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Abstract. The general vertex-distinguishing total chromatic
number of a graph G is the minimum integer k, for which the
vertices and edges of G are colored using k colors such that
there are no two vertices possessing the same color-set, where
a color-set of a vertex is a set of colors of the vertex and its
incident edges. In this paper, we discuss the general vertex-
distinguishing total chromatic number of complete bipartite
graphs K, ,,, and obtain the exact value of this number for some
cases in terms of m and n. Particularly, we give the bounds of
this number for K, ».
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1 Introduction

Graphs considered in this paper are simple (without loops or multiple
edges), finite, and undirected. Given a graph G, we denote by V(G), E(G),
A(G) and §(G) the set of vertices, edges, maximum degree and minimum
degree of G, respectively. For a vertex v of G, dg(v) is the degree of v in
G. For any undefined terms, the reader is referred to the hook [20].

Graph coloring is an important research problem. It can be widely
applied in practice [1, 2, 3]. Given that many practical problems can
be abstracted into coloring problems, many new colorings have bheen
introduced [4]. In 1985, Harary [5] proposed general vertex-distinguishing
edge coloring of graphs.
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Definition 1.1 [5] Let G be a graph and k be a non-negative integer.
A general vertez-distinguishing k-edge coloring of G, abbreviated as k-
GVDEC, is a mapping f from E to {1,2,...,k} such that for Yu,v €
V(G), C(u) # C(v), where C(u) = {f(w)luv € E(G)}. The general
vertez-distinguishing edge chromatic number of G, denoted by Xgua(G), 18
the minimum k such that G has a k-GVDEC.

In [6] and [7], Horiidk, Sotdk and Sakvi studied general vertex-
distinguishing edge chromatic number of complete bipartite graphs.

In 2008, Gydri, Horiidk, Palmer and WoZniak [14] introduced the general
adjacent vertez-distinguishing k-edge coloring of a graph.

Definition 1.2 [14] The general adjacent vertez-distinguishing k-edge col-
oring of a graph G is a mapping f from E(G) to {1,2,...,k} such
that C(u) # C(v) for any uwwv € E(G), where C(u) = {f(w)|luv €
E(G)}, The general adjacent vertez-distinguishing index of G, denoted
bY Xgav(G), is the minimum k for which there exists a general adjacent
vertez-distinguishing k-edge coloring of G.

A total k-coloring of a graph G is a mapping from V(G) U E(G) to
{1,2,...,k}. A total coloring is called as proper if any two adjacent or
incident elements receive distinct colors. Given a total k-coloring f of G,
we denote by C/(v) the set of colors of v and its incident edges under f.
We also call C/(v) the color set of v (under f). In 2005, Zhang, Chen, Li,
Yao, Lu and Wang [15] introduced a variant of proper total coloring.

Definition 1.3 [15] Let f be a proper total k-coloring of a graph G.
If Vuv € E(G), C/(u) # C/(v), then f is called an adjacent vertez-
distinguishing total k-coloring of G, or a k-AVDTC of G for short. The
minimum number k for which G has a k-AVDTC is the adjacent vertez-
distinguishing total chromatic number of G, denoted by xa:(G).

Zhang et al. [15] conjectured that
Conjecture 1.1 For any graph G, it follows that
Xat(G) < A(G) + 3

In [16], [17], and [18], authors independently proved that there exist a 6-
AVDTC of graphs with A = 3, which indicates Conjecture 1.1 holds for
such graphs.

Let f be a proper total k-coloring of a graph G. If for any two
distinct vertices u,v, it has C{ (u) # C{ (v), then f is referred to as a
vertex-distinguishing total k-coloring of G, abbreviated as k-VDTC. The
minimum number k such that G has a k-VDTC is called the vertex-
distinguishing total chromatic number, denoted by x,:(G) [19]. Zhang
et al. [19] conjectured that
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Conjecture 1.2 For any graph G, it has that
#e(G) < xue(G) S 1e(G) +1

where p,(G) = min{k|(;X,) > n;,8 < i < A}, n; is the number of vertices
with degree i in G.

In [21], Liu and Zhu proposed the general vertex-distinguishing total
coloring of graphs.

Definition 1.4 Let G be a graph and k be a positive integer. A total
coloring f of G using k colors is called a general vertez-distinguishing total
k-coloring of G (or k-GVDTC of G briefly ) if Vu,v € V(G), Cf(u) #
Cf(v). The minimum number k for which G has o k-GV DTC is the general
vertez-distinguishing total chromatic number, denoted by xg4u:(G).

Obviously, xgvt(G) does exist for every graph G. In this paper, we
study the general vertex-distinguishing total coloring of complete bipartite
graphs K, n.

2 Main results

Recall that a bipartite graph is a graph whose vertices can be divided into
two disjoint sets X and Y (that is, X and Y are each independent sets)
such that every edge connects a vertex in X to one in Y. A complete
bipartite graph is a special bipartite graph such that every vertex of the X
is connected to every vertex of Y. In what follows, we denote by K &
complete bipartite graph with partitions of size |X| =m and Y| = n, and
let V(Kmn) = XUY, where X = {z;]i = 1,2,...,m} and Y = {yi|lt =
1,2,...,n}.
We first give some simple but useful results as follows.

Lemma 2.1 Let f be a k-GVDTC of Ky . Then forVz € X,y €Y, it
follows that
cl@nciw) #0.

Proof. The proof of Lemma. 2.1 is straightforward, so we omit it. (m}

Let f be a k-GVDTC of Kp,n, and v be a vertex of K, n. We will
denote by 5{ (v) the set of colors not appearing at v and its incident edges,
ie. 5{(1}) ={1,2,...,k}\ Cf (v), where {1,2,...,k} is the set of k colors.

Lemma 2.2 Let f be a k-GVDTC of Km . Denote by q the number of
vertices v € Y such that |Cf (v)| = 1. Then m < 289,
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Proof. Let {1},{2},...,{q} be the g color sets appearing at vertices in Y.
Then by Lemma 2.1 each vertex z € X, {1,2,...,9} C C’,f(:z). In addition,
because C{ (z;) # C{ (z;) for any two distinct vertices z;,z; € X, it follows
that m < 7573 (*77) = 2%2. o

We call the K, a Star. In [21], Liu and Zhu have obtained the general
vertex distinguishing total chromatic number of K, ,. In this paper, we
mainly discuss this parameter of K, , for m > 2 and n > 2.

For any set S, we denote

(f) =the set of all r-subsets of S.

Theorem 2.1 Let n > 2 be an integer. Then

3, n=234
ngt(K2,n) = 4, n=25,6,7,8,9, 10, 11, 12;
k*, n>13.

Where k* is the minimum value satisfying n < (kl) +%) + (k3 ) -1

Proof. When n < 12, the proof of the conclusion is straightforward. We
now consider the situation for n > 13. Suppose xgut(K2n) = k. Let
Nk=(’1°)+('2°)+('3°)-1. Let f be a k-GVDTC of K, ,. It is obvious that
|ICf(z:)] < n+1, and |C(y;)] < 3fori=12andj =1,2,...,n By
Lemma 2.2 there must exist some {¢} ¢ U;-‘=IC{(yj), Le{1,2,...,k}, so
n < N which implies that k 2 k*. In particular, when k = 4, hecause there
exists some i € {1,2} such that |C{(:z,~)| <3, wehaven < Ny -1 =12
When k& > 5, in order to show k = k*, it suffices to prove Kin has a
k*-GV DTC.

We can always assume n > k* — 1 because the case n < k* —1 is trivial.
Let K* = {1,2,...,k*}. First, we (arbitrarily) assign a color set C; to
each y;, j = 1,2,...,n, such that (1) C; € (¥") \ {+*})u (fg) u(®), @
Cj, # Cj, for any two distinct 7,72 € {1,2,...,n}, (3) {{1},{2},..., {k*-
1}} € {Cj : 5 = 1,2,...,n}. Because Ni=|(X)\ (k") U (K7} U (X)),
n < Ny and n > k* —1, it follows that such C; does exist for j = 1,2,...,n.
Now, we define a k*-GV DTC of K n, according to C;.

Color z; by k* and x3 by k* — 1; For each y; and its incident edges,
if ICjI=|{Cl}|=1, then color Yi, YiTi, Y52 by ¢;; If |Cj|=|{c1,c2}|=2,
assume ¢; < cz, then color y; by c;, color y;z; and y;zz by ¢1; If
|Cjl=|{c1,¢c2,c3}|=3, assume ¢; < ¢z < c3, then color y; by c3, y;z;1 by
c1, and y;x2 by ca. Where ¢1,¢2,¢3 € K*.

By the above coloring, because color sets {1}, {2},..., {k* — 1} appear
at vertices of Y, it has that the color set of z; is {1,2,...,k*}, and the
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color set of z3 is {1,2,...,k* — 1} by Lemma 2.1. Given that for any two
g1 # j2 € {1,2,...,n} C;, # Cj, and |C;| < 3, we can see that z; has
different color set with y;, i = 1,2, j = 1,2,...,n. So the coloring defined
above is a k*-GV DTC of K. O

As an illustration of the above Theorem, we consider the complete
bipartite graph K3 20. We now define a 5-GV DTC of K2,20 as follows.

First, we assign a color set C; to y; for j =1,2,...,20; See the following
table.

Cl Cz Cs 04 Cs CG C7 Cs

{1} {2} {3} {4} {12} | {1,3} | {14} | {1,5}

Cy Cio Cn Ci2 Cis Cu Cis Cie
1,23 [ {124} | {125} | {134} | {135} | {1.4,5} | {2.3} | {24}
Ciz Cis Cro Ca0
257 | (234) | 12351 | (35)

Then, according to the C; defined above, we color vertices and edges of
K n, as follows:

Color z; by 5 and z2 by 4;

Color Y1,Y2,. .., Y20 by 17 2: 3) 41 2, 3: 4; 51 3’ 4, 57 41 51 5a 3) 41 5) 4, 51
5, respectively;

Color Z1Y1,T1Y2, . .-, T1Y20 by L, 2, 3: 4,1,1,1,1,1, 1,1, L 11, 2, 21
2, 2, 2, 3, respectively;

Color ZaYy1, T2Yy2,. .., T2Y20 by 1) 2) 3? 4» ls la 1, 17 2a 2, 21 3) 37 4) 2» 2)
2, 3, 3, 3, respectively.

Under the above coloring, it follows that the color sets of z; and z3 are
{1,2,3,4,5} and {1,2,3,4}, respectively. So, this coloring is a 5-GV DTC of
K> 2.

Theorem 2.2 Let n > 3 be any positive integer. Then

4, n=34,56,7,8,9,10;

5 n=11,12,...,26;
XgulKan) =\ 6" — 97 28 20.

k*, n2>30.

Where k*(> 6) is the minimum value satisfying ELI (k'i_l) -1<n<
Zg=l (ki ) —-2.

Proof. Suppose that Xgut(K3n) = k and let f be a k-GVDTC of
K3,. By Lemma 2.2 there must exist some {{;} ¢ U;?=IC{ (y;) and
{¢:} ¢ U;-‘___IC{(yj), 2,8 € {1,2,...,k}. Thus, by Lemma 2.1, one
can readily check that n < 10 and n < 26 when k¥ = 4 and & = 5,
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respectively. When k > 6, because IC{ (y)] £ 4 for each y € Y, it follows
that n < Z?=1 (’:)-2 which implies that k > k*. Additionally, we can easily
give a 6-GVDTC of K3, when n = 27,28,29. So, it suffices to consider
the case of k¥ > 6 and n > 30. In order to show k& = k* in this case, we are
sufficient to show that K3, has a k*-GVDTC.

Since the case n < k* —1 is trivial, we assume n > k* — 1. Analogously
to the proof of Theorem 2.1, we first assign a color set C; to each Yj»
j =1,2,...,m, such that (1) C; € (X)) \ {{**}, {k -1} U (X) U
('g) U (’f;) (2) Cj, # Cj, for any two distinct jy,j2 € {1,2,...,n}, (3)
{1} {2},.... (k" =2}, {k* - 1,k*}} C {Cj : 5§ =1,2,...,n}, where K* =
{1,2,...,k"}. Given that Ne=|((")\{{k*}, {k*=1}3HU(5)u () u (%)
and n < Nj, we can see that such C; does exist, j = 1,2,...,n. Now, we
define a k*-GV DTC of K, y, according to C;.

Color z;, z; by k* and z3 by k* — 1; For each y; and its incident
edges, if |Cj|=|{c1}|=1, then color y;, y;z1, y;jz2 and y;z3 by ¢;; If
|Cjl=|{e1,c2}|=2, assume c; < ¢z, then color y; by ¢z, color y;z) and y;jz3
by ¢1, and color y;z, by ¢3; If |Cj|=|{c1, ca, c3}|=3, assume ¢; < ¢; < e,
then color y; by cs3, color y;z1 and y;z3 by ¢, and color y;z2 by c;; If
|Cjl=|{e1,c2,c3,ca}|=4, assume ¢; < c3 < ¢3 < ¢4, then color yj by cq,
color y;1 by c1, y;z2 by c2, and color y;z3 by c3; Where ¢y, ¢z, c3 € K*.

By the above coloring, because {k* — 1,k*} is the color set of some
vertex of Y, it follows that k* — 1 appears at vertices ; and also z3. In
addition, because {1}, {2},..., {k* — 2} are color sets of vertices of Y and
k* — 1 does not appear at vertex zg, it follows that the color set of z;
is {1,2,...,k*}, the color set of z is {1,2,...,k* — 2, k*} and the color
set of z3 is {1,2,...,k* — 2,k* — 1}, by Lemma 2.1. Given that for any
two ji # j2 € {1,2,...,n} Cj, # Cj, and |Cj| < 4, we can see that z;
has different color set with y; for i = 1,2, j = 1,2,...,n. So the coloring
defined above is a k*-GV DTC of K3 ,,. O

We now consider the case of K, ..
Theorem 2.3 For positive integer n, we have
1
1+ [l°g2 (n+ 5)] < ngt(Kn.n) <2+ r1°g2 n]'
Proof. Let xgut(Knn) = k, and suppose that f is a k-GVDTC of Ky n.
Denote the set of colors by C = {1,2,...,k}. In order to ensure that for

any two vertices u,v, C/ (u) # C/(v), it demands that

n<2k—1.
So
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1
k 21+ [logy(n+ 3)]-

As for the upper bound, it suffices to prove that K ,, has a (24[log, n])-
GVDTC. Note that when k = 2 + [logyn], n < 2¥~2. In addition, we
shall assume n > 2%-3,

When k = 2,3,4, one can readily check that xgu:(K11) =
2; ngt(KZ,Z) =3; ngt(KS,S) =4; ngt(K4,4) = 4.

When k£ > 5, it follows n 2> k. We now present a
method to prove that K,, has a k-GVDTC. Denote by S
the family of all subsets of C that contain element 1, i.e.
Ss={{1},{1,2},{1,3}, . {1,k}{1,2,3},{1,2,4},...,{1,2,k},...... ,
{1,2,...,k — 1},{1,2,...,k — 2,k — 1}, {1,2,...,k — 3,k — 2,k —
1},...,{1,3,4,...,k},{1,2,...,k}}. We intend to construct a k-GVDTC
f with the following properties, denoted by (*)-rule:

cf (@) = (1}; Cf(z:) = (1,i} fori =1,2,..., k; C (y;) = C\{k+1-j}
for j = 1,2,...,k — 1; C{ () = {1,2,...,k}; C{(z:), C{ (y;), for 4,5 =
k+1,k+2,...,n are any 2(n—k) different sets in S\ (U%_,{C{ (z:),C{ (%:)})
(Since |S|=2%"1, such 2(n — k) sets do exist).

If f meets the above demand, then f is a k-GV DTC of K, .. We now
show that such f does exist.

Let f be:

(1) f(.’l:.,) =41 =12,...,k f(mi) =lLi=k+1k+ 2a"'a2k-2;
flyi) =1

(2) For i = 1,2,...,k,j = 1,2,...,n, f(ziy;) = i when i € C{(y;),
otherwise, f(z:y;) = 1.

Obviously, after the above two steps, all of C’{ (¥;),3 =1,2,...,n satisfy
(*)-rule. In the following, we show that edges z;y; for i = k + 1,k +
2,...,n,5 = 1,2,...,n can be colored properly to make sure that each
Cf(z;) for i = k+1,k +2,...,n has the properties of (*)-rule.

(3) For an arbitrary z;, ¢ € {k + 1,k + 2,...,n}, denote by
Xy = Clx) nCl(y;) for 5 = 1,2,...,k.  Let f(zimy) = 1,
and for j = 2,...,k, let f(x;y;) be the smallest number of
X = Xi; \ {f(zann), f(ziy2), ..., f(ziyj—1)} when X # @; Otherwise
let f(ziy;) =1 when X = 0.

By (3), it can be seen that each z;, i € {k+ 1,k +2,...,n}, has the
properties of (*)-rule. So, we need only color all the remaining edges by
color 1.

To sum up, f is a k-GV DTC satisfying (*)-rule, and the conclusion
holds. ]
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