INTERSECTIONS OF SETS EXPRESSIBLE AS UNIONS
OF k STARSHAPED SETS
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ABSTRACT. Let X be a family of sets in R? and let k be a fixed
natural number. Assume that every countable subfamily of X has an
intersection expressible as a union of k starshaped sets, each having
a d-dimensional kernel. Then S = N{K : KinX} is nonempty and
is expressible as a union of k such starshaped sets.

If members of X are compact and every finite subfamily of X has
as its intersection a union of k starshaped sets, then S again is a
union of k starshaped sets. An analogous result holds for unions of
k convex sets.

Finally, dual results hold for unions of subfamilies of X.

1. INTRODUCTION.

We begin with some definitions from [2]. Let S be a set in R¢. For
points = and y in S, we say T sees y (z is visible from y) via S if and only if
the corresponding segment [z, y] lies in S. Similarly, for subsets A, B of S,
we say A sees B via S if and only if a sees b via S for all a in A, b in B. Set
S is called starshaped if and only if for some point p of S, p sees each point
of S via S, and the collection of all such points p is the (convex) kernel of
S. Notice that a starshaped set cannot be empty.

A familiar theorem by Victor Klee [7] establishes the following Helly-
type result for countable intersections of convex sets: Let € be a family
of convex sets in Re. If every countable subfamily of € has a nonempty
intersection, then N{C : Cin C} is nonempty as well. Moreover, a result in
[2] yields this starshaped analogue: Let 8 be a family of sets in RY. If every
countable subfamily of 8 has a starshaped intersection, then N{S : Sin8} is
(nonempty and) starshaped. Here we obtain some related results for unions
of k starshaped sets in R¢.

Throughout the paper, int S, ker S,cl S, and conv S will denote the in-
terior, kernel, closure, and convex hull, respectively, for set S. We follow
the usual convention that a 0-dimensional neighborhood of point ¢ and a
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0O-neighborhood of ¢ will be just the singleton set {t}. The reader may refer
to Valentine [11], to Lay (9], to Danzer, Griinbaum, Klee [5], and to Eck-
hoff (6] for discussions on Helly-type theorems and starshaped sets, and to
Nadler [10] for information on the Hausdorff metric.

2. THE RESULTS.

The following easy proposition will be useful.

Proposition 1. Let € be a family of sets in any second countable topolog-
ical space. If every countable intersection of members of € has a nonempty
interior, then N{C : C'in €} has a nonempty interior as well.

Proof. The argument parallels the proof in [3, Proposition 1), adapted
for an arbitrary second countable space.

Theorem 1. Let X’ be a family of sets in R? and let & be a fixed natural
number. Assume that every countable subfamily of X’ has an intersection
expressible as a union of k starshaped sets, each having a d-dimensional
kernel. Then S = N{K : KinX'} is nonempty and also is expressible as a
union of k such starshaped sets.

Proof. Using Proposition 1, we see that S is nonempty. Let X denote
the family of all countable intersections of members of X’. Extending an
approach used by Bobylev (1], for each K4 in X, there exist associated k-
tuples (3,...,tx) such that each point of S sees via K, a full d-dimensional
neighborhood of at least one ¢;,1 < i < k. Let M, denote the set of all such
k-tuples (t1,...,tx) for K. Certainly if K, is a union of k starshaped sets
1h,..., T} satisfying our hypothesis, then (intkerT}) x ... x (int ker T})
lies in M,. Hence M, has nonempty interior. Let M denote the collection
of all the M, sets.

A standard argument will show that countable subfamilies of M have
nonempty interior in the product space R x ... x R%: For any countable
collection {M, : n > 1} in M and corresponding collection {K,, : n > 1}
in X, let Ko = N{K, : n > 1} with M, the associated member of M. It is
easy to see that Mo C N{M,, : n > 1}. Since My has nonempty interior in
the product space R x ... x R4, N{M, : n > 1} has this property as well.

Hence we may use Proposition 1 to conclude that N{M,, : M, in M} has
nonempty interior, too. Select a subset Ny X ... X Nj of this intersection,
where N; is nonempty, open, and convex in R%,1 < i < k. We assert that S
is expressible as a union of k starshaped sets, each of whose kernels contains
some N;,1 < i < k. That is, for each s in S, s sees via S all points in at
least one IV;,1 < i < k. Suppose on the contrary that the result fails. Then
for each 4,1 < i < k, there is some ¢; in N; with [s,2;] € S. That is, for at
least one K; in X, [s,¢;] € K. It follows that s cannot see via K;N...N K}
any t;,1 < i < k. Of course, Ko = K; N...N K} belongs to X. For M,
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the corresponding member of M, (¢1,...,tx) ¢ Mo, contradicting the fact
that (¢,...,tx) belongs to Ny x...x Ny and hence to every member of M.
Our supposition must be false, and S is a union of k starshaped sets, say
S1,...,Sk, with N; C ker S;,1 < i < k. Since each convex set N; is fully
d-dimensional, this finishes the proof.

As in [2], we have an associated dual result, using unions instead of
intersections.

Theorem1’. Let X’ be a family of sets in R? and let k be a fixed
natural number. Assume that, for every countable subfamily of X', the
corresponding union is expressible as a union of k starshaped sets, each
having a d-dimensional kernel. Then T = U{K : K in X'} also is expressible
as a union of & such starshaped sets.

Proof. Let X denote the family of all countable intersections of mem-
bers of X’. Adapting an approach in [2, Theorem 2|, for each K, in X,
define M, = {(t1,...,t): each point of K, sees via T a full d-dimensional
neighborhood of at least one ¢;,1 < i < k}. Let M represent the family of
all the M, sets.

It is not hard to show that countable intersections of members of M
have nonempty interior in the product space R? x ... x R¢: For any count-
able collection {M, : n > 1} in M and corresponding {K, : n > 1} in
X,U{K, : n > 1} is a union of k starshaped sets, say Si,..., Sk, satisfying
our hypothesis. Then for every (sy, ..., 3x) in (int ker S1)x...x (int ker Si)
and for every n > 1, each point of K, sees via U{K, : n > 1} and hence via
T a full d-dimensional neighborhood of at least one s;,1 < ¢ < k. Therefore,
(81,---,8k) € My, for every n > 1. That is, (int ker S1) X... x (int ker Sx) C
N{M, : n > 1}, and N{M, : n > 1} has nonempty interior, the desired
result.

We may use Proposition 1 to conclude that N{M, : M,inM} has
nonempty interior as well. As in the proof of Theorem 1, select Ny x...x Ng
in this intersection, where V; is nonempty, open, and convex in R%1<i<
k. We assert that each point of T sees some N; via T,1 < i < k: Suppose
on the contrary that the result fails for some ¢ in T, where ¢ belongs to Kp
in X, with Mp the associated member of M. Then for each ¢,1 < i < k,
there is some s; in N; with [t,s;] € T. Certainly(s;, ..., si) cannot belong
to Mp, contradicting our choice of (s1,...,8k) in N1 x ... x N € N{M, :
M, inM}. Our supposition is false, and T is a union of k starshaped sets,
say T1,..., Tk, with N; C kerT;,1 < i < k. The sets Tj,..., T} satisfy
Theoreml’.

Example 1 from [2] shows that countable cannot be replaced by finite in
Theorem 1, even when the sets are closed and the associated intersection
is nonempty. Similarly, [2, Example 2] illustrates a similar situation for
bounded sets having nonempty intersection. Analogous examples in [2,
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Examples 3 and 4] reveal that countable cannot be replaced by finite in the
dual case either.
However, when the sets are compact, we have the following result.

Theorem 2. Let X’ be a family of compact sets in R%. Let & be a fixed
natural number, let 7y,..., 7 be fixed integers withd >r; > ... > r, >0,
and let €j,..., € be fixed nonnegative numbers. Assume that every finite
subfamily of X’ has as its intersection a union of k starshaped sets such
that, for an appropriate labeling, the kernel of the i** set contains an r;-
dimensional €;-neighborhood, 1 < i < k. Then S =N{K : KinX} is a
union of k such starshaped sets as well.

Proof. Observe that X' is a family of compact sets having the finite
intersection property and hence S is nonempty. Let K denote the family
of all finite intersections of members of X’. Again we begin by adapting an
approach used by Bobylev [1]. For each K, in X, define the corresponding
set M, to be the collection of all k-tuples (T3, ..., T}) satisfying these prop-
erties: For 1 <1 < k,T; is the closure of an r;-dimensional ¢;-neighborhood
in K. Further, for each s in S, there is some 4,1 < i < k, such that s sees
via K, all points of T;. Since S C K, and K, is a union of k starshaped
sets satisfying our hypothesis, clearly M, # 0.

We will show that each set M, is compact relative to the Hausdorff
metric: Certainly each M, is bounded, since each of its points lies in K, x
... X Kq, a product of k compact sets. To see that M, is closed, let
{(Tin,-.-,Tkn) : n > 1} be a sequence in M, converging to (11,...,T})
relative to the Hausdorff metric. By an argument in (4, Lemma], for each
i,1 < i < k,T] is also the closure of an 7;-dimensional €;-neighborhood.
Let seS to show that s sees via K, some T{,1 <i < k. For each n, s sees
via Ko some Tin, 1 < i < k. Hence for some particular ip,1 < ip < k, s sees
infinitely many sets T},. Passing to a subsequence if necessary, assume that
s sees Tiom via K, for all m > 1. Since {T}, : m > 1} converges to T,
by a standard argument, s sees T}, via K,. We conclude that (77,..., T)
belongs to M, and therefore M, is closed, hence compact.

Let M denote the family of compact sets M,. It is easy to show that
M has the finite intersection property: For My, ..., M; in M and for corre-
sponding Ky, ..., K in X, K1N...NK; = K, belongs to X. The associated
nonempty set Mo is a subset of My N...NMj, so MyN...NM; #0.

Therefore, M is a family of compact sets having the finite intersection
property, and it follows that N{M, : M4 in M} # 0. Select (T,...,T}) in
this intersection. Clearly each T; lies in N{K, : KoinX} = S,1 <i<k.
We assert that each point of s sees via S some set T;,1 < i < k. The
proof parallels an argument in Theorem 1: Suppose on the contrary that
the result fails for some s in S. This implies that for each i,1 < i < k, there
is at least one corresponding K; in X such that s fails to see via K; some
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point of T;. Then K;N...NK; = Ky belongs to X, yet s cannot see any T;
via Kj, contradicting our choice of (T1,...,Tk) in N{M, : My inM}. Our
supposition is false, each point of S sees via S some T;,1 <i< k,and S is
a union of k starshaped sets, each having appropriate kernel. This finishes
the proof of Theorem 2.

Corollary. Let X be a family of compact sets in R?, and let k be a
fixed natural number. If every finite subfamily of X has as its intersection
a union of k starshaped sets, then N{K : K inX} is a union of k starshaped
sets as well.

We have the following dual to Theorem 2.

Theorem 2'. Let X’ be a family of sets in R?, with T = U{K’ : K'inX'}
compact. Let k be a fixed natural number, let ry,...,7, be fixed integers
withd > 7, >...> 7 >0, and let €y, . . ., €& be fixed nonnegative numbers.
Assume that every finite subfamily of X’ has as its union a union of k
starshaped sets such that, for an appropriate labeling, the kernel of the ith
set contains an r;-dimensional ¢;-neighborhood, 1 < i < k. Then T is a
union of k such starshaped sets as well.

Proof. Since the hypothesis above must also hold for the family {c! K’ :
K'inX'}, without loss of generality, we assume that each member of X’
is closed, hence compact. Let X represent the family of all finite unions
of members of K’. Adapting earlier arguments, for each K, in X, let M,
denote the family of all k-tuples (T1,...,T%) satisfying these properties:
Each T; is the closure of an r;-dimensional ¢;-neighborhood in T'. Moreover,
for each point s of K, there is some i,1 < i < k, such that s sees via T all
points of T;. Let M denote the family of sets M,.

Since T is compact, an argument in the proof of Theorem 2 shows
that each set M, is compact relative to the Hausdorff metric. Further,
an argument in the proof of Theorem 1’ may be modified to prove that
M has the finite intersection property. Hence N{M, : MyinM} # @. For
(T1,...,T%) in this intersection, each point of T sees some T; via T and
hence T is a union of k appropriate starshaped sets, finishing the proof.

The previously mentioned examples demonstrate that Theorems 2 and
2’ fail without the requirement that T be compact.

We have the following analogues of Theorems 2 and 2’ for convex sets.

Theorem 3. Let X’ be a family of compact sets in R%, and let k be a
fixed natural number. If every finite subfamily of X’ has as its intersection a
nonempty union of k convex sets, then S = N{K’ : K'inX} is a nonempty
union of k convex sets as well.

Proof. The argument is similar to the previous proof. Notice that S is
compact and nonempty. Let X denote the family of all finite intersections
of members of X’. For each set K, in X, let M, represent the family of all
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k-tuples (Ti,...,T}) satisfying these properties: Each T; is compact and
nonempty, 1 <i < k,U{T;:1<i<k}=S8,and convT; C K,,1<i<k.
Observe that if K, is a union of the k compact sets Cy,...,C) and SNC; #
0,1 <i<k,then (SNCy,...,5NCk) belongs to M,,. In case some SNC;
is empty, a nonempty S N C; may be used instead to obtain a member of
M,. Hence M, # 0.

Standard arguments show that each set M, is compact relative to the
Hausdorff metric in the product K, x...x K, C R¥x...xR% and that M =
{My : KoinX} has the finite intersection property. Therefore, N{M, :
MyinM} # 0. For (Ty,...,Tk) in this intersection, $ = U{T; : 1 < i <
k} C U{convT;:1< i<k} C K, forevery Ko in X. Thus S € U{conv T; :
1<i<k}CN{Kys:KqinX} =S, and S is the union of the k convex
sets conv T;,1 < i < k, finishing the proof.

Theorem 3'. Let X' be a family of sets in R?, with T = U{K" :
K'inX'} compact. Let k be a fixed natural number, let rq,..., 7, be fixed
integers withd > r; > ... > 1 2> 0, and let ¢3,. .., €, be fixed nonnegative
numbers. Assume that every finite subfamily of X’ has as its union a union
of k convex sets such that, for an appropriate labeling, the i** set contains
an 7;-dimensional ¢;-neighborhood, 1 < i < k. Then T is a union of k such
convex sets as well.

Proof. Because the proof resembles earlier arguments, we give just an
outline here. Without loss of generality, assume that each member of X’
is compact, and let X represent the family of all finite unions of members
of X'. For each K, in X, let M, denote the collection of all k-tuples
(C1,...,Cy) satisfying these properties: For 1 < i < k,C; is compact and
convex and contains a r;-dimensional ¢;-neighborhood. Moreover, K, C
U{Ci:1<i <k} CT. Again let M represent the family of sets M,.

Standard arguments show that M is a family of compact sets relative to
the Hausdorff metric in the product space T x ... x T C R? x ... x R9.
Furthermore, M has the finite intersection property and hence N{M, :
M,inM} # @. For (Cy,...,Cx) in this intersection and for every K, in
X, Ko CU{C;:1<i<k}CT. ThusT=U{K,: K,inX} C U{C;: 1<
i <k} C T and T is the union of the convex sets C;,1 < i < k, the desired
result.

In conclusion, it is interesting to compare Theorem 3’ to a theorem by
Lawrence, Hare, and Kenelly [8, Theorem 2] that characterizes arbitrary
sets expressible as unions of k¥ convex sets.
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