. Our supposition is false, and T is a union of k starshaped sets, say T_1, \ldots, T_k , with $N_i \subseteq ker T_i, 1 \leq i \leq k$. The sets T_i, \ldots, T_k satisfy Theorem1' Example 1 from [2] shows that countable cannot be replaced by finite in Theorem 1, even when the sets are closed and the associated intersection is nonempty. Similarly, [2, Example 2] illustrates a similar situation for bounded sets having nonempty intersection. Analogous examples in [2, Examples 3 and 4] reveal that countable cannot be replaced by finite in the dual case either. However, when the sets are compact, we have the following result. Theorem 2. Let \mathcal{K}' be a family of compact sets in \mathbb{R}^d . Let k be a fixed natural number, let r_1, \ldots, r_k be fixed integers with $d \geq r_1 \geq \ldots \geq r_k \geq 0$, and let $\epsilon_1, \ldots, \epsilon_k$ be fixed nonnegative numbers. Assume that every finite subfamily of \mathcal{K}' has as its intersection a union of k starshaped sets such that, for an appropriate labeling, the kernel of the i^{th} set contains an r_i -dimensional ϵ_i -neighborhood, $1 \leq i \leq k$. Then $S \equiv \cap \{K : K \text{ in } \mathcal{K}\}$ is a union of k such starshaped sets as well. *Proof.* Observe that \mathcal{K}' is a family of compact sets having the finite intersection property and hence S is nonempty. Let K denote the family of all finite intersections of members of K'. Again we begin by adapting an approach used by Bobylev [1]. For each K_{α} in \mathcal{K} , define the corresponding set M_{α} to be the collection of all k-tuples (T_1, \ldots, T_k) satisfying these properties: For $1 \leq i \leq k, T_i$ is the closure of an r_i -dimensional ϵ_i -neighborhood in K_{α} . Further, for each s in S, there is some $i, 1 \leq i \leq k$, such that s sees via K_{α} all points of T_i . Since $S \subseteq K_{\alpha}$ and K_{α} is a union of k starshaped sets satisfying our hypothesis, clearly $M_{\alpha} \neq \emptyset$. We will show that each set M_{α} is compact relative to the Hausdorff metric: Certainly each M_{α} is bounded, since each of its points lies in $K_{\alpha} \times \ldots \times K_{\alpha}$, a product of k compact sets. To see that M_{α} is closed, let $\{(T_{1n},\ldots,T_{kn}):n\geq 1\}$ be a sequence in M_{α} converging to (T'_1,\ldots,T'_k) relative to the Hausdorff metric. By an argument in [4, Lemma], for each $i,1\leq i\leq k,T'_i$ is also the closure of an r_i -dimensional ϵ_i -neighborhood. Let $s\in S$ to show that s sees via K_{α} some $T'_i,1\leq i\leq k$. For each n,s sees via K_{α} some $T_{in},1\leq i\leq k$. Hence for some particular $i_0,1\leq i_0\leq k,s$ sees infinitely many sets T_{i_0n} . Passing to a subsequence if necessary, assume that s sees T_{i_0m} via K_{α} for all $m\geq 1$. Since $\{T_{i_0m}:m\geq 1\}$ converges to T'_{i_0} , by a standard argument, s sees T'_{i_0} via K_{α} . We conclude that (T'_1,\ldots,T'_k) belongs to M_{α} and therefore M_{α} is closed, hence compact. Let \mathcal{M} denote the family of compact sets M_{α} . It is easy to show that \mathcal{M} has the finite intersection property: For M_1, \ldots, M_j in \mathcal{M} and for corresponding K_1, \ldots, K_j in $\mathcal{K}, K_1 \cap \ldots \cap K_j \equiv K_0$ belongs to \mathcal{K} . The associated nonempty set M_0 is a subset of $M_1 \cap \ldots \cap M_j$, so $M_1 \cap \ldots \cap M_j \neq \emptyset$. Therefore, \mathcal{M} is a family of compact sets having the finite intersection property, and it follows that $\cap \{M_{\alpha}: M_{\alpha} \text{ in } \mathcal{M}\} \neq \emptyset$. Select (T_1, \ldots, T_k) in this intersection. Clearly each T_i lies in $\cap \{K_{\alpha}: K_{\alpha} \text{ in } \mathcal{K}\} = S, 1 \leq i \leq k$. We assert that each point of s sees via S some set $T_i, 1 \leq i \leq k$. The proof parallels an argument in Theorem 1: Suppose on the contrary that the result fails for some s in S. This implies that for each $i, 1 \leq i \leq k$, there is at least one corresponding K_i in \mathcal{K} such that s fails to see via K_i some point of T_i . Then $K_1 \cap \ldots \cap K_k \equiv K_0$ belongs to \mathcal{K} , yet s cannot see any T_i via K_0 , contradicting our choice of (T_1, \ldots, T_k) in $\cap \{M_\alpha : M_\alpha \text{ in } \mathcal{M}\}$. Our supposition is false, each point of S sees via S some $T_i, 1 \leq i \leq k$, and S is a union of k starshaped sets, each having appropriate kernel. This finishes the proof of Theorem 2. Corollary. Let $\mathcal K$ be a family of compact sets in $\mathbb R^d$, and let k be a fixed natural number. If every finite subfamily of $\mathcal K$ has as its intersection a union of k starshaped sets, then $\cap \{K : K \text{ in } \mathcal K\}$ is a union of k starshaped sets as well. We have the following dual to Theorem 2. Theorem 2'. Let \mathcal{K}' be a family of sets in \mathbb{R}^d , with $T \equiv \bigcup \{K' : K' \text{ in } \mathcal{K}'\}$ compact. Let k be a fixed natural number, let r_1, \ldots, r_k be fixed integers with $d \geq r_1 \geq \ldots \geq r_k \geq 0$, and let $\epsilon_1, \ldots, \epsilon_k$ be fixed nonnegative numbers. Assume that every finite subfamily of \mathcal{K}' has as its union a union of k starshaped sets such that, for an appropriate labeling, the kernel of the i^{th} set contains an r_i -dimensional ϵ_i -neighborhood, $1 \leq i \leq k$. Then T is a union of k such starshaped sets as well. *Proof.* Since the hypothesis above must also hold for the family $\{cl\ K': K' \text{ in } \mathcal{K}'\}$, without loss of generality, we assume that each member of \mathcal{K}' is closed, hence compact. Let \mathcal{K} represent the family of all finite unions of members of \mathcal{K}' . Adapting earlier arguments, for each K_{α} in \mathcal{K} , let M_{α} denote the family of all k-tuples (T_1, \ldots, T_k) satisfying these properties: Each T_i is the closure of an r_i -dimensional ϵ_i -neighborhood in T. Moreover, for each point s of K_{α} , there is some $i, 1 \leq i \leq k$, such that s sees via T all points of T_i . Let \mathcal{M} denote the family of sets M_{α} . Since T is compact, an argument in the proof of Theorem 2 shows that each set M_{α} is compact relative to the Hausdorff metric. Further, an argument in the proof of Theorem 1' may be modified to prove that \mathcal{M} has the finite intersection property. Hence $\cap \{M_{\alpha}: M_{\alpha} \text{ in } \mathcal{M}\} \neq \emptyset$. For (T_1, \ldots, T_k) in this intersection, each point of T sees some T_i via T and hence T is a union of k appropriate starshaped sets, finishing the proof. The previously mentioned examples demonstrate that Theorems 2 and 2' fail without the requirement that T be compact. We have the following analogues of Theorems 2 and 2' for convex sets. **Theorem 3.** Let \mathcal{K}' be a family of compact sets in \mathbb{R}^d , and let k be a fixed natural number. If every finite subfamily of \mathcal{K}' has as its intersection a nonempty union of k convex sets, then $S \equiv \cap \{K' : K' \text{ in } \mathcal{K}\}$ is a nonempty union of k convex sets as well. *Proof.* The argument is similar to the previous proof. Notice that S is compact and nonempty. Let $\mathcal K$ denote the family of all finite intersections of members of $\mathcal K'$. For each set K_{α} in $\mathcal K$, let M_{α} represent the family of all k-tuples (T_1,\ldots,T_k) satisfying these properties: Each T_i is compact and nonempty, $1\leq i\leq k, \cup \{T_i:1\leq i\leq k\}=S$, and $conv\,T_i\subseteq K_\alpha, 1\leq i\leq k$. Observe that if K_α is a union of the k compact sets C_1,\ldots,C_k and $S\cap C_i\neq\emptyset, 1\leq i\leq k$, then $(S\cap C_1,\ldots,S\cap C_k)$ belongs to M_α . In case some $S\cap C_i$ is empty, a nonempty $S\cap C_j$ may be used instead to obtain a member of M_α . Hence $M_\alpha\neq\emptyset$. Standard arguments show that each set M_{α} is compact relative to the Hausdorff metric in the product $K_{\alpha} \times \ldots \times K_{\alpha} \subseteq \mathbb{R}^d \times \ldots \times \mathbb{R}^d$ and that $\mathfrak{M} \equiv \{M_{\alpha}: K_{\alpha} \text{ in } \mathcal{K}\}$ has the finite intersection property. Therefore, $\cap \{M_{\alpha}: M_{\alpha} \text{ in } \mathcal{M}\} \neq \emptyset$. For (T_1, \ldots, T_k) in this intersection, $S = \bigcup \{T_i: 1 \leq i \leq k\} \subseteq \bigcup \{conv T_i: 1 \leq i \leq k\} \subseteq K_{\alpha}$ for every K_{α} in \mathcal{K} . Thus $S \subseteq \bigcup \{conv T_i: 1 \leq i \leq k\} \subseteq \cap \{K_{\alpha}: K_{\alpha} \text{ in } \mathcal{K}\} = S$, and S is the union of the k convex sets $conv T_i, 1 \leq i \leq k$, finishing the proof. **Theorem 3'.** Let \mathcal{K}' be a family of sets in \mathbb{R}^d , with $T \equiv \bigcup \{K' : K' \text{ in } \mathcal{K}'\}$ compact. Let k be a fixed natural number, let r_1, \ldots, r_k be fixed integers with $d \geq r_1 \geq \ldots \geq r_k \geq 0$, and let $\epsilon_1, \ldots, \epsilon_k$ be fixed nonnegative numbers. Assume that every finite subfamily of \mathcal{K}' has as its union a union of k convex sets such that, for an appropriate labeling, the i^{th} set contains an r_i -dimensional ϵ_i -neighborhood, $1 \leq i \leq k$. Then T is a union of k such convex sets as well. *Proof.* Because the proof resembles earlier arguments, we give just an outline here. Without loss of generality, assume that each member of \mathcal{K}' is compact, and let \mathcal{K} represent the family of all finite unions of members of \mathcal{K}' . For each K_{α} in \mathcal{K} , let M_{α} denote the collection of all k-tuples (C_1, \ldots, C_k) satisfying these properties: For $1 \leq i \leq k$, C_i is compact and convex and contains a r_i -dimensional ϵ_i -neighborhood. Moreover, $K_{\alpha} \subseteq \bigcup \{C_i : 1 \leq i \leq k\} \subseteq T$. Again let \mathcal{M} represent the family of sets M_{α} . Standard arguments show that \mathcal{M} is a family of compact sets relative to the Hausdorff metric in the product space $T \times \ldots \times T \subseteq \mathbb{R}^d \times \ldots \times \mathbb{R}^d$. Furthermore, \mathcal{M} has the finite intersection property and hence $\cap \{M_\alpha : M_\alpha \text{ in } \mathcal{M}\} \neq \emptyset$. For (C_1, \ldots, C_k) in this intersection and for every K_α in $\mathcal{K}, K_\alpha \subseteq \cup \{C_i : 1 \leq i \leq k\} \subseteq T$. Thus $T \equiv \cup \{K_\alpha : K_\alpha \text{ in } \mathcal{K}\} \subseteq \cup \{C_i : 1 \leq i \leq k\} \subseteq T$ and T is the union of the convex sets $C_i, 1 \leq i \leq k$, the desired result. In conclusion, it is interesting to compare Theorem 3' to a theorem by Lawrence, Hare, and Kenelly [8, Theorem 2] that characterizes arbitrary sets expressible as unions of k convex sets. #### REFERENCES - N. A. Bobylev, The Helly theorem for starshaped sets, J. Math Sci. 105 (2001), 1819-1825. - [2] Marilyn Breen, A Helly-type theorem for countable intersections of starshaped sets, Arch. Math. 84 (2005), 282-288. - [3] , Helly-type theorems for infinite and for finite intersections of sets starshaped via staircase paths, Beiträge zur Algebra und Geometrie 49 (2008), 527-539. - [4] , k-dimensional intersections of convex sets and convex kernels, Discrete Mathematics 36 (1981), 233-237. - [5] Ludwig Danzer, Branko Grünbaum, and Victor Klee, Helly's theorem and its relatives, Proc. Sympos. Pure Math. 7, Amer.Math. Soc., Providence, RI. (1962), 101-188. - [6] Jürgen Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of Convex Geometry vol. A, ed. P. M. Gruber and J. M. Wills, North Holland, New York (1993), 389-448. - [7] V. L. Klee, Jr., The structure of semispaces, Math. Scand. 4 (1956), 54-64. - [8] J. F. Lawrence, W. R. Hare, Jr., and John W. Kenelly, Finite unions of convex sets, Proc. Amer. Math. Soc. 34 (1972), 225-228. - [9] Steven R. Lay, Convex Sets and Their Applications, John Wiley, New York, 1982. - [10] Sam B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York, 1978. - [11] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964. Department of Mathematics University of Oklahoma Norman, Oklahoma 73019 U.S.A. email: mbreen@ou.edu