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Abstract: Let G = (V,E) be a graph and ¢: VUE = {1,2,...,a} be
a proper a-total coloring of G. Let f(v) denote the sum of the color on
vertex v and the colors on the edges incident with v. A neighbor sum dis-
tinguishing a-total coloring of G is a proper a-total coloring of G such that
for each edge uv € E(G), f(u) # f(v). Piliniak and Wozniak first intro-
duced this coloring and conjectured that such coloring exists for any simple
graph G with maximum degree A(G) if @ > A(G) + 3. The maximum av-
erage degree of G is the maximum of the average degree of its non-empty
subgraphs, which is denoted by mad(G). In this paper, by using the Com-
hinatorial Nullstellensatz and the discharging method, we prove that this
conjecture holds for graphs with larger maximum average degree in their
list versions. More precisely, we prove that if G is a graph with A(G) > 11
and mad(G) < 5, then ch{(G) < A(G) + 3 (where ch§;(G) is the neigno:.
sum distinguishing total choosablhtv of "

Keywords: neighbor sum distinguishing total coloring, Combinatorial
Nullstellensatz. neighbor sum distinguishing total choosabilitv

1 Introduction

Let G be a graph, we use V(G), E(G), 6(G) and A(G) to denote the vertex
set, edge set, minimum degree and maximum degree of G respectively. Let
d(x) denote the degree of a vertex (or face) z in G. An [-, I~-, or I*-vertex

(or face) is a vertex (or face) of degree [, at most [ or at least ! respectively.

The average degree of a graph G is &%’%#2 we denote it by ad(G).

The mazimum average degree of G is the maximum of the average degree
of its non-empty subgraphs and is denoted by mad(G). For a planar graph
G two faces are adjacent if they have at least one common edge, and if they
have at least one common vertex we call the two faces are intersecting.
Let ¢: E(G)UV(G) = {1,2,...,a} be a proper total coloring of G. By
f(v), we denote the sum of colors taken on the edges incident with v and
color on the vertex v, i.e., f(v) = Y .5, #(€) + #(v). We call the coloring
¢ such that f(v) # f(u) for each edge uv € E(G) a neighbor sum distin-
guishing a-total coloring (abbrevd. a-tnsd-coloring). The smallest number
« is the neighbor sum distinguishing total chromatic number, denoted by

*Corresponding author. E-mail: hairongkong@163.com This work was supported by
the National Natural Science Foundation of China (11301134,11301135), and the Natural
Science Foundation of Hebei Province (A2015202301).

ARS COMBINATORIA 125(2016), pp. 347-360



tndig(G). Piléniak and Woéniak proposed the following conjecture.

Conjecture 1 [7] IfG is a graph with at least two vertices, then tndix(G) <
A(G) +3.

In [7] Piléniak et al. proved that Conjecture 1 holds for complete graphs,
cycles, and bipartite graphs. Dong et al. proved the following result.

Theorem 1 (3] Let G be a graph with at least two vertices. If mad(G) < 3
then tndig(G) < k + 2, where k =max{A(G), 5}.

For planar graph, Li et al. [5] proved the following theorem.

Theorem 2 [5] Let G be a planar graph with A(G) > 13, then tndig(G) <
A(G) +3.

For a given graph G, let (Lz)zev(c)uEe(c) be a set of lists of real num-
bers, each of size a. The smallest a for which for any specified collection
of such lists there exists a neighbor sum distinguishing total coloring using
colors from L, for each z € V(G)UE(G) is the neighbor sum distinguishing
total choosability of G, and denoted by ch%(G). In [2], Ding et al. proved
that if A(G) = 3 and mad(G) < £, then ch” #(G) < 6. More references see
(4, 6,9, 10, 11, 12, 13]. In [8], Qu et al. proved the following result.

Theorem 3 [8] For any graph G, if there ezists a pair (k,m) € {(6,4), (5,
18) (4,28)} such that G satisfies A(G) > k and mad(G) < m, then

%(G) < A(G) +3.

In this paper, we will prove the following results.

Theorem 4 Let G be a graph with A(G) 2 11 and mad(G) < 5, then

h$(G) < A(G) + 3.

Corollary 1 Let G be a planar graph without adjacent triangles with
A(G) 2 11, then chi(G) < A(G) + 3.

Obviously, it holds that tndig(G) < ch$(G), thus any upper bound
proven for ch3(G) is valid for tndix(G), so we have the following corollaries.
Corollary 2 Let G be a graph with A(G) > 11 and mad(G) < 5, then
tndig(G) < A(G) + 3.

Corollary 3 Let G be a planar graph without adjacent triangles with
A(G) > 11, then tndig(G) < A(G) + 3.

2 Preliminaries

Let P(z1,%2,...,Z5) be a polynomial in n variables, where n > 1. By
cp(zhrak? .. x""), we denote the coefficient of the monomial z¥1z52 . . . zk»
in P(x1,%2,...,Zn), where k; (1 < i < n) is a non-negative mteger Let

F(z), A(z) denote the forbidden colors set and available colors set of z in
certain case when we color z, respectively, where z € V(G) U E(G).

Lemma 1 (Alon{1], Combinatorial Nullstellensatz). Let F be an arbitrary
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field, and let P = P(xy,x3,...,2,) be a polynomial in Fz,zs,...,Zx).
Suppose the degree deg(P) of P eguals 3 7., ki, where each k; is a non-
negative integer, and suppose cP(:z:'l“:z:;" ...zkn) #£0. Thenif S1,82,...,5n
are subsets of F with |S;| > ki, there are s; € S; (i = 1,2,...,n) so that
P(SI,SZ""7311)5£0‘ k
Lemma 2 (2] Let P(z1,%2,...,%k) = [I (i —z;)(X z¢)® be a
1<i<j<k t=1
polynomial in k variables, where k > 2 and b (# 1) is a non-negative

integer, then cP(:z:l“:v'2‘+b'2:c§_3 coex?_op—y) #0.

Lemma3 Let P(z;,z2,...,%k) = [l (zi—z;)(2 x¢) be a polynomial
k t=1

1<i<ji<
in k variables, where k > 2, then cp(z¥zs~2z5™3 . 2 _,z11) #0.
Proof Let P = [] (z:— z;), then it can be easily verified that
1<i<i<k
c;:(.'z:’f:c';‘2 e Zpm1) = c;::»o(:z:'l“lz’z‘"2 ez y)=1#0.

Lemma 4 Let G be a planar graph without adjacent triangles, then
mad(G) < £.
Proof. Let G be a planar graph without adjacent triangles, H is a subgraph
of G, then H is a planar graph without adjacent triangles. We can easily
verify the number of 3-faces in H is at most [Jﬂsﬁmj Let |[F(H)| denote
|E(H)|

the number of faces of H. Then |F(H)| < 2|E(H)I_fl 4 ['E(aﬂ)lj =
LEGD 4 1| IED] | < TIE(H)|. We recall the Euler’s formula and have:
|V (H)| - |E(H)| + |F(H)]| = 2. Then we have 370l = 2280

2|B(H _ 2
'2_-TIE(_|H)_I£}%ILE(T)I = FE?E?I_*% < 2 for every subgraph H of G.

3 The proof of Theorem 4

Our proof proceeds by reduction and absurdum. Let connected graph G
be a counterexample to Theorem 4 such that |V (G)|+|E(G)| is as small as
possible. Obviously, A(G) > 11. Let (L:)zevug be any given set of lists
of real numbers, each of size A(G) + 3. Let a = A(G) + 3, by the choice of
G, any proper subgraph G’ of G has a a-tnsd-coloring with numbers in L,
for each £ € VU E. For any a-tnsd-coloring ¢ of G/, in the proof we will
extend the coloring ¢ to the desired coloring ¢’ of G to get a contradiction.
Let f(v), f'(v) denote the sum of the color on vertex v and the colors of
the edges incident with v in the coloring ¢, ¢, respectively. Obviously, the
desired coloring ¢’ of G will satisfy the following conditions:

(1) ¢'(u) # ¢'(v) for every pair u,v of adjacent vertices;
(2) ¢'(v) # ¢'(e) for every vertex v and every edge e incident with v;
(3) ¢'(e) # ¢’(€’) for every pair e, e’ of adjacent edges;
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(4) f'(u) # f'(v) for every uwv € E(G).

Let H be the graph obtained by removing all the 1-vertices and 2-
vertices of G. Clearly, when A(G) > 11, if d(v) < 4, then we can recolor
v easily if necessary to get a coloring as desired, so in the following proof
we will omit the colorings of 4~-vertices, that is when we color a vertex
(or an edge), the forbidden colors set of it doesn’t include the colors on its
adjacent (or incident) 4~ -vertices.

v LR m

ul Ny
Fy

Figure 1

In Figure 1, the neighbors of black vertices are shown in the figure, the
degree of grey vertices are one or two, the degree of ‘o’ are at least three,
and '’ represents vertices whose degrees dependent on the particular case.

Claim 1 6(H) > 3.

Proof. If not, then G contains a subgraph isomorphic to configuration F}
in Figure 1, where 0 <m <2 and ! > 1. Let G’ = G — {u,v, ugv,. . wu},
then G’ has an a-tnsd-coloring ¢. Now we prove that we can get a desnred
coloring ¢’ of G. Clearly, based on the coloring conditions (2) and (3),
|F(uiv)] < m + 2, then |A(uv)] > a—(m+2) > 1+1, where1 < i <
l. Associate with ujv,u2v,...,wwv a variable z1,1,,...,zi, respectively.
According to the coloring conditions (3) and (4), we can get the following
polynomials @; and Qp:

when { > 1,
Qi(z1,22,.. @)= [] (za— wJ)H(Zx: +Z¢(vvz) + 8(v) — f(w));
1<€i<i<t i=] j=1
whenl =1,

Qo(z:) = II(m + Zj¢ (v05) + $(v) = f(w:)).

i=1 =1

We can get a; and @; as following:

when ! > 1, .

Q‘I(Zl,l'z,...,xz) = ]__I (mi_xj)(zmj)m;
1<i<ji<t j=1

when ! =1, —
Qo(z1) = =7".
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We notice that the coefficient of the monomial which with the highest

degree in @Q; and Qg are equal to that in @; and Qo, respectively.

If m =0, then ! > 3, co, (zi*zb2z53 - Ti-1) = Cg; (:z:' 1pb-2273. ..

Z;—1) # 0 by Lemma 2. Similarly, if m = 2, then l 1, when !l = 1,
cQo(:z:l) = cg; (1) #0, when I > 1, ch(xll‘lx'za:Q “3.gpg) = <5, (:1:‘ -1 ‘
i 1)#0 If m = 1, then | > 2, cq,(zhazb 2zt 21y) =

(:z:lar:2 2x§ 3.z 1) # 0 by Lemma 3. At last, we can recolor uy,...,u;
easﬂy By Lemma 1, those imply that we can get a desired coloring ¢' of
G, which is a contradiction.

Claim 2 For each v € V(H), if dg(v) =k, then de(v) =k (k=3,4,5).
Proof. If not, G contains a subgraph isomorphic to configuration F) in
Figure 1, where m =k and I > 1.

Case 2.1: | = 1. Let G’ = G — {u1v}, thus G’ has an a-tnsd-coloring
#. According to conditions (2) to (4) we have |F(u,v)] < 2m + 2, then
|[A(yv)] = a—-(2m +2) > 11+3 —(2x5+2) = 2. We can recolor
u, easily. This implies that we get a desired coloring ¢’ of G, which is a
contradiction.

Case 2.2: | = 2. Let G' = G — {u1v,ugv}, thus G’ has an a-tnsd-
coloring ¢. According to conditions (2) and (3), we have |F(u;v)| < m+2,
then |[A(uv)] > a—(m+2) >11+3-(5+2) =7, wherei =1 or
2. Associate with ujv,usv a variable z1,zo, respectively. Based on the
coloring conditions (3) and (4), we get the followmg polynomial Q2:

Qa(z1,72) = (21 — z2) H(Z $(vv;) + Zw; + $(v) = f(w)).
i=1 j=1
Similar to Claim 1’s calculation method, we can get cg, (z7**!) # 0, where
m+1=k+1 < 6. At last we can recolor u;, u; easily. By Lemma 1, we
get a desired coloring ¢’ of G, which is a contradiction.

Case 2.3: | > k. Let G’ = G — {vyv,ugv,...,uxv}, thus we have an
a-tnsd-coloring ¢ of G’. According to conditions (2) and (3), we have
|P(uv)] € m+ (I — k) + 2, then |A(uv)| 2 a— (m+1-k+2) > k+1,
where 1 < i < k. Associate with ujv, ugv, ..., urv a variable z;,z2, . .., Tk,
respectively. Based on the conditions (3) and (4), we get Q3:

Qs(zn,z2,.. ) =[] (w.—z,)H(Z«»(w,H Z $(u;v)+

1<|<J<k i=1 j= i=k+1
Z 25+ $(v) = F(0)),
j=1
where if k+1 > [, set ZJ_k +1 $(u;v) = 0. Similar to Claim 1's calculation

method, we can calculate by Matlab and get cq, (z¥z5~!---zx) # 0. At
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last, we recolor u;,uy, ..., ux easily. By Lemma 1, we get a desired coloring
¢' of G, which is a contradiction.

Case 24: k =4or5 | =30ork =5 1=4 Let G = G-
{v1v,u9v, ..., ww}. Similar to Case 2.1, we have |F(u;v)] < m + 2, then
[A(uv)] 2 a—(m+2) = AG)—m+1>11-5+1 =17 Associate
with wyv, ugv, ..., wv a variable z;,2,,...,x, respectively. Based on the
coloring conditions (3) and (4), we get the following polynomial Q,:

m m !
Qa(z1,22,om) = [T (@i—23) [JQ d(ve) + 3w + é(v) - f(va))-
1<igj<t i=1l j=1 i=1
Similar to Claim 1’s calculation method, and calculated by Matlab we can
getif ! =3, k =4, cq (z8z2) # 0; if L = 3, k = 5, cq,(z3z3) # 0; if | = 4,
k =5, co,(z3z523) # 0. At last, we can recolor u;,us,...,u easily. By
Lemma 1, we get a desired coloring ¢’ of G, which is a contradiction.
Claim 3 In H, any 4~ -vertex is not adjacent to another 4~ -vertex.

Proof. If otherwise, by Claim 1 and Claim 2, we have G contains a sub-

graph isomorphic to configuration F3 in Figure 1, where 2 < I;,lp < 3.

Let G' = G — {uv}, thus we have an a-tnsd-coloring ¢ of G'. To get

a desired coloring ¢’ of G, based on conditions (2) to (4), [F(uv)| =

{p(uu1), pluug), .. ., d(uur,), d(vv1), d(vvs), . .., d(vuy, )} < 6, then |A(uv)|
> a—6 > 8. At last recolor u,u;,uy,...,us,,v,v1,...,v,. This implies

that we can get a desired coloring ¢’ of G, which is a contradiction.

Claim 4 In H, any k-vertex is not adjacent to 4~ -vertex, where k = 5, 6.

Proof. If not, then G contains a subgraph isomorphic to configuration F3
in Figure 1, where I; =k —1,l = 1,13 > 0 and u; is a 4~ -vertex.

Case 4.1: I3 = 0. Let G’ = G — {u;v}, thus we have an a-tnsd-
coloring ¢ of G'. To get a desired coloring ¢’ of G, we first erase the color
on v. Then according to conditions (1) to (3), we have |F(u;v)| < k + 2,
|[F(v)| < 2(k~1), then [A(u1v)| 2 a—(k+2) > 6, |A(v)] > a—2(k—1) > 4.
Associate with u,v,v a variable z;, x5, respectively. Based on the coloring
conditions (2) and (4), we get the following polynomial Qs:

L 4L
Qs(21,22) = (21— 22) [[Q d(vv;) + 71 + 22 ~ f(w)).
=1 j=1
It can be easily calculated that cq,(z$) # 0, if k = 5; cq,(zix3) # 0, if
k = 6. At last we can recolor u; easily. This implies that we can get a
desired coloring ¢’ of G, which is a contradiction.

Case 4.2: I3 > 1. By Claim 2, k = 6. Let G' = G — {u;v}, thus we
have an o-tnsd-coloring ¢ of G’. To prove there is a desired coloring ¢’
of G, erase the colors of v, vwy,vws,...,vws, where t = I3, if I3 = 1 or 2;
otherwise t = 3. Then we have |F(u1v)| < l3 —t+38, |F(vw;)| < la—t +6,
|F(v)] < I3 —t + 10 according to conditions (1) to (3). Associate with
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U v, vwy,. .., VW, ¥ a variable z;,Za, ..., Ti41, Te42, respectively. Based
on conditions (2) to (4), we get Qs:

h L i3

Qe(z1,72,...,ze42) = [[  (mi—z) [[C d(wus)+ > dlvws)+

1<i<i<t+2 i=1 j=i j=t+1
142

>z — f(w),

i=1

where if kK +1 > I3, set zi-“___kﬂqb(ij) =0. Ifl3 =1or 2 |[A(wv)| =
a—(ls—t+8) =A(G)—5>6, |A(vw;)| > a— (Ia —t+6) > 8, |A(v)| >
a—(la—t+10) > 4, and cq, (ziz3z3) # 0, or ey (ziz3xd) # 0, respectively.
Ifl3 > 3, |A(u1v)| = a—(ls—t+8) > k+t—5 > 4, |A(vw;)| > a—(l3—t+6) =
6, |A(v)] > @ — (Is —t + 10) > 2, and cqq(ziz3a§z3xrs) # 0. At last, we
can recolor uj,wy,...,w;, easily. This implies that we can get a desired
coloring ¢’ of G, which is a contradiction.

Claim 5 In H, each 7-vertex is adjacent to at most one 4™ -vertex.

Proof. If otherwise, then G contains a subgraph isomorphic to configuration
F3 in Figure 1, where [; = 5,1l = 2,13 > 0 and u;,u2 are 4™ -vertices.

Case 5.1: I3 = 0. Let G’ = G — {¥1v,ugv}, thus we have an a-tnsd-
coloring ¢ of G’. To get a desired coloring ¢’ of G, we first erase the color
of v. |F(uv)| < 8, |F(v)| < 10 according to conditions (1) to (3), then
|A(uv)| > o —8 > 6, |A(v)| = o — 10 > 4, where i = 1 or 2. Associate
with uqv,uqv,v a variable z1,x2,z3, respectively. Based on the coloring
conditions (2) to (4), we get the following polynomial Q7:

i 4 3
Qr(zr,22,23) =[] (@ —25) [IQ dwvs) + 3 25 = f(wa)).
1<i<j<3 i=1 j=1 i=1

Similar to Claim 1’s calculation method, we can calculate that cq, (z{z3z3) #
0. At last, we can recolor u, ug easily. According to Lemma 1, this implies
that we can get a desired coloring ¢’ of G, which is a contradiction.

Case 5.2: I3 > 1. Let G’ = G — {u1v,uv} and erase the colors of
v, vwy, VWs, . . . , YWk, Where if I3 = 1, set k = 1, otherwise set ¥ = 2. Then
|F(u)] < la —k + 8, |F(vw;)] < la—k+86, |F(v)] < I3 — k + 10 according
to conditions (1) to (3), where 1 < ¢ < 2,1< j <k. Thenif i3 = 1,
|A(wv)| > a—(lz —k+8) = A(G)—5 2 6, |A(vwy)| > a—(la—k+6) > 8,
|A(W)| 2 = (Is —k+10) > 4; if I3 > 2, |[A(uw)| 2 a~ (3 —k +8) =
li+la+k=5 = 4, |A(vw;)| = a—(la—k+6) > 6, |A(v)| > a—(la—k+10) > 2,
where 1 < i< 2,1 < j < k. Associate with uyv, ugv,vwy,...,vw,v a
variable z,, €2, ..., Zk4+3, respectively. Based on the coloring conditions (2)
to (4), we get the following polynomial Qg:
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L U I3

Qs(z1,22,..yzeas) = [ (@ =) [ dtvus) + 3 olows)+

1Si<j<k+3 i=1 j=1 j=k+1
k43

ZEJ' - f(vi))v

i=1

where if k4 1 > I3, set Z:;.":k +1 #(vw;) = 0. Similar to Claim 1, we have
cos (zix323) # 0, if I3 = 1; cqq(z3z3z3zizs) # 0, if I3 > 2. At last, we can
recolor u;,us easily. This implies that we can get a desired coloring ¢’ of
G according to Lemma 1, which is a contradiction.

Claim 6 In H, for each 8-vertex v € V(H), the followings hold.
(a) v is adjacent to at most three 3-vertices.

(b) If v adjacent to three 3-vertices, then v is adjacent to at most one
4-vertex.

Proof. (a) If otherwise, G contains a subgraph isomorphic to configuration
F3 in Figure 1, where l) = 4,15 = 4,13 > 0 and u3, u, ..., u, are 3-vertices.

Case 6.1: I3 = 0. Let G’ = G — {uyv,uav,...,u,v}, then we have an
a-tnsd-coloring ¢ of G'. According to conditions (2) and (3), |F(u;v)| < 7,
then |A(u;v)| > a—7 > 7, where 1 < i < l. Associate with ujv, ugv, ... y ULV
a variable zy, 7y, .. ., 2y,, respectively. Based on the coloring conditions (3)
and (4), we get the following polynomial Qq:

h 4L l2

Qo(z, 22, o) = [T (@ —2) [T d(vvy) + 3 25 + (v) = £(w)).

1<i<j<ls i=1 j=1 i=1

We can calculate that cq, (z}z3x3) = 2. At last, recolor uy,us,...,u,. By
Lemma 1, we get a contradiction.

Case 6.2: I3 > 1. Let G’ = G — {u1v,ugv,...,u;,v}, thus we have an
a-tnsd-coloring ¢ of G’. To get a desired coloring ¢’ of G, we first erase the
colors of vwy, vwy, ..., vwy, where if I3 = 1, set k = 1; otherwise set k = 2.
We have |F(vw;)| < I3 —k+6, |F(u;v)| < l3—k+7 according to conditions
(2) and (3), where1 < i <ly,1 < j < k. Thenifls =1, |A(vw;)| 2 a—(l3—
k+6) = A(G) -3 > 8, |A(uw)| 2 a—(la—k+7) > 7;if l3 > 2, |A(vw;)| >
a—(lz—k+6)>2hL+l+k~-3=7, |A(uiv)| > a—(lz—k+7) > 6, where
1<i< 1,1 <5 <k Associate with vw;, vw,, ..., vwk, w1, ugv, ... y ULV
a variable xy,%9,..., %1, 1k, respectively. Based on the coloring conditions
(3) and (4), we get the following polynomial Qo: '

1y 1 la+k
Quo(z1,72,.. wp4) = [ (@—2) [JQC ¢(wos) + 3 a5+
1<i<i<la+k i=1 j=1 i=1

i3
D d(vwy) + d(v) — f(v),

j=k+1
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where if k + 1 > I3, set Z;‘f___k +19(vw;) = 0. Similar to Claim 1, we have
c@io(Z3x4z3zd) # 0, if I3 = 1; cq,o(z3x5zdzazl) # 0, if I3 > 2. At last,
recolor uy, ug, . .., ut,, W1, W, . .., Ws. By Lemma 1, we get a contradiction.

(b) If otherwise, G contains a subgraph isomorphic to configuration F3
in Figure 1, where !} = 3,12 = 5,13 > 0 and u;,us, ..., u;,—2 are 3-vertices,
u,_1, U1, are 4-vertices.

Case 6.3: I3 = 0. Let G’ = G — {u1v,ugv,...,u,v}, thus we have an
a-tnsd-coloring ¢ of G'. Now we prove that we can get a desired coloring
@' of G. We have |F(u;v)| < 6, |F(ujv)] < 7 according to conditions
(2) and (3), then |A(u;v)] > a— 6 > 8, |A(u;v)| > a —7 = 7, where
1<i<ly—2,l3—1<j < lp. Associate with ujv,ugv,...,u;,v a variable
Z1,%3,...,T1, Tespectively. Based on the coloring conditions (3) and (4),

we get the following polynomial Q1:1:
i 4L

{2
Qulznza..zp) =[] (@ —2) [JQ ¢(wvs) + D5+ (v) — f(w))-
i=1

1gi<i<ls i=1 j=i

Similar to the calculation method in Claim 1 and by Lemma 2, we get
cQu (xiz32374) # 0. At last, we can recolor uj,ug,...,us, easily. By
Lemma 1, we get a contradiction.

Case 6.4: I3 > 1. Let G' = G — {u1v,ugv,...,u,v}, thus we have an
a-tnsd-coloring ¢ of G'. To get a desired coloring ¢’ of G, first we erase the
colors of vwy, vws, . .., vwy, where if I3 = 1, set k = 1; otherwise set k = 2.
We have |F(uv)] < l3 —k +6, |[F(ujv)| <la—k+7, |[Flvw)| <lz3—k+5
according to conditions (2) and (3), where 1 < i <l -2,/ -1<j <
l5,1<t<k Thenifla=1, [A(vw)| 2 a—(ls—k+5)=A(G)-22=9,
A(wv)| > a— (Is — k+6) = 8, |A(uw)| 2 a—(a—k+7) 2 T if ls > 2,
|A(vw,)| > a—(la—k+5) 2L +la+k—2=8, |[A(uw)| 2a—-(l3—k+
6) 27, |A(u,~v)| 20—-(13—’6-!—7) 26, where 1 SiSlz—?,lz—l S
j < 13,1 £t < k. Associate with vwy,vws,. .., vWk, w10, U2v, ..., ULV &
variable 1, 23, . . ., Ti,+k respectively. Based on the coloring conditions (3)
and (4), we get the following polynomial Q;2:

T 41 3

Qi2(z1,%2,. .., Tip4k) = H (= —%)H(Z‘ﬁ(m’j)’* > dlvwi)+

1<i<j<la +k i=1 j=1 j=k+1
la+k

D i+ o(v) - f(v)),

=1

where if k 4+ 1 > I3, set Z;“:k_{_l ¢(vw;) = 0. By Lemma 2, we get
con(zizizdadzs) # 0, if I3 = 1; if I3 > 2, similar to the calculation
method in Claim 1, we can easily calculate that cq,,(z]2§zsxiz3z3) # 0.
At last, we can recolor uy,us, ..., U, Wy, Ws,. .., Wi easily. By Lemma 1,
we get a desired coloring ¢’ of G, which is a contradiction.

Claim 7 In H, each 9-vertex is adjacent to at most four 3-vertices.
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Proof. If otherwise, that is G contains a subgraph isomorphic to configu-
ration F3 in Figure 1, where [; = 4,1, = 5,{3 > 0 and Uy, U2, ..., U, are
3-vertices.

The proof of this situation is the same as Claim 6(a). Similar to Claim 1,
we can calculate that in Case 6.1, cg, (z3r3z32?) # 0. In Case 6.2, if i3 = 1,
cqQio(Zizdzazdzd) # 0; if I3 > 2, we have |[A(uv)| 2 a— (s ~k+T7) > 7,
|A(vw;)| > a — (la — k +6) > 8, cq,,(z8x3xizsTiz?) # 0.

In conclusion, those all imply that we can get a desired coloring ¢’ of
G, which is a contradiction.

Claim 8 In H, for each 10-vertex v € V(H), the followings hold.

(a) v is adjacent to at most seven 3-vertices.

(b) If v adjacent to seven 3-vertices, then v is not adjacent to 4-vertex.
Proof. (a) If otherwise, G contains a subgraph isomorphic to configuration
Fj3 in Figure 1, where |; = 2,03 = 8,13 > 0 and uy, u, . .. , Uy, are 3-vertices.

Case 8.1: I3 = 0. Let G' = G — {uyv,ugv,...,u;,v}, thus we have an
a-tnsd-coloring ¢ of G'. To get a desired coloring ¢’ of G, we first erase the
color of v. We have |F(u;v)| < 4, |F(v)| < 4 according to conditions (1)
to (3), then |A(u;v)| > 10, |A(v)| > 10, where 1 < i < l;. Associate with
v, U, U2V, ..., U, a Variable zy,z,,..., 2,41, respectively. Based on the
conditions (2) to (4), we get the following golynomial Qis:

1 4L

241
Qu(@nz2,. . wzpi) = [ @-2)T[Q dww) + Y 25 - £(w)).
1€i<jSla+1 i=1 j=1 j=1

Similar to Claim 1 and by Lemma 2, we have cq,, (z32323z5z8z32225) # 0.

Case 8.2: I3 > 1. The proof of this situation is the same as Case
6.2, where |[F(uw)| < I3 — k + 5, |F(vw;)| < I3 —k + 4, then if I3 = 1,
|[A(uiv)] > a—(l3—k+5) = A(G) -2 2 9, |A(vw;)| = a—(ls—k+4) > 10;
ifl3 > 2, |A(uw)| 2 a—(la—k+5) > I} +l2+k-2 = 10, |A(vw;)| 2 a—(l3—
k+4) 2 11, where 1 <i <l,1 < j < k. According to Lemma 2, if I3 = 1,
cQuo(eiz38zizdadzizs) # 0; if ls > 2, cq,o(xd2i0z]a§rErdadadzy) # 0.

In conclusion, those all imply that we can get a desired coloring ¢’ of
G, which is a contradiction.

(b) If otherwise, G contains a subgraph isomorphic to configuration Fj
in Figure 1, where [} = 2,1, = 8,13 > 0 and uy, uy, ... , Ui, —1 are 3-vertices,
uy, is 4-vertex.

Case 8.3: I3 = 0. The proof of this situation is the same as Case
8.1, where [F(uv)| < 4, |F(u,v)| < 5, |F(v)| < 4, then |A(xv)| > 10,
|A(w,v)| 2 9, |A(v)| > 10, where 1 < i < Iy — 1. According to Lemma 2,
we have cq,, (28232323 zdz3r2xs) £ 0.

Case 8.4: I3 > 1. The proof of this situation is the same as Case 6.2,
where |F(uv)| < l3 — k +5, |F(u,v)| < lz —k+6, |F(vw;)| < ls — k + 4,
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then if I3 = 1, |A(uv)| = 9, |A(u,v)] 2 8, |A(vw;)| 2 10; if I3 > 2,
|A(usv)| 2 10, |A(u,v)| = 9, |A(vw;)| > 11, where1 €1 < 2-1,1<j < k.
According to Lemma 2, if I3 = 1, cg,(z3x3x8xirizdzizs) #£ O; if I3 > 2,
CQio (zsl)xéoz;xgxgxgx;xng) #0.

In conclusion, those all imply that we can get a desired coloring ¢’ of
G, which is a contradiction.

Claim 9 In H, for each 117-vertex v € V(H), the followings hold.
(a) Vertex v is adjacent to at most dg(v) — 2 3-vertices.

(b) If v adjacent to dgy(v) — 2 3-vertices, then v doesn’t adjacent to
4-vertex.

(c) If v adjacent to dz(v) — 3 3-vertices, then v is adjacent to at most
two 4-vertices.

Proof. (a) If not, G contains a subgraph isomorphic to configuration F3,
where Iy = 1,13 =dg(v) - 1,13 > 0, and 3, ua, ..., u;, are 3-vertices.

Case 9.1: I3 = 0.The proof of this situation is the same as Case 8.1,
where |F(v)| € 2, |F(uv)| < 3, then |A(v)] > I + 2, |A(uv)| 2 I2 + 1,
where 1 < i < ly. Similar to the calculation method of Claim 1 and by
Lemma 3, we have cq,, (2 22" a%~2 .. 2 _ z1,) #0.

Case 9.2: I3 > 1. The proof of this situation is the same as Case
6.2, where |[F(vw;)| < I3 —k + 3, |F(wv)| < I3 —k + 4, then if I3 =
1, |A(vwj)| = l2 +2, |[A(uiv)| 2 L+ 15 if la > 2, |[A(vw;)| 2 12 +3,
|A(uv)| = l2 + 2, where 1 < i < 3,1 < j < k. According to Lemma
3, we have if I3 = 1, cQ,o(xll’“:z:’f—l:cg’_z---z,zz_l:z:lz) #0;ifl3 > 2,
ch(:l"llz-'.za;‘;"1"132_1 Tt x122x12+l) #0.

In conclusion, those all imply that we can get a desired coloring ¢’ of
G, which is a contradiction.

(b): If otherwise, G contains a subgraph isomorphic to configuration
F; in Figure 1, where [; = 1,lp = dg(v) — 1,l3 > 0 and uj,u2,...,%—1
are 3-vertices, uy, is 4-vertex.

Case 9.3: I3 = 0. Let G' = G — {u1v,ugv,...,u,v}, thus we have a
desired coloring ¢ of G’. To get a desired coloring ¢’ of G, we first erase
the color of v. We have |F(v)| < 2, |F(uiv)| < 3, |F(u,v)| < 4 according
to conditions (1) to (3), then |[A(v)] 2 a—2 2> 2+ 2, |A(uw)| 2 2+ 1,
|A(ut,v)] = la, where 1 < i < lp — 1. Associate with v, uv,ugv,...,u,v a
variable z1, ..., Zi, 41, respectively. Based on the coloring conditions (2) to
(4), we get the following polynomial Q14:

l2+1

Qua(z1, 22, Tipe1) =[] (@i =2)(3 z5+ dlowr) = f(w))-
j=1

1€i<i<lg+1

By Lemma 3, we get cg,,(z7 2y 12§ ™2 ..z} _ z1,) # 0. At last, we
can recolor uy,u,...,u, easily. This implies that we can get a desired
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coloring ¢’ of G, which is a contradiction.

Case 9.4: l3 > 1. The proof of this situation is the same as Case
6.4, where |F(vw;)| < I3 —k + 3, |F(uw)| < Iz — k + 4, |F(u,v)| <
l3—k+5, thenif l3 =1, [A(vw;)| > a— (I3 —k+3) 2 12 + 2, |A(uv)| =
a—(la—~k+4) >21l+1, iA(uz,v)| > a—(la—k+5) >y, iflzg > 2,
JA(vw;)| > @ — (I~ k+3) >l +3, [Awv)| > a— (I~ k+4) > lp + 2,
[A(u,v)| 2 a—(la—k+5) 2 lo+1, wherel1 i <lp—-1,1<j <k
According to Lemma 3, we have if i3 = 1, cq,, (z? 1z 125 ... z,_1x1,) #
0; if I3 > 2, cq,, (x'f"‘zx‘;xf,"l ---ZETip41) # 0. At last, we can recolor
Uy, Uz, ..., ULy, W1, W2, . .., Wi easily. This implies that we can get a desired
coloring ¢’ of G, which is a contradiction.

(¢): Suppose this claim is false, that is G contains a subgraph isomor-
phic to configuration F3, where vy, v2, ..., v, don’t exist, I = dp(v),l3>0
and u),uy,...,u,-3 are 3-vertices, uy,_2,us,—1,u, are 4-vertices.

Case 9.5: I3 = 0. Let G’ = G — {uyv,uv,...,u,v}, thus we have an
a-tnsd-coloring ¢ of G’. We have |F(u;v)| < 3, |F(u;v)| < 4, according
to conditions (2) and (3), then |A(uw)| > o — 3 > ly, |A(u;v)| > I — 1,
where 1 < i <y —3,lp —2 < j <l,. Associate with ULV, URY, ..., ULV &
variable x;,x3,...,Zi,, respectively. Based on the coloring condition (3),
we get the following polynomial Q;s:

le(ml,zz,...,a:gz) = Z (.’E;'—:l:j).
1<i<i<ig
By Lemma 2, we have cq,, (2122 ~2z73...2,,_;) # 0. We can recolor
u1,U2,...,u, easily. This implies that we can get a desired coloring ¢’ of
G, which is a contradiction.

Case 9.6: i3 > 1. Let G' = G — {u1v,ugv,... ,u1,v}, thus we have an
a-tnsd-coloring ¢ of G’. To get a desired coloring ¢’ of G, we erase the
color of vw;. We have |[F(vw)| < l3 + 1, |[F(uw)| < I3 + 2, [F(u,v)| <
I3 + 3 according to conditions (2) and (3), then |A(vw;)| > a— (la + 1) >
la +2, |A(uv)| 2 I3 + 1, |[A(u;v)] > Iy, where 1 < i <l —3,l; -2 <
J £ lp. Associate with vw,,u;v, UV, ..., U,V a variable x),Z9,..., 21,4
respectively. Based on the coloring condition (3), we get the following
polynomial Q¢:

Qlﬁ(zl)x2,“-)xla+l) = H (xi —Ej).
1<i<iSly+1
By Lemma 2, we have cq,,(z?z2 1227 2...2;,) # 0. At last, recolor
Uy, U2, ..., %,, w). By Lemma 1, we get a contradiction.

By Claim 1 and Claim 3, we have A(H) > 5. If A(H) = 5 or 6, vertices
in H are all 5*-vertices according to Claim 3 and Claim 4, then we have
5 < mad(H) < mad(G) < 5, which is a contradiction. Therefore we have
A(H) 2 7. In the following, in order to complete the proof, we use the
discharging method. For every v € V(H), we define the original charge of
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v to be w(v) = dy(v) — 5. The total charge of the vertices of H is equal to
g%”) (dg(v) — 5) = |V(H)| x (ad(H) — 5) < |V(H)|x(mad(H) — 5) < 0.

ve

Now we give the following discharging rule

(R) In graph H, Every 7t-vertex gives £ 2 to each of its adjacent 3-vertex
and gives 3 1 to each of its adjacent 4—vertex

Let o' (v) denote the new charge of a vertex v € V(H) after the dis-
charging is finished. If Y~ w’(v) > 0 can be deduced, then we can show

veV(G)
that the assumption is wrong.

Now let us check the new charge of each vertices in H.

For each v € V(H), if dg(v) = 3, by Claim 3 and Claim 4, v is adjacent
to three 7+-vertices, by (R), w’'(v) = w(v) + 3 x 5 =0.

If dgy(v) = 4, by Claim 3 and Claim 4, v is adjacent to four 7+-vertices,
by (R), w'(v) =w(v)+4x 2 =0.

If dy(v) =5 or 6, w'(v) = w(v) 2 0.

If dgy(v) = 7, by Claim 5 and (R), w'(v) 2 w(v) - % =% >0.

Ifdp(v) =8, by Claim 6 and (R), if v adjacent to three 3-vertices, then

w'(v) > wv)-3x2 =1>0;ifv adjaucent tok 3—vertlces, where 0 < k £ 2,
then w'(v) > w(v) —kx 2 —(8—k)x }=1-Fk>§>0.

Ifdy(v) =9, by Clmm 7 and (R), ifv ad_]acent to four 3-vertices, then

w'(v) > w(v) —4 x 3 -5xg=1- T"k >0;ifv adjacent to k 3-vertices,
where 0 < k < 3, then w'(v) > > w(v)—kx2-9-k)x1=3-Fk>1>0.

Ifdy(v) =10, ifv adJacent to seven 3-vertices, by Claim 8(b) and (R),
then w'(v) > w(v) — 7 x % = } > 0; if v adjacent to k 3-vertices, where
0<k <6, thenw(v) >w(v)—kx2-(10-k)xi=3-Fk>0.

If dg(v) 2 11, if v adjacent to dH(v) — 2 3-vertices, by Claim 9(b) and .
(R), w'(v) = w(v) — (dg(v) - 2) x 2 = H((dr(v) —11)) > 0; if v adjacent to
dg(v)-3 3-vert1ces, by Claim 9(c), w'(v) > w(v)~(dg(v)-3)x 2 —-2x 1
3dp(v)-1 > 1> 0;ifv adjacent tok 3-vert1ces, where 0 < k < dH(v) 4
then w'(v) > w(v) —kx2—(dg(v)—k)x %= 3dH(U) - S5k-52

3(dr(v)—-10)> 1 >0.

So > w'(v) 2> 0, which contradicts to ). w(v) < 0. This com-

veV(H) veV(H)
pletes the proof.
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